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Abstract

The irreducible binary Goppa codes are widely used in code-based cryptography, like
in the McEliece cryptosystem. The aim of this work is to design an efficient and secure
hardware implementation of a Goppa decoder. We will show how to adapt a common step
of all decoding algorithms to obtain a ”leakage resistant” variant.

1 Introduction

There exists several domains in cryptography. Code-based cryptography has interesting pro-
perties: Fast computations, a well theorical complexity and no quantum algorithm in polynomial
time breaks the underlying NP-hard problem [4].
The first public-key cryptosystem (PKC) based on error-correcting codes was proposed by
McEliece in 1978 in [11]. In his paper, he proposed to use the family of Goppa codes. Per-
muted Goppa codes present some advantages: they look like random codes, have at least one
efficient decoding algorithm, and it is a dense family of codes. Goppa decoder can be used as
a trapdoor in code-based cryptography, both for encryption scheme (like McEliece public-key
encryption scheme [11]) and signature scheme (like CFS signature scheme [5]).
It is in this context that takes place our work. We are interested in the way that Goppa de-
coding algorithms are translated into circuits in hardware. Furthermore, we propose a partial
hardware implementation of them.
The remainder of this paper is organized as follows. In Section 2, we will recall some prelimi-
naries about the McEliece PKC and the Goppa codes. In Section 3, we will briefly present the
principle of side-channel attacks. In Section 4, we will explain our hardware implementation of
a partial Goppa decoder. Finally, we will conclude this paper in Section 5.

2 McEliece PKC with Goppa codes

The reader who wants more explanations about the McEliece PKC or the Goppa codes can find
them in Sections 3 and 4 in [7] or directly in [11, 6, 3].
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2.1 McEliece PKC

The McEliece PKC is composed of the three following algorithms.
Key generation: In inputs of this algorithm, we have two integers m and t, respectively for
extension degree of Galois field and Goppa polynomial degree. The steps are:

1. Choose a t-error correcting Goppa code C with parameters [n, k] (cf. Subsection 2.2).

2. Compute a k × n generator matrix G of C.
3. Randomly choose a non-singular binary k × k matrix S and a n× n permutation matrix
P and compute the generator matrix G̃ = S ·G ·P and the inverse matrices S−1 and P−1.

4. Return the public key pk = (G̃,m, t) and the secret key sk = (C, S−1, P−1).

Encryption: In inputs of this algorithm, we have the public key pk = (G̃,m, t) and a
message M . In output, this algorithm returns the ciphertext C. The steps are:

1. Randomly choose an error-vector E of weight t.
2. Compute C = M · G̃⊕ E.
3. Return C.

Decryption: In inputs of this algorithm, we have the secret key sk = (C, S−1, P−1) and a
ciphertext C. In output, this algorithm returns the plaintext M . The steps are:

1. Compute C̃ = C · P−1.
2. Decode C̃ with a Goppa decoder to obtain M̃ = M · S.
3. Compute M = M̃ · S−1.
4. Return M .

2.2 Goppa codes

Definition: In this paper, we are only interested in irreducible binary Goppa codes. A Goppa code
C is a linear code generated by the Goppa polynomial g and the support L. g is a monic irreducible
polynomial of degree t. L = {α1, . . . , αn} is a subset of n elements of the Galois field F2m with g(αi) 6= 0
∀i ∈ J1, nK. C is the set of words c of length n which verify the following equivalence:

−
n∑
i=1

ci
g(αi)

× g(x)−g(αi)
x−αi

≡ 0 mod g(x).

Decoding: The aim of a Goppa decoder is to solve the key equation as follows: Find the so-called
error locator polynomial σ such that SC(x) × σ(x) = σ′(x) mod g(x). All σ roots correspond to all
error positions. That is why, to decode a codeword C into a message M , there are the three following
steps:

1. Compute the syndrome polynomial: SC(x) = −
n∑
i=1

Ci
g(αi)

× g(x)−g(αi)
x−αi

.

2. Solve the key equation to obtain the error locator polynomial: σ(x).

3. Find the roots βi ∈ L of the error locator polynomial: σ(x) =
t∏
i=1

(x− βi).
The second step can be executed by extended Euclidean algorithm, Berlekamp-Massey algorithm [10]
or Patterson algorithm [13].

