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Abstract—Most current SAR systems offer high-resolution
images featuring polarimetric, interferometric, multi-frequency,
multi-angle, or multi-date information. SAR images however
suffer from strong fluctuations due to the speckle phenomenon
inherent to coherent imagery. Hence, all derived parameters
display strong signal-dependent variance, preventing the full
exploitation of such a wealth of information. Even with the
abundance of despeckling techniques proposed these last three
decades, there is still a pressing need for new methods that can
handle this variety of SAR products and efficiently eliminate
speckle without sacrificing the spatial resolution. Recently, patch-
based filtering has emerged as a highly successful concept in
image processing. By exploiting the redundancy between similar
patches, it succeeds in suppressing most of the noise with
good preservation of texture and thin structures. Extensions of
patch-based methods to speckle reduction and joint exploitation
of multi-channel SAR images (interferometric, polarimetric, or
PolInSAR data) have led to the best denoising performance in
radar imaging to date. We give a comprehensive survey of patch-
based nonlocal filtering of SAR images, focusing on the two
main ingredients of the methods: measuring patch similarity,
and estimating the parameters of interest from a collection of
similar patches.

I. INTRODUCTION

Current SAR systems share two common characteristics:

they provide a wealth of information thanks to polarimetric,

wavelength or angle diversity, and they offer very high spatial

resolutions that give access to the shape of man-made struc-

tures. In radar images, however, parameters of interest, like

interferometric phase, coherence, polarimetric properties, or

radiometry, are not directly accessible but must be estimated

from unreliable data. It is essential that the estimation proce-

dure be robust to the strong fluctuations in the measurements

due to speckle without trading off the spatial resolution.

The simplest way to reduce speckle noise1 is to average

pixels in a rectangular window around the target pixel, so-

called spatial multilooking. This process, already present in

the first ERS satellite images and still widely used for inter-

ferometric or polarimetric data, leads to a uniform reduction

of speckle in homogeneous areas, with a residual variance

inversely proportional to the number of pixels averaged. How-

ever, by potentially mixing different signals, it also impairs

such important signal features as region edges, man-made

This work has been supported in part by the following grants: ANR DEFI
09-EMER-008-01, ANR-11-IDEX-0007, ANR-11-LABX-0063.

1Although speckle is itself a signal of possible interest, in the context of
despeckling it is an undesired component, and hence customarily referred as
“noise” with a slight abuse of terminology [1]

structures, and fine textures. The point is that multilooking

is just a basic non-adaptive form of parameter estimation: to

remove speckle without degrading fine features, local image

content must be taken into account.

The design of efficient despeckling filters is a long-standing

problem that has been the object of intense research since the

advent of SAR technology [2], with first contributions dating

back to the 80s [3]. However, research activity has accelerated

significantly in recent years, reflecting both the success of

SAR remote sensing in general and the lack of satisfactory

methods for resolution-preserving speckle reduction. Some of

the most successful methods proposed in the recent past for

locally adaptive estimation are based on image models that

enforce strong regularity constraints, either in the original

domain (e.g., Markov random fields [4]), or in some transform

domain (e.g., wavelet-based sparse representations [5]).

Very recently, patches, i.e., small rectangular image regions

(typically squares of size between 3 × 3 and 11 × 11), have

emerged as a powerful representation on which to build rich

and flexible statistical models of natural images. Patches

capture richer neighborhood configurations than first-order

Markov random fields and are better localized than wavelets.

Patch-based models do not enforce the solution to belong to

a restricted class of signals, such as signals with bounded

variations or with sparse transform coefficients. They exploit

the self-similarity, typical of natural scenes, and look for

similar patches not just in the immediate neighborhood of the

target pixel but in an extended search area. Unlike a local

method like [6] that considers only connected pixels, far apart

pixels can be combined, thereby justifying the widespread

nonlocal appellative. The evolution from explicit image mod-

els to the concept of patch redundancy corresponds to a true

methodological shift in image processing. In particular, recent

denoising methods most often rely on the notion of a patch.

