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Abstract—We describe a practical and efficient method to determine the entropy rate of a TRNG based on free running oscillators

that does not require outputting and analyzing the clock signals with external equipment. Rather it relies on very simple computations

that can be embedded in any logic device such as FPGA or ASIC. The method can be used for the calibration of an oscillator based

TRNG or for on-line certification of its entropy rate. Our approach, which is inspired by the coherent sampling method, works under the

general assumption that the period jitter is small compared to the period of the generated clock signal. We show that, in this case, it

is possible to measure the relative phase between clocks of two oscillators with far higher precision than the time resolution given by

the period of any internal clock signal. We use this observation to recover, under some reasonable heuristics, the distribution of the

random walk component of the jitter, from which it is possible to compute a lower bound of the entropy rate of the TRNG. Our method

was thoroughly tested in simulations and in hardware. At the end of the paper, we draw some conclusions and make recommendations

for a reliable implementation of TRNGs in cryptographic applications.

Index Terms—hardware random number generators, ring oscillators, jitter model, entropy, statistical tests.

✦

1 INTRODUCTION

Random number generators (RNGs) are crucial compo-
nents of cryptographic systems — typical applications
include key generation, initialization vectors and even
countermeasures against side-channel attacks. In addi-
tion to providing output bitstreams with good statis-
tical properties, RNGs used for cryptographic applica-
tions must fulfill additional security requirements: they
should be testable in real time and their security should
be proved under thoroughly tested physical assump-
tions. In general, cryptographic RNGs comprise two
stages: a true random number generator (TRNG in the
following) that produces the entropy, and cryptographic
post-processing, used to obtain a certain level of security
even in the case of an undetected failure of the underly-
ing TRNG (see [10]). In this paper, we are only concerned
by the TRNG part of a RNG.

For cryptographic applications, the security of a TRNG
depends on its entropy rate (or min-entropy rate), which
is the measure of unpredictability of the TRNG. The
usual way to evaluate the security of a TRNG is to
use a general purpose statistical test suite (see for in-
stance [13]). However, it is not possible to determine
the entropy rate of a TRNG solely from knowledge of
a long output sequence of the generator: the entropy
rate has to be estimated using statistical model of the
TRNG. The statistical model describes the distribution
of the output sequence of a TRNG from knowledge of
physical parameters. By approximating this distribution
by a source of information, it is possible to recover the

entropy rate of the TRNG.
A source of randomness commonly used in TRNGs

implemented in logic devices such as field pro-
grammable gate arrays (FPGAs) and digital application
specific integrated circuits (ASICs), is the instability of
the signal propagation time across logic gates. This
instability produces a jitter which is, by definition [11,
p. 122], a short term deviation of a signal’s transition
time from its ideal position in time. This jitter is typically
accumulated in so-called ring oscillators, which consist in
a series of inverters or delay elements connected in a
ring. The jitter can be extracted by means of a sampling
unit, triggered by a reference clock, which can be an
external clock signal or the output from another ring
oscillator. This simple structure, which in this paper, we
call an elementary true random number generator (elemen-
tary TRNG), and the underlying physical phenomena are
widely reported in the literature, since the elementary
TRNG is often used as a building block for on-chip
TRNGs [4], [3], [15]. There are two classical ways to
describe the jitter of a clock signal either as a edge-
to-edge jitter or a edge-to-reference jitter: in the first
approach, the edge timing is referenced to the preceding
edge (period jitter) or to the N th-preceding (N -period
jitter), while in the other approach, the edge position
is referenced to a separate reference signal (see [11, p.
127]).

The jitter is a complex phenomenon that results from
the superimposition of different noise sources. Following
[16], it is important to distinguish the local component
of the jitter, which is the entropy source of the TRNG,
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from the global deterministic noises, which can be ma-
nipulated from outside the device. But even the local
component of the jitter is made of a combination of
different types of noise with different statistical prop-
erties (see [14, p. 23]). In [1], the authors proposed a
statistical model for an elementary TRNG, that computes
the entropy rate originating from the random walk phase
noise. This statistical model has two parameters: drift
and the volatility parameters of the Wiener stochastic
model. With knowledge of these two parameters, that
characterize the random walk component of the jitter, it
is possible to compute a lower bound of the entropy rate
of an elementary generator. A usual way to characterize
the jitter is to output the signal produced by the ring
oscillator and to analyze it with an oscilloscope or a
spectrum analyzer [11]. The problem with this technique
is that it introduces extra jitter and distortions in the
measured signal coming from the data acquisition chain.
Moreover, it does not provide a simple method for quan-
tifying parameters of individual chips on a production
line or for checking the proper behavior of the circuitry
when in operation. The purpose of this paper is to
present a simple method, easy to implement, to measure
the drift and volatility of the random walk component
of the jitter of an elementary TRNG inside the chip.

