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1Université de Lyon, F-42023 Saint-Etienne, France,

CNRS UMR 5516 Laboratoire Hubert Curien, F-42000 Saint-Etienne, France,
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In this article, we propose to discuss the applicability of digital in-line holography to the character-
ization of confined objects. Due to cylindrical geometry of confinements (e.g cylindrical pipe) the
illuminating laser wave is subject to astigmatism, which renders the use of classical reconstruction
techniques impossible. Moreover, contrary to plane wave holography set-up, the diffraction pattern of
the particles strongly depends on the axial distance of the latter to the entry face of the confinement
structure. To address this reconstruction issue, we propose to use an “inverse problems” approach.
This approach amounts to finding the best match (least squares solution) between a diffraction pat-
tern model and the captured hologram. A hologram formation direct model using astigmatic beam
is proposed and its use in an “inverse problems” reconstruction is discussed. The accuracy of this
reconstruction procedure is also used for experimental set-up self-calibration. Finally, the proposed
approach is tested through experimental astigmatic hologram reconstruction, thus paving the way to
its use in pipe flow studies.

OCIS codes: (090.1995) Holography: Digital holography, (100.3190) Image processing: In-
verse problems, (100.3010) Image reconstruction techniques; (120.3940) Metrology
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1. Introduction

Originally proposed by Gabor as an improvement
of electronic microscopy configuration [1, 2], digi-
tal in-line holography aims at recording, on a lens-
less digital sensor (first holograms were recorded
on high resolution photographic plates) the inter-
ference between the wave disturbance due to ob-
jects (the object beam) and the part of the wave
that does not interact with the objects (the ref-
erence beam). These captured holograms contain
the whole amplitude and phase information of the
optical field diffracted by the studied objects. In-
formation extraction is classically realized by cal-
culating the light back-propagation to the plane
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where the studied object is located [3–5]. Due to
its intrinsic properties (e.g. 3D imaging, full optical
field retrieval), digital holography has found inter-
est in various studies such as fluid dynamics [6], me-
chanical inspection [7], or biomedical imaging [8].
However, as amplitude and phase information are
recorded onto an intensity sensitive medium, they
can not be easily separated and therefore, recon-
structed holograms exhibit the so-called twin-image
noise. Experimental elimination of the twin-image
noise is made possible through the use of off-axis
holography [9]. However, in this case most of the
spatial frequency bandwidth of the sensor is lost (it
is in fact occupied by the unwanted autocorrelation
contribution and twin-image terms of the intensity
distribution).

To improve the accuracy of classical in-line holo-
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graphic imaging, direct hologram signal processing
was proposed, thus eliminating the light backprop-
agation calculation. Most of the suggested methods
are based on the direct analysis of spatial frequency
content of the recorded holograms. To this purpose,
Menzel proposed a 1D analysis of intensity profiles
for particle holograms [10], based on particle holo-
gram models fitting [11]. Spatial frequency analysis
through the use of Wigner transform has been also
proposed but, it is limited to the characterization
of 1D profiles. As a matter of fact, Wigner trans-
formation of a 2D signal results in a 4D represen-
tation [12].

In contrast to these optical approaches, signal
processing tools, commonly used in the image pro-
cessing of other imaging modalities, provide a rig-
orous way to extract on-axis hologram informa-
tion leading to optimal image processing in certain
cases. Rather than transforming the hologram, it
aims at finding the reconstruction that best mod-
els the measured hologram [13, 14]. This “Inverse
Problems” Approach (IPA) extracts more informa-
tion from the hologram and is proved to solve two
essential issues in digital holography: the improve-
ment of the accuracy of the reconstruction [15],
and the enlargement of the studied field beyond the
physical limit of the sensor size [16]. It also leads
to almost unsupervised algorithms (only few tun-
ing parameters are used) [17]. These approaches
are sometimes referred to as compressive sensing
methods [18–21].