Interestingly, the concept of nonlocal filtering originally

emerged in image processing after the pioneering work of

Lee [7] for SAR despeckling. However, it was only with

the development of patch-based methods, following the sem-

inal work [8] in the 2000s, and the definition of highly

discriminative patch-based similarity measures, that nonlocal

filtering could be successfully applied to the low-SNR speckle-

corrupted SAR images. The paradigm of patch-based nonlocal

estimation is particularly interesting for SAR image processing

given the poor fit of classical models to SAR scenes, charac-

terized by many very strong punctual targets and high-contrast

structures that are poorly modeled with piecewise constants or
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SAR IMAGING MODALITIES

Synthetic Aperture Radar systems are based on the emission of an electro-
magnetic wave which is then back-scattered by the ground level features, and
finally recorded by the receiving antenna. Several modalities are used in SAR
imaging (see [15] for a comprehensive survey):

amplitude: The simplest configuration provides, after SAR synthesis, an
image of scattering coefficients k that are complex values with a
magnitude (i.e., amplitude) that is representative of the radar cross-
section. The square magnitude (i.e., intensity) is also often considered.

polarimetric: The use of different polarizations at emission and reception
of the radar wave provides a deeper insight into the backscattering
mechanisms inside the resolution cell. The scattering vector k is
formed by the complex values corresponding to each combination of
emission / reception polarizations. Usually, horizontal (H) and vertical
(V) polarizations are used for emission and reception providing the
scattering vector k = [zHH , zHV , zV H , zV V ]t (or, by reciprocity,
k = [zHH , zHV , zV V ]t). This modality (PolSAR) is widely used to
study vegetation growing or urban areas.

interferometric: The combination of two backscattered signals k1 and k2

measured by two close configurations of the acquisition systems can
yield elevation information or ground displacement maps. In interfer-
ometric configurations, a composite signal k can be defined by the
concatenation of the two received signals k = [kt

1
,kt

2
]t. These can be

single (InSAR) or multi-polarization (PolInSAR) signals.

wavelets.

The potential of this new paradigm for SAR imaging has

quickly been recognized, with more than 30 papers published

since 2009 that describe patch-based methods applied to

SAR, including most state-of-the-art despeckling techniques

[9], [10], [11]. In addition, nonlocal patch-based methods are

very flexible and can readily be extended to different SAR

modalities [12], [13], [14].

This paper reviews the underlying ideas and principles

of nonlocal estimation methods proposed in SAR imaging.

We consider despeckling as a familiar and important case

study, but we also address the more general point of view

of parameter estimation, looking ahead at extensions to more

challenging SAR modalities and estimation problems. Before

diving into the core of patch-based methods, we begin by

describing the classical speckle model in SAR imaging and

the major families of estimation methods that have emerged

these last 3 decades.

II. A SHORT OVERVIEW OF SAR DESPECKLING

Depending on the modality, SAR systems can record up

to 6 channels of complex valued signals (see box “SAR

imaging modalities”). All these signals present highly varying

fluctuations because SAR is a coherent imaging system (see

box “Speckle fluctuations in radar images”). The simplest

way to reduce these fluctuations and estimate the values of

the physical parameters is to average several independent

samples from the data. This operation, called multi-looking,

was applied in various forms from the very beginning of

the SAR era. However, such simple averaging that applies

equally to every region of the image, regardless of the local

heterogeneity, strongly degrades the spatial resolution.

Improved approaches have long been proposed to enhance

this basic estimation method by better taking into account the

image information. Many efforts have been devoted to the

case of amplitude images, corresponding to the modulus of

single polarization data. Most of these “filtering” methods are

described in the review paper [2], and the very recent tutorial

[1]. The first attempts were derived according to estimation

theory: Lee [3] proposed a minimum mean square error

estimator in the class of linear filters, while Lopes et al. [16]

considered the maximum a posteriori estimator. Both works

used a statistical model limited to local distributions, and it is

worth noting that these two filters were popular because of the

clever analysis of the local context, using window splitting, or

edge and target detection [16]. The idea of selecting the most

relevant samples in the window has been further developed

in [6] and is the main motivation of patch-based approaches.

The following generation of filtering approaches introduced

stronger priors to guide the solution.

A first family includes Markovian and variational ap-

proaches which impose smoothness or regularity constraints

on the solution through a suitable prior model. These ap-

proaches usually lead to minimizing an energy function com-

posed of two terms. The first term reflects the data distribution

and is related to statistical models of speckle (see the box

“Speckle fluctuations in radar images”). Due to the heavy

tail of the distributions of speckle-corrupted images, classical

least-squares data fitting must be replaced by a more relevant

criterion derived from speckle distributions. The second term

relies on some prior on the solution. Although regularization

models such as gradient sparsity have been investigated [4],

they do not fit well SAR signal properties. The Markovian

formalism can be easily extended to deal with different SAR

modalities like interferometric data. However, the specific

nature of SAR signals is poorly captured by simple models and

more complex ones lead to very hard optimization problems.

A second large family of approaches is based on wavelet

transforms. Thanks to their spatially localized and multi-

resolution basis functions, wavelets yield sparse yet accurate

representations of natural images in the transform domain.