Our method can be seen as a special purpose statistical
test applied on the bitstream of an elementary TRNG
(composed of two ring oscillators). Unlike other similar
designs, we use TRNG with a high sampling frequency
(i.e. comparable with the frequency of the sampled
signal) and the statistical parameters of the generated
bitstream are thus biased, since the variance of the jitter
accumulated between two output bits is very small.
We recover the statistical parameters of the source by
analyzing the bias of the generated bitstream. Knowing
these parameters, we can then compute a lower bound
of the entropy rate of the source corresponding to the
random walk component of the jitter. Using the lower
bound of entropy rate and the statistical model in [1],
designers can set the frequency of the sampling clock
in order to guarantee the required entropy rate at the
TRNG output. Our technique is a simple extension of the
classical design of an elementary TRNG. It can be easily
implemented in FPGA and ASIC and used to calibrate
an elementary TRNG or to implement efficient dedicated
on-line tests (specific to the TRNG principle) as required
by AIS31 [10].

The paper is organized as follows: in Section 2, we
detail the statistical parameters we want to measure. In
Section 3, we analyze a simple intuitive method that
can be used to measure them. We then explain why the
results of this straightforward method are not completely
satisfactory, in order to introduce more sophisticated
approaches. In Section 4, we explain how to deduce the
relative phase of a couple of oscillators from knowledge
of the output sequence of an elementary TRNG. We use
these results to present an algorithm aimed at computing
statistical parameters of the jitter in Section 5. In section

6 we present the experimental results and in Section 7
we describe some possible applications.

Notations used in the rest of the paper: For all x ∈ R

and T ∈ R, we let x mod T = x −max{i ∈ Z|x − iT ≥
0}T . For interval I and t ∈ R, I+t is the interval {x+t|x ∈
I}. If I, J are intervals, I + J is the interval ∪t∈JI + t.
We have to consider intervals that are invariant under
translation by T ∈ R. Thus, if I ⊂ R is an interval, we let
IT = ∪n∈Z(I+nT ). For instance, [0, 1)2 = ∪i∈Z[2i, 2i+1).
If I = [x, y] is an interval, by convention, we set I = ∅
if x > y, and we have the obvious extension for open
or semi-open intervals. For x, y ∈ R, we let d(x, y)T =
min(|u − v|, u ∈ x + ZT, v ∈ y + ZT ) be the distance
modulo T .

2 THE PERIOD JITTER OF AN ELEMENTARY

TRNG

We consider outputs of two oscillators Oi for i = 1, 2.
They can be described by periodic functions of time t
having the form

si(t) = f(ωi(t+ ξi(t))), (1)

where f can be any real-valued function with period 1.
For i = 1, 2, φi(t) = ωi(t + ξi(t)) is the total phase of
f and ξi(t) is the phase shift due to the jitter. In the
following, for α ∈ [0, 1), we define fα as the unique
real-valued 1-periodic function such that fα(x) = 1 for
all 0 < x < α, fα(x) = 0 for α < x < 1, and
fα(0) = fα(α) = 1/2. We use fα as a convenient model
for the clock signal produced by a ring oscillator, which
generally has imbalanced half periods (α 6= 1/2). The
reason we chose 1/2 for the value of fα(0) (rising edge
of the clock signal) and fα(α) (falling edge) is to be
coherent with the notations of [1] but in fact, this is
of little concern for the results presented in this paper.
We do not consider amplitude fluctuations since, as
explained in [11, p. 134], their contribution to the jitter is
negligible in the case of a clock signal. For i = 1, 2, ωi is
the mean frequency of the signal si(t) and the function
ξi(t) models the absolute phase drift of this signal. Let
Ti = 1/ωi for i = 1, 2 be the mean period of si(t).

O2

O1

Sampler (DFF)

Frequency 

division by D

s2(t)

Sampler output
s1(t)

Fig. 1. Block diagram of an elementary TRNG

An elementary TRNG is composed of two oscillators.
The output of one is used to sample the output of the
other by means of a sampling unit, for instance a D
flip-flop (see Figure 1). The frequency of the sampling
oscillator is divided by D. The parameter D is very im-
portant since it makes it possible to reduce the sampling
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frequency and thus to accumulate the jitter for a longer
time in order to increase the entropy rate of the output
bit stream of the TRNG (while decreasing the bit rate).
In the following, we assume that the output clock of
oscillator O1 is sampled at moments determined by the
output of oscillator O2. As we are mainly concerned by
the relative phase between O1 and O2 output clocks, we
make the simplifying assumption that O1 is a perfectly
stable oscillator and that the whole phase drift of the
elementary TRNG comes from O2 so that we have ξ1 = 0
and we would like to characterize ξ2 = ξ.