3 Side-channel attacks

Principle. The principle of side-channel attacks appeared only in 1996 [9]. A side-channel attack
is an attack which exploits the laws of the physics to obtain some information contained in channels
associated to an implementation, a circuit. The purpose is to extract secrets manipulated by smart
cards or cryptographic components. The side-channel does not aim at transmitting voluntarily some
information. It leaks information that an observer can interpret. On the other hand, algorithmic or
physic countermeasures can be proposed to stop such a leakage. Implementation of a cryptosystem
is a tradeoff between security and efficiency. That is why cryptanalysis and implementation must be
simultaneously considered.
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Examples. The main side-channel attacks are: timing attack and power consumption attack. The
first one exploits variations of processing time of a program, which depends on the size of the data;
the second one the power consumption of the whole system in an immediate way, which depends on
treatments made on the data.
Study of the McEliece cryptosystem resistance against this type of attacks began only five years ago
[17]. There exists several side-channel attacks and associated countermeasures [2, 12, 14, 15, 16, 17],
we want to provide an implementation secure faces all those attacks. In order to reach this goal, we
implemented the most critical step in a Goppa decoder (the root-finding step). Our aim is to find new
vulnerabilities, namely those related to information leakages via power consumption.

4 Hardware implementation of a vulnerable part of the
McEliece decryption algorithm

As explained above, our final objective is to implement cryptographic protocols based on error-
correcting codes on various supports and then to analyze the behavior of these implementations against
side-channel attacks.
First of all, we needed to localize the part of the McEliece algorithm, which could be interesting for
the attacker. We believe that one of the most important in the McEliece PKC is the decryption, in
which the hardware manipulates secret key. We therefore concentrated our effort to this part of the
McEliece PKC, which can be implemented in three ways: using the Patterson [13], Berlekamp-Massey
[10] or extended Euclidean algorithm. We selected the so-called error locator polynomial, which is used
during the Goppa code decoding, as the most security critical operation.
Our next task was to implement it in hardware, in order to be able to observe later dynamically its
power consumption, which is related to confidential data being processed. Once the information
leakage point will be found, our next objective will be to propose an efficient countermeasure on either
algorithmic or implementation level or both.

4.1 Implementation of Galois field multiplier in hardware

The main component of all decryption algorithms is the Galois field multiplier. Therefore, we started
our work by designing an efficient architecture of the multiplier block.

Algorithm of multiplication in Galois fields:
We decided to use the next Horner’s scheme [8] of multiplication algorithm.

Description: Multiplication of two elements α and β of a finite field F2m = F2[X]/Qm(X). The
product denoted r by Galois Multiplier (GM) is in F2m .
Parameters: m the degree of the polynomial,
Qm(X) =

∑m
i=0 qiX

i a polynomial of degree m on F2 (Version 2).
Inputs: Two elements of F2m represented by two polynomials of degree m− 1:
α(X) =

∑m−1
i=0 αiX

i and β(X) =
∑m−1
i=0 βiX

i, where αi, βi ∈ {0, 1},
Qm(X) =

∑m
i=0 qiX

i a polynomial of degree m on F2 (Version 1)
Output: Product of the inputs seen as a polynomial of degree m− 1: r(X) =

∑m−1
i=0 riX

i.
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We can represent all polynomials as vectors, as fol-
lows:

α =
m−1∑
i=0

αiX
i

⇒ α = (αm−1, . . . , α0).

GM:
r(X)← αm−1β(X)
For i from m− 1 downto 1 do
r(X)← r(X)X + αi−1β(X) + rm−1Qm(X)

End for
Return r

Example: m = 5
Qm(X) = x5 + x3 + x2 + x+ 1
α(x) = x4 + x2 + x and β(x) = x4 + x

x5 x4 x3 x2 x 1

Qm 1 0 1 1 1 1
α 1 0 1 1 0
β 1 0 0 1 0

r 1 0 0 1 0

(i = 4) 1 0 0 1 0 0
0 0 0 0 0

1 0 1 1 1 1

r 0 0 1 0 1 1

(i = 3)
...

