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ABSTRACT

Many tasks in computer vision require to match image

parts. While higher-level methods consider image features

such as edges or robust descriptors, low-level approaches

compare groups of pixels (patches) and provide dense match-

ing. Patch similarity is a key ingredient to many techniques

for image registration, stereo-vision, change detection or

denoising. A fundamental difficulty when comparing two

patches from “real” data is to decide whether the differences

should be ascribed to noise or intrinsic dissimilarity. Gaus-

sian noise assumption leads to the classical definition of patch

similarity based on the squared intensity differences. When

the noise departs from the Gaussian distribution, several simi-

larity criteria have been proposed in the literature. We review

seven of those criteria taken from the fields of image process-

ing, detection theory and machine learning. We discuss their

theoretical grounding and provide a numerical comparison of

their performance under Gamma and Poisson noises.

Index Terms— Patch similarity, Likelihood ratio, Bayesian

approach, Detection, Matching

1. INTRODUCTION

The similarity or dissimilarity between pixel values has been

defined in many different ways, depending on the problem

at hand (stereo-vision, registration, denoising, . . . ), the noise

model and the prior knowledge. We focus in the following on

how to compare noisy values, and how similarity criteria can

be derived from a given noise distribution. The comparison

of noise-free patches and the similarity between a noise-free

and a noisy patch (template matching) are out of the scope of

the paper.

By x we denote a patch, i.e., a collection of N observa-

tions (pixel values). We do not specify here a shape for the

patch but consider that the values in vector x are ordered so

that when two patches x1 and x2 are compared, values with

identical index are in correspondence.

We assume that the noise can be modeled by a (known)

distribution so that a noisy patch x is a realization of an N -

dimensional random variable X . The vector of parameters

θ of the pdf is referred in the following as the noise-free

patch. We will consider in our experiments white noise, i.e.,

p(x; θ) =
∏N

k=1 p(xk; θk), even if the definitions of all crite-

ria are general enough to deal with correlated noise.

Patch similarity: a pair of (noisy) patches (x1,x2) is

considered similar (i.e., in-match) when x1 and x2 are real-

izations of independent random variables X1 and X2 follow-

ing the same distribution (of pdf p(.; θ12)). The evaluation of

the similarity between noisy patches can then be rephrased as

the following hypothesis test (a parameter test):

H0 : θ1 = θ2 ≡ θ12 (null hypothesis), (1)

H1 : θ1 6= θ2 (alternative hypothesis). (2)

For a given similarity criterion c, the probability of false

alarm (to decide H1 under H0) and the probability of detec-

tion (to decide H1 under H1) are defined as:

PFA = P(c(X1,X2) < τ ; θ12,H0), (3)

PD = P(c(X1,X2) < τ ; θ1, θ2,H1). (4)

Note that the inequality symbols are reversed compared to

usual definitions since we consider detection of dissimilarities

based on the similarity measure c.
According to Neyman-Pearson theorem, the optimal cri-

terion, i.e., the criterion which maximizes PD for any given

PFA, is the likelihood ratio (LR) test:

L(x1,x2) =
p(x1,x2; θ12,H0)

p(x1,x2; θ1, θ2,H1)
. (5)

The application of the likelihood ratio test requires the knowl-

edge of the parameters θ1, θ2 and θ12 (the noise-free patches)

which, of course, are unavailable. Our problem is thus a com-

posite hypothesis problem. A criterion maximizing PD for

all PFA and all values of the unknown parameters is said

uniformly most powerful (UMP). Kendall and Stuart (1979)

showed that no UMP detector exist in general for our compos-

ite hypothesis problem [1], so that any criteria can be defeated

by another one at a specific PFA. The research of a universal

similarity criterion is then futile. We address in the follow-

ing the question of how different criteria behave on patches

extracted from natural images.



2. PATCH SIMILARITY CRITERIA

2.1. Euclidean distance

The usual way to define the similarity between two noisy

patches is to consider their Euclidean distance. The use of an

exponential kernel of bandwidth h > 0 leads to the following

similarity criterion:

N (x1,x2) = exp

(

−‖x1 − x2‖22
h

)

. (6)

The Mahalanobis distance can be used instead if noise is cor-

related. As we shall see later, under the assumption of Gaus-

sian noise, all the similarity criteria we consider boil down to

this same expression. There are then more than one way to

justify or interpret its expression in that case. The advantage

to use a metric is that it involves good properties such as the

triangle inequality. Under Gaussian assumptions, the distri-

bution of N can be used to choose a threshold τ with a given

PFA value. It is a constant false alarm rate detector (CFAR),

which means that a constant PFA can be maintained with a

same τ whatever the underlying noise-free patches.