Implementing such approaches requires a precise
knowledge of the hologram formation model. In
the case of a non-confined flow containing spher-
ical particles, the imaging model has been accu-
rately described either for collimated or divergent
reference beams [22, 23]. However, such models are
not suited when dealing with cylindrical confine-
ments such as pipes. As a matter of fact, the cylin-
drical structure of the pipe through which holo-
grams are recorded introduces astigmatism that is
not taken into account in classical models. How-
ever, astigmatism compensation in digital hologram
reconstruction has been extensively studied, and
successfully applied using modified chirped recon-
struction kernels [24–26]. In-Situ compensation us-
ing index matching liquids have been also investi-
gated [27]. Recently, an hologram formation model
that takes into account the astigmatism due to
pipe-flows and micropipe-flows has been proposed
and validated [28, 29]. This semi-analytic calcula-
tion approach is based on the use of transfer ma-
trix systems. We suggest, in this paper, to use this

Collimator

Fig. 1. (Color online) Experimental configuration for
digital hologram recording with an astigmatic reference
beam. (a) x, z view. (b) y, z view. SL: Spherical Lens,
CL: Cylindrical Lens

direct model in order to achieve inverse reconstruc-
tion of digital holograms.
In this article, we propose to reconstruct digi-

tal holograms recorded with an astigmatic reference
beam using IPA reconstruction. In the first part
of the article, the general formalism of holographic
recording with an astigmatic reference beam is de-
scribed. Then, the IPA hologram reconstruction
algorithm, based on the astigmatic imaging model,
is presented. A self-calibration scheme, relying
the accuracy of the IPA algorithm and our set-up
specificity is then proposed. Finally, the ability of
this approach to deal with astigmatic hologram is
demonstrated through the analysis of experimen-
tal holograms, thus illustrating its applicability to
confined flow studies.

2. Digital in-line holography with an astigmatic
reference beam: experimental configuration

In order to model the effect of a confinement struc-
ture on the imaging system, the experimental con-
figuration proposed in Fig. 1 is considered. It con-
sists of an in-line digital holographic set-up, where
astigmatism is brought and controlled by a spheri-
cal/cylindrical lens doublet. The light emitted by a
λ = 635 nm, 80 mW laser diode (Z-Laser R©) is fil-
tered and collimated. The generated “plane-wave”
is then focalized using a spherical lens (SL) with
focal length f = 125 mm. A cylindrical lens (CL,
fx → ∞, fy = 200 mm), positioned at a distance zl
from SL is used to generate astigmatism. A control
of the amount of astigmatism is possible by acting
on zl. Due to the astigmatism, the reference beam
exhibits two waists in both horizontal and vertical
directions. The studied object is located at a dis-
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Fig. 2. Experimental acquisition of a 100 µm in diameter particle for (a) zp ≈ 55 mm, z ≈ 165 mm ; (b) zp ≈ 80 mm,
z ≈ 140 mm ; zp ≈ 120 mm, z ≈ 100 mm. Experimental parameters are roughly estimated by direct measurements
on the set-up.

tance zp from CL. Interference between the wave
diffracted by the object and the reference wave is
finally recorded on a CCD sensor positioned at a
distance z from the object.

Depending on the particle position compared to
the beam waist positions, the recorded interference
pattern exhibits different shapes [30]: particles lo-
cated in areas (1) and (3) lead to elliptical fringe
patterns, whereas particles in region (2) are char-
acterized by the hyperbolic shape of their interfer-
ence patterns. The different patterns are illustrated
by Fig. 2. Experimental holograms are recorded
with a distance from CL to the CCD sensor sets
to zp + z ≈ 220 mm. The considered object is
an opaque chromium disk of diameter 100 µm ±
1 µm (roundness ± 0.25 µm) deposited on a glass
slide (Optimask R©). Holograms are acquired on a
1280× 1024 square pixel 12-bits CCD camera with
6.7 µm pitch (PCO Intellicam R©). The distance be-
tween both lenses is fixed to zl ≈ 17 mm. Within
this configuration, the two beam waists are respec-
tively positioned at zw1

≈ 70 mm and at zw2
≈ 110

mm. Therefore the three areas illustrated in Fig. 1
extend from zp = 0 mm to zp ≈ 70 mm for zone (1),
from zp ≈ 70 mm to zp ≈ 110 mm for the second
area, and finally from zp ≈ 110 mm to zp ≈ 220 mm
for the last region. Recorded holograms are shown
in Fig. 2 with: zp ≈ 55 mm, z ≈ 165 mm (Fig.
2(a)), zp ≈ 80 mm, z ≈ 140 mm (Fig. 2(b)), and
zp ≈ 120 mm, z ≈ 100 mm (Fig. 2(c)). Here one
can realize that the expected behaviors, predicted
in Ref. [30] are found.