The evolution of the total phase of O2 can be modeled
by an ergodic stationary Markov process Φ(t): for any time
t, t0, such that t ≥ t0, the phase Φ(t) conditioned by
the value Φ(t0) = x0 follows a probability distribution
depending only on ∆t = t − t0 with mean x0 + µ(∆t)
and variance λ(∆t) where λ, µ are real valued functions.
In the following, we only consider a realization φ(t) of
Φ(t) and use the ergodicity of the process to compute
probabilities that are independent of the time from the
knowledge of the realization. For instance, as P{Φ(t0 +
∆t)−x0 ≤ x|Φ(t0) = x0} is independent of t0 (it depends
only on ∆t), this cumulative distribution function can
be computed by taking the probability of the realization
over t0: Pt0{φ(t0 +∆t)− φ(t0) ≤ x}.

As s2(t) = fα(ω2(t + ξ(t))), where ω2 is the mean
frequency of s2, we deduce that µ(∆t) = ω2∆t. Thus,
if the Markov process is Gaussian (i.e. d

dxP{Φ(t0+∆t) ≤
x|Φ(t0) = x0} is a Gaussian distribution), it is completely
determined by ω2 and λ(∆t). The random walk com-
ponent of the jitter is produced by noise sources that
affect each transition independently. It is described by a
probability distribution d

dxP{Φ(t0 +∆t) ≤ x|Φ(t0) = x0}
of mean x0+ω2∆t and variance σ2

0∆t. Recall that D is the
factor of the frequency divider of the elementary TRNG
(see Figure 1). Using [1, Proposition 1], it is possible
to compute the entropy rate of an elementary TRNG
produced by the random walk jitter from the knowledge

of Q(D) =
σ2

0

T 2

1

T2D and ν = T2/T1, where Q is the quality

factor and ν is the frequency ratio introduced in [1, Section
2.4]. In this paper, we propose a method to determine the
values of Q = Q(1) and ν in order to obtain the entropy
lower bound for the total entropy rate at the output of
the generator. As Q and ν are dimensionless quantities,
there is no a priori obstacle to computing these values
from the data of an output bit stream of an elementary
TRNG.

Other closely correlated noise sources, such as the
1/f noises, also contribute to the jitter. In this case, the
variance of the jitter is in the form σ1/f (∆t)2. In practice,
both uncorrelated and correlated noise sources exist and
a typical log-log plot of λ(∆t) versus the measurement
delay ∆t will demonstrate regions with slope 1 and 2
as explained in [7] (or see Figure 3 below): for a shorter
delay ∆t the variance of the jitter grows linearly with
∆t while for higher value of ∆t the 1/f component of
the jitter becomes dominant and the variance follows a

quadratic law.

3 THE COUNTER METHOD

Here we present a simple approach, introduced in [16],
we call the counter method, to measure Q and ν inside
the device. For i = 1, 2, the output signal of Oi incre-
ments counter Ci. When C2 reaches a certain n, the value
of C1 is stored (see Figure 2). When this experiment is
repeated, the different outcomes of the value of C1, can
be modeled by a random variable C1(n). According to
our model for the random walk noise of the jitter, the

variance of C1(n) is well approximated by
σ2

0

T 2

1

T2n as long

as n is sufficiently small that the 1/f component of the
jitter is negligible. Thus, by computing the variance of
C1(n) for different values of n that satisfy the above
condition, we obtain a linear law with the slope Q.

Denote by E(C1(n)) the expected value of C1(n). The
expected time for the counter C2 to reach the value n is
nT2. Thus we have ⌊nT2

T1

⌋ ≤ E(C1(n)) < ⌊nT2

T1

⌋+ 1 from
which we deduce that

∣

∣

∣

∣

E(C1(n))

n
− T2

T1

∣

∣

∣

∣

<
1

n
. (2)

Denote by σC(n) the standard deviation of C1(n). Sup-
pose that we obtain N outcomes C1,i for i = 1, . . . , N of
the experiment. We can then evaluate E(C1(n)) by way
of the estimator E (n) = 1/N

∑N
i=1 C1,i which follows

a probability distribution with the standard deviation
σC(n)/

√
N . By Bienaymé-Chebychev’s inequality, for all

ǫ > 0, P{|E (n) − E(C1(n)| > ǫ} ≤ σC(n)2

Nǫ . By taking
ǫ = 1 in the preceding equation and by combining it
with Equation (2), we obtain:

P

{∣

∣

∣

∣

E (n)

n
− T2

T1

∣

∣

∣

∣

>
2

n

}

≤ σC(n)
2

N
. (3)

We will see from experiments that we obtain an upper
bound for σC(n). As a consequence, Equation (3) shows
that by ensuring that n and N are big enough, we can
obtain an evaluation of T2/T1 with high probability and
an arbitrarily small error.