Implementation of a parameterized Galois field multiplier:
We implemented two versions of the Galois field multiplier algorithm from the preceding section in
VHDL. The size of the multiplier is very flexible, since m is given as a parameter. Version 1 of the
multiplier block has the polynomial given as an input (a binary vector specifying coefficients of the
polynomial) and the second version (which is less flexible, but also less expensive) has the polynomial
given as a second parameter. We implemented both versions on the Evariste II FPGA [1] module
featuring Altera Cyclone III device EP3C25F256-C8. Implementation results obtained using Altera
Quartus II version 9.1 software are presented in Table 1 in term of logic Altera cells (LCELLs) and
frequency (freq). As it can be seen (and expected), the flexible solution using polynomial as an input
(Version 1) is always slower and larger. It is therefore important to evaluate if the selected decryption
algorithm needs such flexibility or not.

Version 1 (with variable Qm) Version 2 (with fixed Qm)
m LCELLs freq (MHz) m LCELLs freq (MHz)

5 35 348 5 21 453
6 54 275 6 29 405
7 68 207 7 37 455
8 90 175 8 56 355
9 117 172 9 59 414
10 140 135 10 83 321
11 178 140 11 87 411
12 209 118 12 123 276

Table 1: Implementation results for Version 1 (with variable Qm) vs Version 2 (with fixed Qm)

4.2 Implementation of error locator polynomial in hardware

We implemented two versions of architectures for error vector computation. The first one computes
the polynomial σ from right to left [R2L] and the second one from left to right [L2R] (according to the
Horner algorithm [8]). The polynomial has the following forms:

σ(X) = σtX
t + σt−1X

t−1 + . . .+ σ1X + σ0 [R2L]
σ(X) = (((σtX + σt−1)X + . . .)X + σ1)X + σ0 [L2R]

Implementation of the module computing error locator polynomial from right to left:
The first architecture of the module computing error locator polynomial from right to left [R2L] is
presented in Figure 1 and the implementation results are presented in Table 2. As it can be seen,
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this version needs two GMs and two registers for saving intermediate results. Coefficients σi and error
vector are saved in separate embedded memory. The maximum frequency of this block is much lower
than that of GM alone, because of memory accesses (coefficients σi are read from the memory on the fly).

Figure 1: Architecture for [R2L] evaluation

Table 2: Implementation results for [R2L] evaluation

m t LCELLs freq (MHz) time (µs)

5 3 287 120 1.07
6 5 311 118 3.25
7 10 341 95 14.82
11 50 511 78 1339.08

Implementation of the module computing error locator polynomial from left to right:
The second architecture of the module computing error locator polynomial from left to right [L2R]
according to Horner’s scheme is depicted in Figure 2 and the implementation results are presented
in Table 3. As it can be seen, this architecture needs only one GM and one register. Memories for
coefficients σi and error vector (the result) are the same as in the previous case.
Of course, both architecture versions give the same error vector as a result. However, intermediate
results, which are saved in registers, are different. Therefore, both circuits will leak information differ-
ently. We expect that this difference can be used for constructing some efficient countermeasure in the
future.

Table 3: Implementation results for [L2R] evaluation

m t LCELLs freq (MHz) time (µs)

5 3 274 110 1.16
6 5 293 110 3.49
7 10 311 107 13.16
11 50 414 85 1228.80
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Figure 2: Architecture for [R2L] evaluation

5 Conclusions and perspectives

Goppa codes are one of the most used family of codes in code-based cryptography. We implemented
a part of the algorithm, which is the most expensive, vulnerable but necessary in all Goppa decoding
algorithms. Implementation results of both versions ([R2L] and [L2R]) are very similar. However,
power traces will be certainly very different. Moreover, we can ask us if it will be possible to attack
both implementations. If not, which is more robust and the reasons, else we can implement both
methods in parallel and select randomly the datapath. It will be necessary to determine which is the
best Goppa decoder between Patterson, Berlekamp-Massey or Extended Euclidean algorithms. Later,
we could implement the complete Goppa decoder and the complete McEliece PKC in hardware in order
to evaluate side-channel attacks and countermeasures.
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