In this article, we apply an IPA to process holo-
grams recorded under astigmatic conditions. To
successfully apply this approach, an accurate imag-
ing model is needed. For this purpose, in the
next section, the model of particle holograms un-
der astigmatic beam illumination is presented.

3. Direct model of hologram formation using an
astigmatic reference beam

The image formation model for the experimental
test set-up (Fig. 1) takes into account the refer-
ence wave astigmatism due to both SL and CL.
The optical configuration is considered as a linear
system. Under paraxial conditions, the image for-
mation can be modeled using transfer matrix sys-
tem [28, 31, 32].
Propagation of the light through the optical sys-

tem is divided into two distinct linear systems. The
first one considers light propagation from SL to the
particle taking into account the effect of both SL
and CL. The second system models the light prop-
agation and the diffraction from the object plane to
the CCD sensor plane. Such propagation is mod-
eled by a generalization of the Fresnel transforma-
tion to the so called ABCD systems [33].
Thus, calculation of light propagation from the

SL (coordinate system (µ, ν)) to the particle plane
(coordinate system (ξ, η) see Fig. 1 for details) is
performed considering
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Fig. 3. Simulation of a 100 µm in diameter particle hologram corresponding to experimental data of Fig. 2.
Discussion about accurate parameter estimation is proposed in Sections 5 and 6.

Here, ω0 is the 1/e beam radius. After mathemati-
cal developments Eq. (1) can be written
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where the complex amplitude factors Kx,y
1 , the

beam waists ωξ,η, and the wavefront curvature Rξ,η

after propagation through the first transfer system
are defined in Appendix B.
Within the same formalism, one can derive the

amplitude in the sensor plane after propagation
through the second transfer system
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where Ax,y
2 , Bx,y

2 , and Dx,y
2 are the transfer matrix

coefficients for the second transfer system (defined
in Appendix A, Eq. (A7)).
The transmittance function of the object, de-

noted 1−T (ξ, η), can be decomposed on a Gaussian
function basis so that Eq. (4) can be analytically
derived [34]. It can be written as
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N
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, (5)

with r being the simulated particle/aperture radius
(elliptical objects can also be considered within this

framework). Coefficients Ak and Bk are determined
through iterative calculation of the Kirchhoff prop-
agation equation of a hard edge [34]. Their values,
which are complex, depend on the amount of basis
functions considered for Kirchhoff equation resolu-
tion. From Eq. (4) it is possible to derive analyti-
cal expressions of both referenceR (x, y) and object
O (x, y) fields so that
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The reference and the object fields can therefore be
obtained as
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The values of the different parameters of Eqs. (7)
and (8) can be found in Appendix B.
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Thus, it is possible to simulate the recorded in-
tensity distribution g (x, y) considering

g (x, y) = G2 (x, y)G
∗

2 (x, y) . (9)

It should be noted that the position of the inter-
ference pattern in the sensor plane (x0, y0), can be
easily linked to the transverse position of the ob-
ject (ξ0, η0) considering classical geometrical optics
relationships

ξ0 =
|zp − zw2

| ± z

|zp − zw2
|

x0, η0 =
|zp − zw1

| ± z

|zp − zw1
|

y0 (10)

where the ± sign depends on the location of the
object compared to each waist. It is positive if the
object is located after the considered waist and neg-
ative otherwise.
To illustrate the ability of the proposed model to

simulate the experimental holograms acquired with
our set-up (Fig. 1), the intensity distributions are
computed using parameters close to the roughly es-
timated experimental parameters of the holograms
shown in Fig. 2. The simulations are proposed
in Fig. 3. Here, a qualitative agreement between
the model and the data is noticeable (a more quan-
titative discussion is proposed Sec. 6). Thus, this
model can be considered for the use of IPA for astig-
matic hologram processing.
In the following section we use it as a direct model

in our IPA reconstruction procedure.