O2

Counter

s2(t)

O1

Counter

s1(t)

Latch

C1

0 to n
ena

C1(n)
C1

C2

Output

n

Fig. 2. Computation of Q and ν: the simple counter method

This method was implemented using an evaluation
board dedicated to TRNG benchmarking [5]. Differ-
ent families from the three main manufacturers (Actel-
Microsemi, Altera and Xilinx) were tested and gave
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similar results. In the following, we consequently present
only one representative experiment featuring Altera
Cyclone-III FPGA. The two oscillators were built using
7 delay elements connected in a loop: one inverter and
6 non-inverting delay elements were mapped to LUT-
based logic cells (LCELL) from the Altera library. The
mean frequency of the two oscillators was measured
using a Lecroy WaveRunner 640ZI oscilloscope with
D420 differential probes. The value measured on LVDS
output was approximately 186 MHz. Figure 3 (bottom)
shows the standard deviation of C1(n) as a function of
the number n of accumulated periods T2. We observe
that under 8000 accumulated periods (corresponding to
an accumulation time of less than 40µs) the standard
deviation of C1(n) cannot be measured with the counter
method since it is smaller than T1. On the other hand,
if the number of accumulated periods is over 8000,
the distribution of C1(n) can be measured using the
counter method, but the standard deviation increases
linearly with the accumulation time. This means that the
measurements are made in the frequency range in which
the random walk noise we want to measure is dominated
by 1/f noises.
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Fig. 3. Period jitter measured with an oscilloscope (top) and
with the counter method (bottom)

Our experiments showed that the standard deviation
of the period jitter accumulated during time nT2 is
much smaller than T1 for n in the range 1 to 103. From
Equation (3) we deduce that it is possible to measure
T2/T1 with an error of less than 2 · 10−3 with only one

outcome of the counter method with n = 103. On the
other hand, to produce an observable distribution of the
outcomes of C2, we have to wait for such a long time
that the random walk noise is dominated by 1/f noise
even if O1 has the highest possible frequency achievable
inside the chip (oscillator O1 with one inverter and two
delay elements). We conducted many experiments to
identify the range of accumulation times in which the
random walk noises are still measurable: by plotting the
accumulated standard deviation of the period jitter as
a function of the time in log scale (see Figure 3, top),
we saw that the order of magnitude of the accumulation
time can not exceed a few hundred periods of the ring
oscillators. In conclusion, the counter method is a simple
and efficient way of precisely assessing the ratio T2/T1

but does not provide a way to obtain Q.
The time resolution of the jitter measurement can be

improved by using the coherent undersampling method.
The idea behind this approach is to magnify the dis-
tribution of the jitter by taking T1 = T2 + δT with a
very small δT , resulting in a temporal aliasing of the
clock signal of the sampled oscillator. Unfortunately, this
method requires a fine control of T1 and T2 in order
to obtain sufficiently small δT . This is very difficult to
obtain in practice and especially in FPGA, since it implies
perfect control of the placement and routing of the ring
oscillators. In the following, we explain how to tweak the
coherent undersampling method so that it works under
very general assumptions for any ratio T2/T1.

4 RELATIVE PHASE MEASUREMENT

In this section, we come back to the elementary TRNG
described in Figure 1. We set D = 1 so that the mean
frequency of the sampling signal is ω2. We denote by
(ti)i∈N (resp. (bi)i∈N) the time sequence (resp. the output
bit sequence) corresponding to the rising edges of O2.
We have ti = iT2− ξ(ti). For i ∈ N, let wi = iT2 mod T1.

Let N ≥ 1 be an integer. A first important observation
is that for k ∈ N, the data of the pattern [bk, . . . , bk+N ]
gives a precise evaluation of the value ξ(t) for t ∈
[tk, tk+N ]. To this end, we first suppose that ξ(t) is a
constant ξ0 in the time interval [tk, tk+N ]. We denote
by ρk (or simply by ρ when there is no ambiguity) the
unique permutation of the set {0, . . . , N} such that for all
i, j ∈ {0, . . . , N} with i < j, we have wk+ρk(i) < wk+ρk(j).

Before stating and proving Fact 1, we give a simple ex-
ample to illustrate it. Let k = 1 and N = 3, and suppose
that ξ(t) = ξ0 in the time interval [0, 5.T2]. In addition
we suppose that α = 1/2 and that T2 mod T1 = 4/5 · T1

so that for j = 1, 2, 3, 4, wj = (5 − j)/5.T1 as it is at
the top of Figure 4. We have by definition bi = fα(w

′
i)

where w′
i = wi − ξ0. It is clear that for i = 0, 1, 2, 3,

ρ(i) = 3 − i. By looking at the position of the falling
edge of s1(t) in Figure 4, we see that ξ0 ∈ (−0.5, 0.5)
if [b1+ρ(1), . . . , b1+ρ(4)] = [1, 1, 0, 0] and ξ0 = (0.5, 1.5) if
[b1+ρ(1), . . . , b1+ρ(4)] = [1, 1, 1, 0]. In other words, the data
of the pattern [b1+ρ(1), . . . , b1+ρ(4)] allows the value of
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ξ0 to be recovered with a known error margin. This is
exactly the content of Fact 1 except that in Fact 1, in
order to recover the relative phase ξ0, we consider the
rising edge rather than the falling edge.

t1 t2 t3 t4

b1 b2

b3 b4

0 T1

b1

w1

b2

w2

b3

w3

b4

w4

y = fa (x)

s1(t)

s2(t)

x0 = 0 

t1 t2 t3 t4

b1

b2 b3 b4

0 T1

b1

w'1

b2

w'2

b3

w'3

b4

w'4

y = fa (x)

s1(t)

s2(t)

x0 = 0.75 

Fig. 4. If ξ0 = 0 (top), we have [b1, . . . , b4] = [0, 0, 1, 1] and
if ξ0 = 0.75 (bottom), we have [b1, . . . , b4] = [0, 1, 1, 1].