The performance of this criterion however falls when the

noise departs from Gaussian distribution. While h can be

set from the noise variance, difficulties arise when the noise

variance is signal-dependent, and then can vary between and

inside patches. A classical approach to extend the applica-

bility of Euclidean distance to non-Gaussian noises is to ap-

ply a transformation to the noisy patches. The transforma-

tion is chosen so that the transformed patches follow a (close

to) Gaussian distribution with constant variance (hence their

name: variance-stabilization transforms). This leads for in-

stance to the homomorphic approach which maps multiplica-

tive noise to additive noise with stationary variance. This

is also the principle of Anscombe transform and its variants

used for Poisson noise. These approaches are popular and fre-

quently used for patch selection (or block-matching) in many

denoising algorithms [2, 3, 4]. Given an application s which

stabilizes the variance for a specific noise pdf, a similarity

criterion is obtained using (6) on the output of s:

S(x1,x2) = N (s(x1), s(x2)). (7)

Besides the problem of the existence of a suitable s for some

noise distributions, an important limitation lies in the non-

linear distortion of noise-free patches. For instance, in the

homomorphic approach, the logarithm transforms the contrast

of noise-free patches; performances are affected accordingly.

2.2. Likelihood ratio extensions

Motivated by optimality guarantees of the LR test (5), similar-

ity criteria can be defined from statistical detectors designed

for composite hypothesis problems. The similarity criterion

in eq. (8) is based on the Bayesian likelihood ratio (BLR)

LB(x1,x2) =
p(x1,x2;H0)

p(x1,x2;H1)
=

∫

p(x1|θ12=t)p(x2|θ12=t)p(θ12=t) dt
∫

p(x1|θ1=t1)p(θ1=t1)dt1
∫

p(x2|θ2=t2)p(θ2=t2)dt2
.

(8)

which considers noise-free patches as realizations of random

vectors with known prior pdf. Given perfect knowledge of

prior pdf p(θ1), p(θ2) and p(θ12), eq. (8) leads to an opti-

mal Neyman-Pearson detector. This criterion has been used in

the context of classification: Minka [5] exhibits a relationship

between BLR and the canonical distance measure minimiz-

ing errors in nearest neighborhood classifiers. He also linked

BLR to mutual information: the more additional knowledge

is brought by x2 compared to the observation of x1 alone, the

more dissimilar the underlying parameters are [6].

Despite its theoretical performance, this approach suffers

from two drawbacks in practice. First, it requires computation

of integrals which, depending on the distributions, may not

be known in closed form and therefore are time-consuming.

Second, it requires knowledge of the prior pdf. In the absence

of a statistical model of noise-free patches, a non-informative

prior can be used. Jeffreys’ prior is independent upon the

choice of the noise-free patch space (e.g., testing that two

gamma random vectors share identical standard deviations

θ12,k = σk or identical variances θ12,k = σ2
k leads to the

same BLR when Jeffreys’ prior are used).

Rather than modeling noise-free patches as random vari-

ables, the generalized LR (GLR) replaces θ1, θ2 and θ12 in

eq. (5) by their maximum likelihood estimates (MLE) under

each hypothesis:

LG(x1,x2) =
sup

t
p(x1,x2; θ12 = t,H0)

sup
t1,t2

p(x1,x2; θ1 = t1, θ2 = t2,H1)

=
p(x1; θ1 = t̂12)p(x2; θ2 = t̂12)

p(x1; θ1 = t̂1)p(x2; θ2 = t̂2)
(9)

Asymptotically to the SNR, GLR is optimal due to the effi-

ciency of MLE. Its asymptotic distribution is known and then

the PFA values associated to any given threshold τ : GLR is

asymptotically CFAR. The GLR test is also invariant [7]: it

does not depend on the arbitrary choice of the noisy patch

space (e.g. considering an observed patch of amplitudes x =
(A1, · · · , AN ) or intensities x = (A2

1, · · · , A2
N ) lead to the

same criterion). While we mention that there is no UMP de-

tectors for our composite hypothesis problem, GLR is asymp-

totically UMP among invariant tests [8]. Finally, compared

to BLR, GLR is easy to implement, since it only requires to

computes MLE, and does not require any prior knowledge.

The main drawback of GLR lies in the lack of knowledge

on how it behaves in low SNR conditions (i.e., for too small

patches according to the noise level). It is known that, for low

SNR and specific applications, GLR can be defeated by other



invariant detectors [9]. This drawback lies in its dependency

on MLE which behaves poorly for low SNR (e.g. the GLR

that two Gaussian random vectors share an identical covari-

ance matrix θ12 is undefined since MLE of θ1 from x1 only

would not be positive definite).

2.3. Joint likelihood criteria

Other criteria use the joint likelihood of observations under

H0 to evaluate similarities between noisy data. This leads to

the Bayesian joint likelihood criteria [10, 11, 12, 13]:

QB(x1,x2) = p(x1,x2;H0)

=

∫

p(x1|θ1 = t)p(x2|θ2 = t)p(θ12 = t) dt (10)

or, following the simplification of GLR, the maximum joint

likelihood [14]:

QG(x1,x2) = sup
t

p(x1,x2; θ12 = t,H0)

= p(x1; θ1 = t̂12)p(x2; θ2 = t̂12). (11)

Such criteria have been designed to measure the probability

of sharing a common parameter. However, they evaluate in-

stead the joint likelihood pdf under H0 which cannot provide

information without knowledge under H1. This leads to non-

invariance issues and the self recognition paradox [10]: two

different noisy patches x1, x2 can be more similar than two

identical noisy patches (x1 = x1).