4. Hologram reconstruction through “inverse
problems” approach

Depending on the type of object under study two
different IPA can be considered. For simple shaped
objects (described by few parameters), with diffrac-
tion pattern models given by an analytical for-
mula, a model-fitting approach [13] or a greedy
approach [15, 35] can be used. More complex
objects (i.e. non parametric objects) can be de-
scribed by an opacity distribution sampled on a 3-
D grid. The amplitude of the opacity distribution
can be estimated by inverting the hologram forma-
tion model, using a suitable regularization as typi-
cally done when dealing with ill-conditioned inverse
problems [36].
In this article, only simple shaped objects (par-

ticles, bubbles or droplets) are considered, and
the greedy algorithm first proposed by Soulez et
al. [15, 16] is used. It solves the reconstruction
problem iteratively. The objects are successively
detected, aiming in each iteration at finding the
best fit (least squares solution) between the model
and the experimental hologram. It consists of three
steps, summarized on Fig. 4:

Input Hologram

Calculation residuals

Global detection
(particle parameters
rough estimation)

Local optimization
(particle parameters

refinement)

Cleaning
(detected particle

removal)

Hologram
fully

processed ?

no yes

Fig. 4. Synoptics of the “inverse problems” approach
algorithm.

• a global detection step (or a coarse estimation
step), which finds the best-matching element
in a discrete dictionary of direct models (i.e.
a model for each 3-D location and shape),

• a local optimization step (or a refinement
step), which fits the selected diffraction pat-
tern to the data for sub-pixel estimation,

• a cleaning step, which subtracts the detected
pattern from the hologram to increase the
signal-to-noise ratio of the remaining objects
and suppress Moiré effect.

The procedure is then repeated on the residuals
until no more object is detected.

Assuming the lens focal distances given by manu-
facturer specifications, unknown optical set-up pa-
rameters are reduced to (zl, ztot = zp + z). Using
IPA, accurate estimation of the object parameters
(xn, yn, zn, rn) and optical set-up parameters can be
obtained for each hologram. However, as far as the
experimental configuration parameters are fixed, we
propose, in the following section, to take benefits
of both the accuracy of the inverse approach and
of the set-up singularities to accurately calibrate zl
and ztot only once, therefore resulting in a faster
particle parameter estimation.
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5. Self-calibration of the experimental configu-
ration using “inverse problems” approach

We propose to take benefits of the IPA reconstruc-
tion recalled in Sec. 4, to achieve accurate self cal-
ibration of our experimental configuration. In this
step, two key parameters are to be accurately as-
sessed: zl and ztot = zp + z. These parameter esti-
mations can be performed with a calibrated object
(as the one used in Section 2) at any distance from
the sensor. However due to the singularities of the
set-up, some zp ranges are more suitable for accu-
rate estimations. In this Section, we first study the
Cramèr-Rao Lower Bounds (CRLB) on the stan-
dard deviation of zl and z, then we detail the im-
plementation of the self-calibration step.

5.A. Accuracy of the estimation of set-up pa-
rameters

In estimation theory [37], lower bounds on the vari-
ance of any unbiased estimator of a model pa-
rameter can be evaluated using CRLB computa-
tions [38, 39]. It consists in computing the inverse
of Fisher information matrix. In the case of white
Gaussian noise, each element of this matrix is pro-
portional to the numerical integration of the image
formation model gradients in the direction of the
model’s parameters and to the Signal to Noise Ratio
of the hologram (see [38] for more details). These
theoretical bounds are reached asymptotically (for
large data) by the maximum likelihood estimator.
CRLB on zl and z parameters are computed using
the direct model given in Section 3 with experimen-
tal parameters given in Section 2. Their evolution
versus zp position is shown in Fig. 5.

The plot of the CRLB on parameter zl (Fig. 5(a))
shows two main minima at waist positions (dashed
line on Fig. 5) and one secondary minimum in-
between the two waists. The main minima are due
to the high values of the gradient of the model ver-
sus z (Fig. 5(b)) on the waist locations. The sec-
ondary minimum position corresponds to a change
in the hyperbolic diffraction pattern which becomes
an equilateral hyperbola (i.e. hyperbola asymp-
totes are perpendicular) at this position. On one
hand, the best accuracy of z and zl is achieved in
the waist planes. On the other hand, the illumi-
nation field is narrow in the focalization direction
(about 1 µm for both waists) and “large” in the
other direction (from 6 mm to 9 mm). Thus, they
cannot be used for imaging purposes, but these sin-
gularities can be taken advantage of for calibration
step. In the next section, a calibration scheme is
proposed.