Sharp discontinuities and point-like features, so common in

SAR images, are well described by a small number of basis

functions, just like the large homogeneous regions between

them. This compact representation was quickly recognized

as a powerful tool for denoising. In fact, while the signal

is projected on a relatively small number of large wavelet

coefficients, the white noise remains white after the trans-

form, and hence evenly distributed on all coefficients. Signal

and noise can be, therefore, efficiently separated by means

of an appropriate non-linear processing, such as hard/soft

thresholding or more sophisticated shrinkages. The encour-

aging results provided by early SAR despeckling techniques

spawned an intense research to overcome the shortfalls of

soft/hard thresholding. A popular approach considered wavelet

shrinkage as a Bayesian estimation problem, possibly ex-

pressed after application of a homomorphic transform in order

to reduce speckle to an independent additive perturbation.

The major problem in this context becomes the modeling

of signal and noise by suitable distributions, and a number

of parametric models have indeed been proposed [5], [17].

Further improvements come from joint modeling of wavelet

coefficients in and across subbands, like in [18]. Despite its

potential, the wavelet transform cannot deal by itself with

the high heterogeneity of SAR scenes. A number of spatially

adaptive techniques were therefore proposed, based on some
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SPECKLE FLUCTUATIONS IN RADAR IMAGES

Coherent signals like SAR data present strong fluctuations. The waves
backscattered by elementary scatterers inside each resolution cell are not
“in phase” but arbitrarily “out-of-phase”, which results in constructive and
destructive interferences. In a SAR intensity image, fluctuations due to
speckle follow a heavy tail distribution (large deviations occur often) and
are signal dependent (standard deviation is proportional to the radiometry),
which departs from the usual additive Gaussian noise model:

Measured SAR intensity I > 0 in untextured areas deviates from the
radiometry R > 0 according to an exponential distribution:

p(I|R) =
1

R
exp(−

I

R
) . (1)

Multi-look SAR images, obtained by averaging L intensity images, follow
a gamma distribution:

p(I|R) =

(

L

R

)L
IL−1

Γ(L)
exp

(

−L I

R

)

. (2)

In the more general case of a K-dimensional scattering vector as encountered
in polarimetric and interferometric modalities k = [z1, . . . , zK ]t, the
observed complex vector k follows a K-dimensional circular complex
Gaussian distribution under Goodman’s fully developped speckle model
(valid for untextured areas with physically homogeneous and rough surfaces):

p(k|Σ) =
1

πK |Σ|
exp

(

−k
†
Σ

−1
k

)

(3)

where Σ = E{kk†} is a K ×K complex covariance matrix characteristic
of the imaged surface, E is the expectation, and † the hermitian transpose.
Some radar images are not available in the form of scattering vectors, but
rather as empirical covariance matrices:

C =
1

L

L
∑

i=1

kik
†
i
, (4)

where the sum is carried over several scattering vectors for each pixel. In the
case of amplitude images, k is a scalar and C corresponds to an L-looks
intensity image.

The empirical covariance C follows a Wishart distribution given by:

p(C|Σ, L) =
LLK |C|L−K

ΓK(L)|Σ|L
exp

(

−L Tr(Σ−1
C)

)

, (5)

where Tr(·) is the matrix trace. The equivalent number of looks L acts as
the shape parameter of the Wishart distribution.

prior classification of the image, typically in homogeneous,

heterogeneous (e.g., textures) and highly heterogeneous (e.g.,

point targets) regions, in order to tune filtering parameters or

strategies to the different regions [19].

The approaches reviewed above generally try to estimate

the signal at a certain pixel from the noisy observations at

pixels close to it. However, with plenty of data to estimate

the signal, that is, the observations over the whole image,

why restricting attention only to a small neighborhood of

the target? The obvious answer is that not all image pixels

carry valuable information on the target, and only close pixels

are used because they are expected to be more similar to it,

and hence, better estimators. The above consideration makes

clear that the image denoising problem may be performed in

two separate steps: i) selecting good predictors, which carry

useful information on the target, and then ii) using them to

perform the actual estimate. Lacking any other hints, spatial

closeness is taken as a surrogate of signal similarity relying

heavily on the fact that natural images are predominantly low-

pass. Needless to say, sophisticated filters go much beyond

a simple distance-based weighting of contributions, but this

basic criterion remains a founding paradigm of local filters.

The patch-based nonlocal approach avoids the potentially

dangerous identification between closeness and similarity and

goes back to the original problem, trying to identify the pixels

more similar to the target, irrespective (to a certain extent) of

their spatial distance from it. In next Section we explore in

more depth the fundamental steps involved in nonlocal SAR

despeckling and review the current state of the art.

III. NONLOCAL APPROACHES: EXPLOITING PATCH

REDUNDANCY

At the core of the nonlocal approach stands the selection of

suitable predictors based on their similarity with the target.