Fact 1: Suppose that for all i ∈ {0, . . . , N − 1},

|wk+ρ(i) − wk+ρ(i+1)| < min(αT1, (1− α)T1).

Suppose that there exists a couple of integers i, j ∈
{k, . . . , k + N} such that bi 6= bj . Then there exists
iu ∈ {0, . . . , N} such that

bk+ρ(iu) = 0 and bk+ρ((iu+1) mod (N+1)) = 1. (4)

Set x = wk+ρ(iu) and y = wk+ρ((iu+1) mod (N+1)), then
we have ξ0 ∈ (x, y)T1

if iu ∈ {0, . . . , N −1} else ξ0 ∈ (x−
T1, y)T1

. Moreover, iu satisfying condition (4) is unique.
Proof:

It is clear that, under the condition of the statement,
there exists iu ∈ {0, . . . , N} such that bk+ρ(iu) = 0 and
bk+ρ((iu+1) mod N+1) = 1. Set K = k + ρ(iu), L = k +
ρ((iu + 1) mod (N + 1)). As bK = fα(ω1(x − ξ0)) = 0,
by definition of fα, we have x− ξ0 ∈ (αT1, T1)T1

. In the
same way, as bL = fα(ω1(y−ξ0)) = 1, y−ξ0 ∈ (0, αT1)T1

.
From the above, we deduce that ξ0 ∈ (x, x+(1−α)T1)T1

∩
(y − αT1, y)T1

. Thus, we have ξ0 ∈ ∪k∈ZIk where Ik =
(max(x, y − αT1 + kT1),min(x + (1 − α)T1, y + kT1))T1

.
Suppose first that iu ∈ {k, . . . , k +N − 1}, then we have
x < y by definition of ρ. Thus, as by assumption |x−y| <

min(αT1, (1− α)T1), we have

max(x, y − αT1 + kT1) =

{

x if k ≤ 0,

y − αT1 + kT1 otherwise,

and

min(x+(1−α)T1, y+kT1)T1
=

{

y + kT1 if k ≤ 0,

x+ (1− α)T1 otherwise.

We deduce that I0 = (x, y)T1
and Ik = ∅ if k 6= 0, so that

ξ0 ∈ (x, y)T1
. The case x > y can be treated in the same

way. The uniqueness of iu is a consequence of the fact
that each pair in the set of intervals (wk+ρ(i), wk+ρ(i+1))T1

for i ∈ {k, . . . , N + k − 1} and (wk+ρ(N) − T1, wk+ρ(0))T1

has an empty intersection. Thus ξ0 can only belong to a
unique interval.

Fact 1 states that the pattern [bk+ρ(0), . . . , bk+ρ(N)] is of
the form

[1, . . . , 1, 0, . . . , 0, 1, . . .],

where all ones (resp. zeros) are grouped together and
the position of the transition from one to zero (resp.
from zero to one) corresponds to the time of a falling
edge (resp. a rising edge), from which we can deduce
the phase ξ0.

It is possible to obtain a similar, more precise result
by taking into account the small variability of φ(t) in
the time interval [tk, tk+N ] (see the Appendix).

To exploit the above results, we need to compute
the permutation ρk. A first remark is that for all i ∈
{0, . . . , N}, we have wk+i = (wk+wi) mod T1 so that for
all k, k′ ∈ N, we have ρk = ρc ◦ ρk′ where ρc is a circular
permutation. But the statement of Fact 1 depends only
on the way we arrange the wi for i ∈ {k, . . . , k + N}
along the fixed circle [0, T1] (where we merged 0 with
T1) which, as a consequence, are independent of the per-
mutation ρc. Thus, it is sufficient to be able to compute
ρ0. To compute ρ0, one can obtain the value of wi for
i ∈ {0, . . . , N} and then use a sorting algorithm. Finally,
as wi = iT2 mod T1, the whole problem is reduced to
the precise evaluation of ζ = T2/T1 mod 1, which can be
accomplished with the simple counter method described
in Section 3. Knowing ζ, the simple Algorithm 1 makes
it possible to recover the permutation ρ0.

input : ζ = T2/T1 mod 1, N – the length of
patterns.

output: The unique permutation ρ0 of the set
{0, . . . , N} such that for all i, j ∈ {0, . . . , N}
with i < j, we have wρ0(i) < wρ0(j).