20 40 60 80 100 120 140 160

0.5

1

1.5

2

20 40 60 80 100 120 140 160

0.5

1

1.5

2

2.5

3

3.5

Fig. 5. (Color Online) Theoretical study of the evolution
of (a) σzl and (b) σz standard deviations versus the dis-
tance zp between CL and the object. The experimental
parameters are the same as in Section 2. Red dashed
lines are associated with beam waist positions.

5.B. Self-calibration of the set-up

The distance zl between the lenses, and the distance
ztot between the CL and the sensor are strongly
correlated: any error on one parameter estima-
tion is propagated to the other one, preventing
from their simultaneous optimization. Therefore,
we consider their optimization according to two suc-
cessive steps. The first step consists in optimiz-
ing the zl distance (ztot being fixed) to obtain both
waist positions compared to CL: zw1

and zw2
. The

second step, is the estimation of ztot considering the
zl value of the earlier step. As waist positions are
fixed by the first step, it will consist in estimating
the distance between the second beam waist and
the sensor.
The experimental self-calibration of the two pa-

rameters ztot and zl is illustrated on Fig. 6. An
opaque chromium disk (2r = 100µm in diameter)
is positioned in the center of the first beam waist
located at zw1

from CL. A precise experimental po-
sitioning of the object in the waists is possible due
to the singular shape of the recorded holograms.
As the first waist is horizontal, the recorded in-
terference pattern exhibits a vertical fringe shape
(see Fig. 6(a)). For this calibration step, the
distance between CL and the sensor is fixed to
ztot = 220 mm ± 1 mm. The reconstruction of the
hologram shown on Fig. 6(a) is realized consid-
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Fig. 6. Calibration of zl. (a) Hologram recorded with
a 2r = 100µm object centered in the first beam waist
(zw1

from CL), ztot is fixed to 220 mm. (b) Calculation
residuals after IPA reconstruction procedure. (c) Holo-
gram recorded with a 2r = 100µm object centered in the
second beam waist (ztot − zw2

from CCD). (d) Calcula-
tion of the residuals after IPA reconstruction procedure.
Here, zl is fixed to the value obtained according to the
optimization values obtained for the hologram (a).

ering the algorithm depicted in the previous sec-
tion with an estimation of the zl parameter. The
hologram model (presented in Sec. 3), is then sub-
tracted to the original hologram leading to the cal-
culation of the residuals presented on Fig. 6(b).
Best estimated parameters are ξ0 = 44.02 µm,
η0 = −1.12 µm, z = 148.9 mm, r = 47.4 µm,
and zl = 17.2 mm. Value of ξ0 is given with re-
spect to the center of the field in the (ξ, η) plane.
In this particular region, the waist width in η di-
rection is about 1 µm. Thus, our circular particle
is illuminated over a chord (instead of being illumi-
nated over its whole area) resulting in a correlation
between the estimate of the diameter and the es-
timate of the shift η0. Therefore, the estimate of
(r, η0) is irrelevant. This point is confirmed by the
underestimation of r. Nevertheless, these values are
not used for this calibration step and only the ob-
tained zl value is kept for the further calibration of
the ztot distance.
For calibration of ztot, our test object is posi-

tioned in the second beam waist. As a matter of
fact, as both beam waist positions zw1

= 70.04 mm,
and zw2

= 107.80 mm are determined by the zl
value, distance between the second waist and the
sensor can be used to calibrate the sensor to CL
distance. Therefore IPA reconstruction leads, in

this case, to an accurate estimate of the particle
to sensor distance z, with z = ztot − zw2

. The re-
construction is considered with an optimization of
the z distance. Hologram obtained within this con-
figuration is illustrated Fig. 6(c). Due to the fact
that the particle is positioned in the second beam
waist of Fig. 1, its interference pattern exhibits hor-
izontal fringes. Calculation of the residuals after
hologram reconstruction are depicted in Fig. 6(d).
Best estimated parameters are ξ0 = −4.56 µm,
η0 = −6.40 µm, z = ztot − zw2

= 113.4 mm, and
r = 48.9 µm. As zw2

is known, ztot is found to be
ztot = 221.2 mm. As it was the case for the first
calibration step, the value of r is under-estimated.
However, as only information about ztot is relevant
for this part of the study, this diameter value does
not affect the obtained results. Thus, in the remain-
der of this paper, the distance between both lenses
zl will be fixed to zl = 17.2 mm, and the distance
between CL and the sensor will be ztot = 221.2 mm.