This idea began to gain some popularity with the bilateral

filter, proposed for additive white Gaussian noise (AWGN)

denoising, with predictor weights depending not only on their

spatial distance from the target, but also on their similarity

with it, measured by the difference between observed values.

Despite its simplicity, this filter gave a surprisingly good

denoising performance, reducing the annoying edge smearing

phenomenon. However, the pixel-wise estimation of similarity

was very rough, and happened to reinforce observed values

affected by strong noise, justifying the need for the spatial-

distance term. The fundamental step towards nonlocal filtering

was then the introduction, in NL-means [8], of a reliable patch-

wise measure of similarity. When a relatively large patch is

taken into account, it is very unlikely that pixels characterized

by a signal much different from the target be accepted as

good predictors. Thanks to the improved reliability, predictors

can be weighted based only on similarity, with no reference

to spatial information. Unlike local filters, non-local ones

do not impose any specific structure (connectivity, shape) or

smoothness, but only exploit that patches recur more or less

frequently, a self-similarity property common to most images.

Recurring patches are easily found in smooth regions, but just

as well around region boundaries, textures, artificial structures,

etc., as shown in Fig.1. Hence, for most patches, several

other patches can be found with similar content. This form

of stationarity in the space of patches is central to nonlocal

approaches.

Nonlocal estimation methods generally follow a three-step

scheme, summarized in the box “Nonlocal estimation in ac-

tion”, with many possible variations at each step and, possibly,

pre-processing steps and/or iterative refinement of results by

repeated nonlocal estimations. The first step identifies similar

patches (patch size is generally set from 3×3 to 11×11 pixels).

It must reliably find, within an extended search window

(typically 21 × 21 to 39 × 39), patches that are close to

the reference central patch. Once several patches have been

selected (from a few tens to all the hundreds of patches within
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NONLOCAL ESTIMATION IN ACTION: PROCESSING AT PIXEL x

the search window), they are assigned relative weights. The

second step combines patches, according to their weights,

to form an estimate of either the central pixel, the central

patch, or all selected patches. The estimates computed from

all possible reference patches are then merged in a last step

to produce the final image.

We now illustrate these steps for the special case of NL-

means [8], indicating by v(x) and v(x), respectively, the value

at pixel x, and the image patch centered on x in the observed

image. In NL-means, each pixel x′ in a large search area

around the target pixel x is considered and a similarity measure

∆(x, x′) is computed by comparing the two patches centered

on x and x′. Under AWGN, the sum of squared differences is

a natural criterion to evaluate similarity:

∆(x, x′) = ‖v(x′)− v(x)‖2 . (6)

This measure is used to compute the weight for each predictor

pixel x′, with large weights associated with similar patches and

negligible weights with dissimilar ones. An exponential kernel

is used to this end:

w(x, x′) = exp (−∆(x, x′)/h) , (7)

with the bandwidth parameter h governing the weight dis-

tribution. Finally, the target pixel x is estimated through the

weighted average of all pixels within the search area:

ûNL(x) =

∑
x′ w(x, x′)v(x′)∑

x′ w(x, x′)
, (8)

where û denotes an estimate of the unknown signal value u.

In the NL-means, therefore, only one estimate is obtained

for each pixel x, which corresponds to the top branch depicted

in the box “Nonlocal estimation in action”. Generalizations

provide several estimates for each pixel that must be properly

combined in the last step.

The NL-means filter and its numerous variants are known to

perform well under AWGN. However, the extension to SAR

imaging, and in particular to speckle, is by no means trivial,

Fig. 1. Typical fragments of SAR images (51× 51 pixels), from the left: a
homogeneous region, a line, a texture and a structure. For each target patch
(green) several similar 8 × 8 patches (red) are easily found in the same
fragment.

and has been the object of several recent papers. One has to

understand the foundation of such filters, and provide a flexible

formulation suitable for different modalities and models of

noise. In the following, we focus on the main concepts that

have been proposed in SAR imaging, and try to provide some

insight into the problems that emerge when noise departs from

the Gaussian distribution, and possible solutions to them. The

key point of all these extensions is the consideration of the

specific distributions of radar data.

Step 1: Defining patch similarities – The first step of nonlo-

cal estimation methods is the identification of similar patches

through a (dis)similarity criterion ∆(x, x′). This criterion

quantifies, in a principled manner, by how much the unknown

patches u(x) and u(x′) differ. Based on the similarity to the

reference patch at x, predictor patches at x′ can be either soft-

assigned or hard-assigned to the set of similar patches. In

the case of soft-assignment, a weight reflecting the level of

similarity is associated to each patch within the search area,

otherwise the most similar patches are included and used to

perform the prediction.