Compute the list L = [(0, 0), (ζ, 1), . . . , (kζ
mod 1, k), . . . , (Nζ mod 1, N)];
return L sorted by the first column ;

Algorithm 1: Algorithm to compute the permutation ρ0
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5 ALGORITHM OF THE JITTER COMPUTATION

We want to measure the distribution of the jitter accu-
mulated during M periods of O2 from the knowledge
of a sample [b1, . . . , bn] of the output bit sequence of the
elementary TRNG. We choose an N < n and using the
counter method, we can recover ζ = T2/T1 mod 1. We
define ρ as the unique permutation of the set {0, . . . , N}
such that for all i, j ∈ {0, . . . , N} such that i < j, we have
(ρ(i)ζ mod 1) < (ρ(j)ζ mod 1). Let M be an integer and
we would like to compute the cumulative distribution
function fMT2

(x) given by Pt{ξ(t +MT2) − ξ(t) ≤ x} =
Pk{ξ(tk+MT2)−ξ(tk) ≤ x}. We take a sufficiently small
M so that the contribution of the 1/f noises to this
distribution is negligible. Under this condition, as we
explained in Section 3, the standard deviation of fMT2

is
small compared to T1. To compute it, we only need to
recover the values of ξ(t) mod T1.

We consider patterns of the form [bk+ρ(0), . . . , bk+ρ(N)].

Under the assumption that
√

λ(NT2) is small, we know
by Fact 1 (or by Fact ?? in the Appendix) that there
will be only one i ∈ {0, . . . , N} such that bk+ρ(i) =
0 and bk+ρ((i+1) mod N+1) = 1. Still, by Fact 1, we
know that there exists a t ∈ [tk, tk+N ] such that ξ(t)
mod T1 ∈ (wk+ρ(i), wk+ρ((i+1) mod (N+1))). In the same
way there exists a unique j ∈ {0, . . . , N} such that
bk+M+ρ(i) = 0 and bk+M+ρ((i+1) mod N+1) = 1 and we
know that there exists a t ∈ [tk+M , tk+M+N ] such that
ξ(t) mod T1 ∈ (wk+M+ρ(j), wk+M+ρ((j+1) mod (N+1))).
As a consequence, we approximate the value ξ(tk+MT2)
mod T1− ξ(tk) mod T1 by wk+M+ρ(j)−wk+ρ(i) = (wM +
wk+ρ(j)) mod T1 − wk+ρ(i).

This principle is used by Algorithm 2 to compute the
cumulative distribution function Pt{ξ(t+MT2)− ξ(t) ≤
x}.

We define δ as:
mini∈{0,...,N}(d(wk+ρ(i), wk+ρ(i mod N+1))T1

).

The method works if
√

σ2
0NT2 < δ/2 (see Appendix) so

that we can apply Fact ?? and we also need
√

σ2
0MT2 > δ

so that we can observe a distribution. Consequently, we
must have M > 4N . As we will see in the next section,
in practice these conditions are always fulfilled.

The method works better if we can assume that the
sequence (wρ(i))i=0,...,N is almost regularly spaced in the
interval [0, T1]. This means that there exists a constant
δ0 ≈ 1/N ∈ R such that for all i ∈ {0, . . . , N}, we have
d(wρ(i), wρ((i+1) mod N+1))T1

= δ0. It is always possible
to choose N such that this condition is fulfilled. The
theory of continued fraction [9, Theorem 16] states that
for N it suffices to take the denominator of one of
the convergents of the continued fractions development
of T2/T1 mod 1. These denominators can be efficiently
computed with the extended Euclidean algorithm.

6 EXPERIMENTS AND RESULTS

We thoroughly tested in simulations and in hardware
the method of computing the relative jitter of two ring

input : The output sequence [b0, . . . , bn] of an
elementary TRNG with D = 1, the
permutation ρ, N < n the length of the
patterns, M an integer such that we
compute the period jitter accumulated
during time MT2.

output: A list of real numbers L = [x0, . . . , xλ],
where λ ∈ N and xi is an approximation of
ξ(tk +MT2) mod T1 − ξ(tk) mod T1 + C
for some k and the constant C ∈ [0, T1].

k ← 0;
L← [];
while k ≤ n−M −N do

Let iu be the index such that bk+ρ(iu) = 0 and
bk+ρ((iu+1) mod N+1) = 1;
Let ju be the index such that bk+M+ρ(ju) = 0 and
bk+M+ρ((ju+1) mod N+1) = 1;
L← L+ [wσ(ju) − wσ(iu)];
k ← k +M ;

end
return L ;

Algorithm 2: Algorithm to compute the cumulative distri-
bution function Pt{ξ(t+MT2)− ξ(t) ≤ x}

oscillator clocks described in this paper. In this section,
we present the details and outcomes of our experiments.