However, QB offers a useful property: it corresponds to

an inner product [11] in the space of functions θ 7→ R, the

feature of x being (p(x|θ = t))t. The “mutual information”

kernel is based on this property.

2.4. Mutual information kernel

Given the Bayesian joint distribution QB(x1,x2), Seeger

[11] defines a covariance kernel linked to the sample mutual

information between x1 and x2 and defined as:

KB(x1,x2) =
QB(x1,x2)

√

QB(x1,x1)QB(x2,x2)
. (12)

Since QB can be seen as an inner product in the feature

space, KB corresponds to a cosine in the feature space

KB(x1,x2) =
〈x1,x2〉
‖x1‖‖x2‖

. Seeger shows that it is a kernel

covariance matrix and coins it the mutual information kernel.

Algorithms can be adapted to the noise pdf using the so-

called kernel tricks, i.e., by considering higher dimensional

space while never mapping the data in practice. This leads for

instance to non-linear support vector machines or non-linear

principal component analysis. The mutual information kernel

is also invariant. Note also that its prior-less extension using

MLE would lead to GLR. Compared to GLR, the main limi-

tation of the mutual information kernel is its dependency on

the prior pdf and the lack of asymptotic performance results.

3. EVALUATION OF SIMILARITY CRITERIA

We evaluate the relative performances of the 7 aforemen-

tioned criteria on a dictionary composed of 196 noise-free

patches of size N=8×8. The noise-free patches are obtained

using the k-means on patches extracted from the classical

512×512 Barbara image. The noisy patches are noisy re-

alizations of the noise-free patches under gamma or Poisson

noise with an overall SNR of about 1 dB. All criteria have

been derived1 in the case of gamma or Poisson noise (table 1).

They are evaluated for all pairs of noisy patches. The process

is repeated 200 times with independent noise realizations.

In practice, Bayesian criteria are more difficult to obtain

due to integrations over the noise-free patch space. While all

criteria are equivalent for Gaussian noise, there are four dif-

ferent expressions for gamma noise and they are all different

for Poisson noise. The distinction seems to emerge with the

“complexity” induced by the noise distribution, (by consid-

ering that gamma noise is more challenging than Gaussian

noise, and that Poisson noise is the most challenging).

Numerically, the performances of the similarity criteria

are given in term of their receiver operating characteristic

(ROC) curve, i.e., the curve of PD with respect to PFA. Re-

sults are given in Figure 1. For small PFA, GLR is the most

powerful followed by the mutual information kernel, BLR

and the variance stabilization criteria. Other criteria behave

poorly for such a low SNR. Such behaviors agree with the

theoretical predictions. The poor performances of the joint

likelihood based criteria can arise from their non-invariance

and the induced self-similarity paradox. The low performance

of N is certainly due to its non-adaptivity to either the target

noise or the target noise variance. The variance stabilization

criteria are always defeated by GLR, due to the distortions of

the noise-free patches as well as the consideration of the noise

variance only, instead of the full noise pdf. The lower perfor-

mance of Bayesian criteria compared to criteria that use MLE

may be due to the low quality of the prior pdf.

4. CONCLUSION

This paper compares seven similarity criteria designed for

noisy data and used in different communities. It has been

shown that on 8×8 patches extracted from a natural image and

under a high level of gamma or Poisson noise, the GLR detec-

tor is the most powerful on low levels of false alarms. It is also

easy to implement and theoretically well grounded. Based on

this study, we would recommend a broader use of this crite-

rion for measuring patch similarity in computer vision. Future

work would be to provide comparisons on smaller patches

where GLR is known to behave poorly. We also plan to study

the impact of the choice of a similarity criterion on the per-

formance of tasks such as stereo-matching or denoising.

1the complete derivations are available in http://perso.

telecom-paristech.fr/˜deledall/patchsim.php
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−
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−
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(
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(x1+x2)2
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(
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Poisson θxe−θ

x!
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x1+x2

(2e)x1+x2x1!x2!
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x1+x2

2x1+x2x
x1
1 x
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2
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√
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√
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2

Table 1. Instances of the seven criteria for Gaussian, gamma and Poisson noise (parameters σ and L are fixed and known).

All Bayesian criteria are obtained with Jeffreys’ priors (resp. 1/σ,
√
L/θ,

√

1/θ). All constant terms which do not affect the

detection performance are omitted. For clarity reason, we define Γ′(x) = Γ(x+ 0.5) and the Anscombe constant a = 3/8.
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Fig. 1. (left) Patch dictionary. (center) ROC curve obtained under gamma noise and (right) ROC curve obtained under Poisson

noise. In both experiments, the SNR over the whole dictionary is about 1 dB.
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