Under AWG noise, (6) is a natural criterion to evaluate sim-

ilarity between two patches. Fluctuations created by speckle

are multiplicative and non-Gaussian, see the box “Speckle

fluctuations in radar images”. Specific criteria must be derived

for the comparison of patches in SAR imaging.

The similarity between two patches is generally defined as

the sum of the similarity δ of each pair of corresponding

pixels in the two noisy patches: ∆(x, x′) =
∑

τ δ(v(x +
τ), v(x′ + τ)). In order to improve the discrimination power

of the similarity criterion, several authors suggest using a

pre-estimate ũ computed either over the whole patch [20],

obtained after a first iteration [11] or at the previous iteration

[9] of the nonlocal method. The similarity then takes the

form: ∆(x, x′) =
∑

τ δ(ũ(x + τ), ũ(x′ + τ)). The following

paragraphs describe possible approaches to derive the pixel-

wise similarity δ.

Detection approach – Dissimilarity can be defined based on

the detection of the difference between the underlying values

u1 and u2 [21]. This detection problem can be formulated as

an hypothesis test where the null hypothesis corresponds to

no difference (H0: u1 = u2 = u12) and the alternative one to

a difference (H1: u1 6=u2). Among several criteria considered

in [21], the generalized likelihood ratio (GLR) is shown to
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perform best and fullfil several invariance properties:

δGLR(v1, v2) = − log
supu12

[ p(v1|u12) p(v2|u12) ]

supu1
[ p(v1|u1) ] supu2

[ p(v2|u2) ]
. (9)

Criteria specific to SAR imaging can be derived from (9)

by using the statistical speckle models recalled in the box

“Speckle fluctuations in radar images”. Both single channel

(intensity) and multi-channel (polarimetric and/or interfero-

metric) configurations lead to a criterion defined as the log

of the ratio between arithmetic and geometric means [22]:

δGLR(C1,C2) = 2L log
1

2
|C1 +C2|√
|C1| · |C2|

, (10)

where C may represent either the L-looks intensity (single-

channel images) or the L-looks empirical covariance matrices

(multi-channel images). This is a natural criterion to compare

patches corrupted by a multiplicative noise such as speckle

since the criterion is invariant to a multiplicative change of

contrast. It has been successfully used in nonlocal filtering of

intensity, interferometric and polarimetric SAR images [12],

[14]. Detection-based criteria using similar expressions are

also at the heart of [9], [13], [23], [24].

Information approach – In line with the detection approach,

the authors of [9], [20] consider a similar hypothesis test

involving pre-estimates of the parameters. Good criteria to

perform such a hypothesis test are provided by the h-φ
divergences where h and φ refer to pre-defined functions.

The h-φ divergences measure the quantity of information

shared by the distributions parametrized by ũ1 and ũ2: they

evaluate the proportion of samples from one distribution that

can be explained by the other. Specific choices of h and φ
lead for instance to the Hellinger divergence or the Kullback-

Leibler divergence. Again, taking into account specific SAR

distributions provides well-founded criteria. The symmetrical

version of Kullback-Leibler divergence (sKL) gives, in the

case of Wishart-distributed empirical covariance matrices:

δsKL(Σ̃1, Σ̃2) = LTr(Σ̃
−1

1
Σ̃2 + Σ̃

−1

2
Σ̃1) + const. (11)

again involving ratios, as customary in SAR imagery.

Geometric approach – The similarity can be defined by de-

riving a metric suitable to the specificities of SAR data.

D’Hondt et al [25] suggest using Hermitian semi-definite

positive matrices and propose a metric connected to geodesic

and Riemannian distances:

δGeo(Σ̃1, Σ̃2) = ‖ log(Σ̃−1/2

2
Σ̃1Σ̃

−1/2

2
)‖2F (12)

where log is the matrix logarithm and ‖ · ‖F the Froebenius

norm. This similarity offers some interesting invariance prop-

erties. In the case of intensity images with pre-estimated ra-

diometry R̃, this criterion boils down to (log(R̃2)− log(R̃1))
2

which is the square distance between observations after ap-

plying a homomorphic transform on the pre-estimates. It has

been shown in the framework of detection theory that criteria

based on variance-stabilization (such as the log transform in

SAR) enjoy good properties [21]. It is interesting to see that

such a criterion can be derived using different interpretations

(a geometric founding or a statistical reasoning).