Our demonstrator consists of an FPGA based hard-
ware dedicated to TRNG evaluation composed of two
parts: 1) a mother board that contains a Cypress USB
interface device powered by an isolated low noise power
supply, 2) a daughter module containing the FPGA
component plugged into the motherboard ([5].)

Different daughter modules based on FPGA from
three main manufacturers (Actel-Microsemi, Altera and
Xilinx) are available. All modules have the same topol-
ogy. This made it possible to compare the results of
different technologies with maximum objectivity. The
elementary TRNG was implemented in the daughter
FPGA module and the output bit sequence was trans-
mitted via USB interface to be analyzed by a software
running on an external computer. All algorithms were
implemented in Python.

Next, we describe step by step the application of
our method to the elementary TRNG in Figure 1 im-
plemented in Altera Cyclone III FPGA (other families
were tested but are not presented here as they produced
similar results). The mean period of the sampled os-
cillator O1 and sampling oscillator O2, measured with
an oscilloscope, was T1 = 11.335ns and T2 = 8.712ns,
respectively. We acquired a sequence (bi)i∈I of 819200
bits from the output of the elementary TRNG with
D = 1.

Knowing ζ, obtained with the counter method, we
can recover the permutation ρ0 by Algorithm 1. For
patterns of length N = 64, the permutation is given by
the following list L such that L[i] = ρ0(i):
0 13 26 39 52 9 22 35 48 61 5 18 31 44 57
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Fig. 5. Graph of the ordered sequence of P{bi 6= bi+M} as a
function of M .

1 14 27 40 53 10 23 36 49 62 6 19 32 45 58

2 15 28 41 54 11 24 37 50 63 7 20 33 46 59

3 29 42 16 55 12 25 38 51 8 21 34 47 60 4

17 30 43 56

The first 64 bits of the sequence (bi)i∈I are:
0011001100011001 1001100111001100

0011001100011001 1001100111001100

If we apply the permutation ρ0 on this pattern, we
obtain:

0000000000000000 0000011111111111

1111111111111111 1111000000000000

Note that the ones and zeros in the pattern are
grouped together as predicted by Fact 1 and Fact ??
and the arrows show the position of the rising and
falling edges, from which we can evaluate ξ(t) mod T1

for t ∈ [0, NT2].
We now explain how to choose N so that the val-

ues wi for i ∈ {0, . . . , N} are regularly spaced. To
this end, we used the list K of wi = iζ mod T1 for
i = 1, . . . , N sorted by ascending order and plotted
the graph of (i,K[i]). For N = 64, in the top part of
Figure 6 the bumpy curve shows that the wi are not
regularly spaced in the interval [0, T1]. We computed the
convergents of the continued fraction development of ζ,
that is [0, 1/4, 3/13, 25/108, 28/121, . . .] and for instance
select N = 108. We obtained an almost regularly spaced
sequence of wi for i ∈ {0, . . . , 108} (see bottom of Figure
6).

We used Algorithm 2 to recover a list L(M) of
points corresponding to approximations of (ξ(t +MT2)
mod T1) − (ξ(t) mod T1) for some t. In Figure 7, we
show the cumulative distribution graph of L(M) for
M = 400 and M = 900. If L(M) = [x1, . . . , xλ], the
graph of the cumulative distribution function is given
by the points (xi, ♯{z ∈ L(M)|z ≤ xi}/λ) for i = 1, . . . , λ.
This function corresponds to the cumulative distribution
function of the Gaussian distributions shown in Figure 7.
We can then obtain the mean E(M) and variance V (M)
of these distributions with the usual estimators that is,
keeping the above notations : E(M) = 1/λ

∑λ
i=1 xi,
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Fig. 6. Graph of the ordered sequence of iζ mod T1 for i =
1, . . . , N for N = 64 (top) and N = 108 (bottom).

V (M) = 1/λ
∑λ

i=1 x
2
i − E(M).

Figure 8 shows the graph of V (M) as a function of
M in the interval [400, 580]. In this interval, we see that
V (M) is well approximated by a linear function, whereas
when the accumulation time is longer, the influence
of the 1/f noise becomes noticeable (see the bottom
graph). As Algorithm 2 computes distances between
points of the form wi = iT2/T1 mod 1, the slope of the
graph of V (M) for M in the domain where the random
walk is dominant is a dimensionless quantity, which is

nothing but
σ2

0

T 2

1

T2 where σ2
0 is the variance of the jitter

accumulated during one unit of time. The fact that the
output of our algorithm has no dimension is intrinsic to
our method since we used only a bit sequence as input,
which does not provide any way to measure the time.

But the quantities Q =
σ2

0

T 2

1

T2 and T2/T1 are exactly what

we needed to compute the entropy rate of a TRNG as
a function of the value of the frequency divider D with
the statistical model of [1]. For TRNG implementation in

Atera Cyclone III, we obtained
σ2

0

T 2

1

T2 = 5.33484 10−6.