By taking benefits of the astigmatic digital holo-
graphic configuration and using IPA reconstruction,
we have been able to perform our experimental set-
up calibration using two holograms recorded at sin-
gular positions: in the first beam waist, and in the
second beam waist. The set-up being calibrated, we
will be able to reconstruct experimental holograms
by only considering the estimation of ξ0, η0, z, and
r.
In the final part of this article, experimental holo-

grams presented on Fig. 2 will be reconstructed us-
ing IPA with an astigmatic reference beam imaging
model.

6. “Inverse problems” approach reconstruction
of experimental holograms

In this section, the reconstruction of holograms pre-
sented on Fig. 2 using IPA are considered. The
experimental calibration (Sec. 5) gives accurate
values of zl and ztot that are used in the direct
model computation. Therefore the global detec-
tion and local optimization steps, are performed
only for ξ0, η0, z, and r. In order to assess the
validity of our approach, the cleaned hologram are
shown Fig. 7. It can be noticed that most of the
interference pattern is efficiently removed (i.e. that
the investigated object diffraction pattern is accu-
rately estimated). However a part of the pattern re-
mains visible. This might be linked to the fact that
the considered imaging model relies on the parax-
ial approximation. Improvement of the particle de-
tection is expected using a non paraxial imaging
model [40, 41]. Nevertheless, the results presented
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Fig. 7. Calculation residuals after “inverse problems” approach reconstruction of holograms proposed Fig. 2.

on Tab. 1, show that reconstructed parameters are
relevant: the particle radii estimate is in the range
of the manufacturer specifications, and the z posi-
tion estimate is coherent with rough measurements
performed on the set-up. For a quantitative char-

Table 1. Estimated particle parameters for each holo-
gram. ξ0 and η0 positions are given, in the object plane,
with respect to the optical axis.

Region ξ0 (µm) η0 (µm) z (mm) r (µm) αnorm

(1) 65.02 -81.31 165.5 49.45 0.67

(2) 62.92 22.53 138.4 49.87 0.79

(3) 28.18 -23.28 100.8 49.94 0.59

acterization of our reconstruction results, the nor-
malized correlation coefficient, αnorm, between the
acquired hologram d and the model g is computed.
The closer αnorm to unity, the better the agreement
between data and model. This coefficient is defined
as

αnorm =

√

√

√

√

∑Npix

i=1 ḡ2(i)
∑Npix

i=1 d̄2(i)
α, (11)

where ḡ and d̄ stand for zero-mean variables (ḡ(i) =

g(i) − N−1
pix

∑Npix

i=1 g(i)), Npix is number of pixels,
and α is the scaling parameter between data and
the model given by

α =

∑Npix

i=1 ḡ(i)d̄(i)
∑Npix

i=1 ḡ2(i)
. (12)

Calculated αnorm values are presented in the last
column of Tab. 1. They are within the 0.6 to 0.8
interval, with an optimal value in region (2) that
corresponds to a position close to the secondary
minimum of Fig. 5(b). It should be noted that

this area presents a large illuminating beam width
and a good parameter estimation accuracy. Thus,
it is suited for accurate quantitative imaging. The
transfer matrix based imaging model can be con-
sidered as a valid direct model for hologram IPA
reconstruction, thus paving the way for application
in confined configurations such as pipe flows stud-
ies.

7. Conclusion

In this article we have discussed the use of IPA for
astigmatic digital hologram reconstruction. An im-
age formation model has been discussed consider-
ing transfer matrix modeling of optical components.
As a good qualitative agreement between recorded
and simulated holograms is revealed, the proposed
imaging model is used for IPA reconstruction. As
a matter of fact, high accuracy of these approaches
has been proved on the cost of a precise knowl-
edge on the imaging model. We have proposed to
take benefits of IPA accuracy to self-calibrate our
experimental configuration. Recording hologram
within singular region of the designed configura-
tion (i.e., on the beam waist planes) and recon-
structing them using IPA made it possible to es-
timate experimental configuration parameters. Fi-
nally, the reconstruction of experimental holograms
has been successfully realized. Due to the shift-
invariance of the used direct model, this reconstruc-
tion approach is limited to objects located in areas
for which the paraxial approximation is satisfied.
This limitation can be overcame using a more accu-
rate model accounting for transverse shift-variance.
Nevertheless, accurate particle parameter estima-
tion has been successfully realized, thus illustrating
the ability of our reconstruction scheme to further
deal with confined flow hologram reconstruction.
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Appendix A: Transfer matrix systems

Under paraxial conditions, each part of the exper-
imental configuration proposed Fig. 1 can be ex-
pressed by independent transfer matrices.