Estimation approach – Lee et al [26] have shown that the

estimation of radar properties may suffer from a systematic

bias arising from the procedure that detects similar noisy

values (hard-assignment). For SAR intensity images, they

suggest using a pre-selection rule of the form I2 ∈ [R1ζ,R1ζ
′]

– called sigma range – for which the pre-selected samples

I2 do not introduce bias in the subsequent estimation when

the radiometry is identical (R1 = R2). Values of ζ and ζ ′

are computed by an iterative method, while the unknown R1

is replaced by a pre-estimate R̃1 called a priori mean [26],

[10]. By rather considering a pre-selection rule of the form

δ(I1, I2) ≤ γ, numerical integrations over I1 and I2 show

that the subsequent estimation is unbiased as soon as the rule

can be rewritten as I2 ∈ [I1/ζ, I1ζ]. Detection rules such as

GLR (10) verify this property.

Some of the estimators used in the second step of nonlocal

estimation methods use the similarity ∆(x, x′) in order to

weight the importance of the patch v(x′) (i.e., soft-assigment).

The similarity ∆(x, x′) is mapped into a weight w(x, x′)
using a function termed kernel. Many different kernels have

been proposed in the literature, from simple thresholding

w(x, x′) = 1[∆(x, x′) < h], exponential kernels as in (7),

to more sophisticated ones [20], [24], [14]. The shape of the

kernel (e.g., smooth, discontinuous or trapezoidal) changes

the contributions of patches that may correspond to false

detections and thus controls the bias / variance trade-off. In

[20], [14], suitable kernels have been defined to guarantee the

same bias / variance trade-off, irrespective of the modality, the

noise statistic or the patch size.

Step 2: Estimation of radar properties – After selection of a

stack of patches and/or computation of relative weights during

the first step of the nonlocal estimation method, these patches

are combined in a second step to form an estimate of the

radar properties. This combination can be a simple (weighted)

averaging as in the NL-means, or a more evolved estimator.

In SAR imaging, observations v may denote a collection of

intensities I , amplitudes
√
I or log-transformed values log(I),

a vector of noisy coefficients in a transformed domain (DCT,

Fourier, wavelets. . . ), a collection of scattering vectors k or

of empirical covariance matrices C. The associated collection

of parameters of interest u, are generally the radiometry R
or covariance matrice Σ. The estimation step computes radar

parameters from the collection of observations v and/or pre-

estimations ũ gathered during the first step. The most common

estimators for patch-based denoising of SAR images are:

• SME/WSME – NL-means and many of its successors

combine similar patches into a weighted average (weighted

sample mean estimator, WSME), where the weights are de-

rived from the similarities: see equation (8). By using weights,

the estimation relies more heavily on samples that are more

similar (thus, more reliable), which reduces bias. Compared to

an estimation based solely on a collection of patches detected

as highly similar (i.e., by hard-assignment), the variance can

also be reduced by considering a larger number of samples.

The sample mean estimator corresponds to the conditional

expectation E[v|u]. This expectation may not directly be equal

to the parameter of interest u, but require a debiasing step. A
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notable example is the case of (weighted) averaging of log-

transformed SAR images.

The estimation of covariance matrices from empirical ones can

be performed by WSME [12], [25], [20], [24], [14]:

Σ̂
WSME

(x) =

∑
x′ w(x, x′)C(x′)∑

x′ w(x, x′)
. (13)

with w(x, x′) the weight depending on the similarity ∆(x, x′)
between patches extracted at pixel locations x and x′.

• MLE/WMLE – The sample mean is not a correct estimator

of some parameters, e.g., the amplitude
√
I . The sample

mean should then be replaced by an estimator adjusted to

the specific noise distribution of the observations, such as

the maximum likelihood estimator. Similarly to the WSME,

sample weights can be introduced in the estimation method.

Maximum likelihood can be generalized into the weighted

maximum likelihood estimator (WMLE) [9]:

ûWMLE(x) = argmax
u

∑

x′

w(x, x′) log p[v(x′)|u] . (14)

WMLE leads to (13) for Wishart-distributed covariance matri-

ces, but improvements are obtained for matrices with particular

structures as in interferometric SAR imaging [13].

• MMSE – Kervrann et al. proposed a method called Bayesian

NL-means [27] that estimates the parameters u as a linear

combination of pre-estimated patches ũ, with weights defined

by the likelihood of each pre-estimated patch with respect to

the observation v:

û
MMSE(x) ≈

∑
x′ p[v(x)|ũ(x′)] ũ(x′)∑

x′ p[v(x)|ũ(x′)]
(15)

This estimator can be interpreted as an approximation of

the minimum mean square error estimator, i.e., the posterior

mean. Pre-estimates are usually obtained thanks to a two-

step or iterative pre-filtering [10]. Since the pre-estimation

step provides only a coarse estimation ũ of the patches u,

a smoothing parameter is introduced to reduce the selectivity

of the likelihood function and thus avoid weighting too much

patches that are very close to the observation [27].