To check that the proposed method gives a good

approximation of
σ2

0

T 2

1

T2, we simulated an elementary

TRNG using a VHDL simulator. In simulations, we
dynamically modified the timing of two ring oscillators
by adding a random jitter. The size of the jitter was
used as an input parameter in the simulations. Using
the proposed method, we were able to calculate the
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Fig. 8. V (M) as a function of M .

σc a
√

2σc/T1

√

a Error percetage
10 ps 6.82494 10−6 0.00156 0.00155 6%

15 ps 1.45836 10−5 0.00234 0.00227 3%

TABLE 1

Simulation results: Error percentage

size of the jitter and compare it with the input jitter
value. We used ModelSim to simulate two oscillators
O1 and O2 with a Gaussian jitter added to each period.
The output sampled bits were written into an output
file during the simulations. The mean clock period of
the sampled oscillator O1 was T1 = 9050 ps and that
of the sampling oscillator O2 was T2 = 9100 ps. For
i = 1, 2, the frequency of the output clock signal of
Oi was given by fi = f1/2(1/T1(t + ξi(t))), where ξi
is the absolute jitter such that d

dxP{ξi(t + Ti) ≤ x|ξi(t)}
follows a Gaussian distribution of mean 0 and standard
deviation σc. This is equivalent to oscillator O1 with
a fixed period and oscillator O2 with a relative jitter
ξ(t) such that d

dxP{ξ(t + T2) ≤ x|ξ(t)} is a Gaussian
distribution with standard deviation σT2

=
√
2σc (see

[1, Appendix C] for a justification). The quantity that
our method approximates is thus

√
2σc/T1. Note that our

simulation does not take the 1/f noises into account.
For different values of σc we obtained output bit

sequences (bi)i∈I of length 197780 bits. Next, as before,
we can trace the graph of V (M) as a function of M ,
which is well approximated by a linear function with
slope a. Then we can compare

√
2σc/T1 with

√
a. The

results are summarized in Table 1, showing that we were
able to recover the expected noise parameter with good
precision.

We end this section with some concluding remarks
about some implementation issues as well as some ap-
plications for our method. It should be noted that the im-
plementation of the algorithms presented in this paper is
quite straightforward if a basic floating point arithmetic
is used. The only non-trivial part is the sorting algorithm
included in Algorithm 1. Another important fact is that
our algorithm can be implemented without changing the
elementary TRNG and it can be executed continuously
when the TRNG is in operation. The parameter D can
be set to a higher value to achieve the required entropy
rate at the output of the TRNG and at the same time, all
the output bits of the generator can be used to internally
compute the statistical parameters of the random walk
component of the jitter (using D = 1 for computations).

The computation of T2/T1 mod 1 can also be used
to compute small common approximate harmonics of
T1 and T2. By small common approximate harmonics
of T1 and T2, we mean small integers λ1, λ2 ∈ Z such
that |λ1T1 + λ2T2| < ǫ, where ǫ > 0 is a small real
number. It is interesting to be able to compute these har-
monics in relation with the frequency lock phenomenon.
It was shown in [12] that ring oscillators are sensitive
to signal injection attack which lead to synchronization
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of the ring oscillators and a dramatic reduction in the
entropy rate of the TRNG. Further analyses (see [2], [6])
showed that even in the absence of signal injection, ring
oscillators can lock on small common harmonics of their
frequency. It so happens that it is possible to internally
compute small common harmonics of a couple of ring
oscillators and, as a consequence, predict and detect
the most probable frequency-lock occurrences. Indeed,
by definition of small harmonics, we look for couple
of integers (λ1, λ2) such that |λ1/λ2 + T2/T1| is small.
We know how to internally evaluate T2/T1 mod 1. So
the problem is reduced to the computation of good
rational approximation (with small integers) of a real
number. But again the theory of continued fractions
provides very simple and efficient algorithms to obtain
such approximations (see [9, Theorem 16]).

7 CONCLUSION AND FURTHER WORKS

In this paper, we presented a simple method to re-
cover the statistical parameters of the random walk
component of the jitter of an elementary TRNG. Using
the recovered parameters, it is possible to determine a
lower bound of the generator’s entropy rate, which is
essential for TRNG security evaluation and certification.
The main advantage of our method is that it does not
require modification of the elementary TRNG and that
the computations can be performed while the TRNG
is in operation. Depending on the entropy assessment
proposed, the generator’s output bit rate can be set to a
value that guarantees the entropy level specified by the
security requirements.

The proposed method was validated in simulations
and in hardware. Up to now, the analysis of the output
bit sequence has been performed outside the device
using a computer. However, we believe that it can be
easily implemented in an FPGA or ASIC using com-
mon floating point arithmetic blocks. The use of integer
arithmetic is also under consideration. The accuracy of
our method has been evaluated experimentally, but it
is possible to carry out exact computations using the
techniques of [1]. We now plan to apply our technique
as a countermeasure against attacks that attempt to lock
the TRNG ring oscillators together or to some external
frequencies.
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