Starting from G (µ, ν) defined Eq. (2), the beam
first encounter SL, whose transfer matrix is [4]

MSL =

(

1 0

− 1
f 1

)

. (A1)

Then, the beam propagates over zl

Mzl =

(

1 zl
0 1

)

, (A2)

and is focalized by SL

Mx
CL =

(

1 0

− 1
fx

1

)

, My
CL =

(

1 0

− 1
fy

1

)

. (A3)

Finally, after propagating over zp to the particle
plane

Mzp =

(

1 zp
0 1

)

, (A4)

light impinges the sensor positioned at z from the
particle

Mz =

(

1 z

0 1

)

. (A5)

One can therefore define two transfer systems re-
spectively governing light propagation before the
object

Mx,y
1 = MzpM

x,y
CLMzlMSL =

(

Ax,y
1 Bx,y

1

Cx,y
1 Dx,y

1

)

,

(A6)
and light propagation/diffraction after the object

Mx,y
2 = Mz =

(

Ax,y
2 Bx,y

2

Cx,y
2 Dx,y

2

)

. (A7)

Appendix B: Beam waists and curvatures after
propagation through transfer systems

1. Propagation in the first transfer system

The complex amplitude G1 (ξ, η) after propagation
through the first transfer system to the particle
plane is given by Eq. (3). Complex amplitude
factors of this astigmatic Gaussian beam can be
explicitly derived as

Kx,y
1 =





πω2
0

1− iAx,y
1

πω2
0

λBx,y
1





1/2

. (B1)

Beam waists and wavefront curvature radii are re-
spectively given by

ωξ,η =

(

λBx,y
1

πω0

)

[

1 +

(

Ax,y
1

πω2
0

λBx,y
1

)2
]1/2

, (B2)

and

R (ξ, η) = −Bx,y
1

/






Dx,y

1 −
Ax,y

1

(

πω2
0

λBx,y
1

)2

1 +
(

Ax,y
1

πω2
0

λBx,y
1

)2






.

(B3)

2. Propagation in the second transfer system:
reference field R (x, y)

Complex amplitude factors Kx,y
2 in the sensor plane

are given by

Kx,y
2 =







πω2
ξ,η

1 + i
πω2

ξ,η

λBx,y
2

(

Bx,y
2

Rξ,η
−Ax,y

2

)







1/2

. (B4)

The values of Mx,y and Nx,y of Eq. (7) both give an
insight of the beam waists and curvature and can
be defined as

Mx,y = Dx,y
2 +

(

πω2
ξ,η

λBx,y
2

)2
(

Bx,y
2

Rξ,η
−Ax,y

2

)

1 +

(

πω2
ξ,η

λBx,y
2

)2 (
Bx,y

2

Rξ,η
−Ax,y

2

)2
,

(B5)
and

Nx,y =

(

πω2
ξ,η

λBx,y
2

)

1 +

(

πω2
ξ,η

λBx,y
2

)2
(

Bx,y
2

Rξ,η
−Ax,y

2

)2
. (B6)
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3. Propagation in the second transfer system:
object field O (x, y)

Analytical expressions of K
xeq,yeq
2 , Mxeq ,yeq , and

Nxeq,yeq can be derived from Eqs. (B4), (B5), and
(B6) by considering

1

ω2
ξeq,ηeq

=
1

ω2
ξ,η

+
ℜ{Bk}

r2
,

1

Rξeq,ηeq

=
1

Rξ,η
+
λℑ{Bk}

πr2
,

(B7)
where ℜ{.}, and ℑ{.} respectively denote real and
imaginary parts of a complex number. Substituting
Rξ,η → Rξeq ,ηeq and ωξ,η → ωξeq,ηeq in Eqs. (B4),
(B5), and (B6), leads to analytical expressions of
parameters K

xeq,yeq
2 , Mxeq,yeq , and Nxeq ,yeq .
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