• LMMSE – The linear minimum mean square error estimator

has long been used in SAR imaging [26]. This estimator

restricts the form of the solution to linear transforms of

v, which is most efficient when noise and signal are well

separated. In SAR-BM3D [11], the LMMSE is computed after

an undecimated discrete wavelet transform (UDWT) is applied

to the stack of similar patches. Expectation and variance of

observations and parameters can be obtained from band-wise

statistics and later refined using pre-filtered patches after a first

restoration has been performed.

The family of homomorphic approaches transform the mul-

tiplicative noise into an additive one by taking the logarithm of

the observed intensity / amplitude. Several papers have derived

nonlocal estimators in this sense, e.g., [28] where an “adjust

mean” step is used to deal correctly with the bias arising from

the Gaussian assumption (i.e., debiasing step described for

SME). Note that estimators that process directly SAR data

(i.e., without log-transforms) are often preferable since the

debiasing step is then unnecessary.

Step 3: Reprojection to image space – The second step

of nonlocal methods provides estimates either for a single

pixel (pixel-wise estimation), for a single patch (patch-wise

estimation), or for the whole stack of patches (stack-wise

estimation). The first option corresponds to basic NL means,

already described above, so let us focus on the other two

strategies.

The difference in patch-wise filtering is that all pixels in the

patch, not just the central one, are estimated at once. Since

each pixel is estimated several times, a suitable aggregation

phase is necessary to combine all such estimates. In particular,

we need to define a reprojection function, g(·), to get an

estimate in the pixel domain: û(x) = g(û
1
(x), . . . , ûK(x)) .

What is more important, these estimates refer to different

patches, with different reliability levels, an information that

can be exploited to improve results. The reprojection can be

performed through a weighted average of the K estimators:

û(x) =

K∑

k=1

αk ûk(x) . (16)

The simplest form of aggregation is to consider uniform

weights αk, as done in the blockwise NL-means [8]. Another

strategy is to set the weight associated with each estimate as

inversely proportional to its variance [29].

To illustrate why patch-wise estimation improves perfor-

mance, let us consider the special case of a pixel near the

boundary between two homogeneous regions. Since the patch

centered on it is strongly heterogeneous, most other patches

of the search area, coming from homogeneous regions on

either side of the boundary, are markedly dissimilar from it,

and contribute very little to the average. The estimate, thus,

involves only a small effective number of predictors, those

along the edge, which results in a high variance. As a result,

a visible “halo” of residual noise is observed near edges, a

phenomenon well-known in NL-means, also referred to as the

rare patch effect. The target pixel, however, belongs to a large

number of patches, not just the patch centered on it, many of

them drawn from the homogeneous region the pixel belongs

to. In patch-wise re-projection all these patches are included

in the average reducing the estimate variance, especially if

suitable weights are used to take into account the reliability

of each contribution.

Let us now consider the third strategy, with stack-wise

filtering. A first difference w.r.t. patch-wise filtering is that now

all patches collected in the stack are collaboratively filtered

before reprojecting them to their original position. The major

improvement is that the stack is filtered in three dimensions,

that is, not only along the stack but also in the spatial domain.

In BM3D [29] and, with necessary adjustments to the SAR

domain, in SAR-BM3D [11], the whole stack, formed by

just a limited number of similar patches, is wavelet trans-

formed, Wiener filtered, and back transformed. By so doing,

strong spatial structures are emphasized through filtering while

random noise is efficiently suppressed. As a matter of fact,

these techniques exhibit significant improvements especially

in highly structured areas (edges, point reflectors, textures).

The efficiency of collaborative filtering comes from the full
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Fig. 2. Single-look TerraSAR-X image of Barcelona (image courtesy c©Infoterra GmbH) and the radiometry estimated by the nonlocal method [11]. Images
are 511× 1043 pixels with a spatial resolution of 2.5 m.

Fig. 3. On the left, two PolSAR images of the area of Kaufbeuren (Germany) sensed by F-SAR, single-look, X-band (top), S-band (bottom) (image courtesy
c©DLR). On the center and right images, estimated polarimetric signatures using the nonlocal patch-based method [14]. Images are 400× 512 pixels with a

spatial resolution of 0.5 m.

exploitation of the redundancy of information in a stack of

similar patches.

The box titled “Overview of nonlocal estimation methods

in SAR imaging” gives a synthetic view of some of the main

methods developed for nonlocal estimation in SAR imaging.

Needless to say, performance depends on the setting of several

parameters, like patch size and search area size, which should

be related to image resolution, smoothing strength, and balance

between original and pre-estimated data. In most of the

nonlocal approaches these parameters are set by hand. Few

works have considered semi-supervised setting or automatic

setting with spatial adaptation [14].

Some sample experimental results that confirm the potential

of nonlocal methods are presented in figure 2 for an amplitude

image with SAR-BM3D [11] and in figure 3 for a polari-

metric data with NL-SAR [14]. Visual inspection shows the

performance of the approach in reducing strong fluctuations

while preserving important features like targets and lines. Note

that no systematic artefacts should be observed with these

approaches unless the parameters are not set properly (e.g., no

consideration of over-sampled data). A rigorous performance

evaluation of nonlocal despeckling techniques is beyond the

scope of this paper. Some frameworks for SAR despeckling

evaluation and comparison are proposed in [30] and [1].

IV. OPEN ISSUES AND FUTURE TRENDS

Patch-based approaches provide the best performance to-

date for speckle reduction in SAR intensity images [30]

and polarimetric or interferometric SAR images [14]. Be-

yond speckle suppression, they improve parameter estimation,

drastically enhancing radar measures. Therefore, they can be

expected to have a strong impact, in the near future, on

major applications of radar imaging, improving the biomass

estimation with polarimetric - interferometric data; increasing

the spatial resolution in urban monitoring with radar tomog-

raphy; enabling more reliable phase unwrapping methods for

interferometric SAR.

As a by-product of patch-based speckle reduction methods,

several similarity criteria especially suited for SAR imaging

have been established. These criteria are central to many

applications: for classification and indexing using patch clus-

tering; for change detection; for movement monitoring by

patch tracking.

Patch-based methods are at their beginning and many open

issues have yet to be solved. The speckle model consider so far

(simple complex Gaussian) is known to inaccurately describe

very high resolution images or textured areas. Introduction

of more accurate models (e.g., Weibull, Fisher or generalized

gamma distributions for amplitude, and corresponding matrix-

variate polarimetric distributions) raises questions about the

increased complexity of estimators and the possible loss of

robustness with the increase of degrees of freedom. Another

limit is the geometric deformations appearing on SAR images

with elevated objects. Such deformations should be considered

to perform joint restoration of images taken from multiple

incidence angles.
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OVERVIEW OF NONLOCAL ESTIMATION METHODS IN SAR IMAGING

Nonlocal estimation methods perform the three steps depicted in the box
“Nonlocal estimation in action”. A great variety of methods dedicated to
SAR images have been proposed over the last few years. These methods
follow different paths to implement each of the three steps:

1) similar patches identification (choice of the similarity criterion);
2) estimation of radar properties (choice of the estimator);
3) reprojection of estimates onto the image space (choice of the domain).

Below an overview of some of the main methods devoted to SAR imaging.

Method (oldest-first) Domain Estimator SAR modality Self-similarity domain Similarity criterion Scheme

PPB / NL-InSAR Pixel-wise WMLE SAR (any L) / InSAR (L=1) Patch-wise Detection + Information Iterative

[9], [13] Originality: iteratively refines the weights by comparing patches of previous estimates and patches of the noisy image.

Pretest NLM Pixel-wise WSME PolSAR (L ≥ 3) Patch-wise Detection One step

[12] Originality: direct extension of [8] with a selection based on a GLR (referred to as pretest step).

Bayesian NLM Pixel-wise MMSE SAR (any L) Patch-wise Estimation One step

[10] Originality: prior patches are extracted in a multi-looked image. A sigma-range pre-selection is used and darker pixels are discarded.

SAR-BM3D Stack-wise LMMSE SAR (any L) Patch-wise Detection + Information Two steps

[11] Originality: works on the UDWT of stacks: 1st step uses statistics of each subband; 2nd one uses statistics provided by the 1st iteration.

Bilateral NLM Pixel-wise WSME PolSAR (any L) Pixel-wise Geometric Iterative

[25] Originality: images are multi-looked, then iteratively updated by nonlocal averaging based on geometrical comparison of pixel values (no patch).

Stochastic NLM Pixel-wise WSME PolSAR (non-stationnary L) Stats-wise Information One step

[20] Originality: lets L vary in the image. Patch similarity is based on the divergence between MLE estimates of Σ and L within the patch.

Discriminative NLM Pixel-wise WSME PolSAR Patch-wise Detection Iterative

[24] Originality: iteratively refines weights based on the ratio of diagonal elements of empirical covariance matrices and the span of the previous iterate.

NL-SAR Pixel-wise WMLE (Pol)(In)SAR (any L) Patch-wise Detection Adaptive

[14] Originality: fully automatic: patch sizes, search windows and pre-filtering strenghts are spatially tuned to provide improved results.
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