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ABSTRACT

Several problems in signal processing and machine learning
can be casted as optimization problems. In many cases, they
are of large-scale, nonlinear, have constraints, and may be
nonsmooth in the unknown parameters. There exists plethora
of fast algorithms for smooth convex optimization, but these
algorithms are not readily applicable to nonsmooth prob-
lems, which has led to a considerable amount of research in
this direction. In this paper, we propose a general algorithm
for nonsmooth bound-constrained convex optimization prob-
lems. Our algorithm is instance of the so-called augmented
Lagrangian, for which theoretical convergence is well es-
tablished for convex problems. The proposed algorithm is
a blend of superlinearly convergent limited memory quasi-
Newton method, and proximal projection operator. The initial
promising numerical results for total-variation based image
deblurring show that they are as fast as the best existing al-
gorithms in the same class, but with fewer and less sensitive
tuning parameters, which makes a huge difference in practice.

Index Terms— Constrained convex optimization, non-
smooth optimization, hierarchical optimization, ADMM,
proximal operator, deblurring, total variation.

1. INTRODUCTION

Many problems in signal processing and machine learning
can be stated follows:

x∗ := arg min
x

F (x) subject to x ∈ Ω, (1)

where F (x) = {f(x) + r(x)}; f : Rn → R is twice contin-
uously differentiable, and convex; r : Rn → R is continuous
and convex but not necessarily differentiable everywhere,
and Ω is a bound constraint set. Often, f corresponds to
a loss, and r to a regularizer. This class of problems, in
general, do not have close-form solutions, and rely on it-
erative method. There exists numerous well established
algorithms [1] (LBFGS-B), [2] (VMLM-B), [3] (BLMVM),
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[4] (ASA-CG), [5] (minConf-TMP), based on limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method [6]
with superlinear convergence rate for the problem (1) when
∀x, r(x) = 0, but these techniques do not work off-the-shelf
when ∀x, r(x) 6= 0. Some efforts have been made in an ad-
hoc manner to apply LBFGS methods directly to nonsmooth
convex problems that are differentiable almost everywhere,
and convergence to the optimum has been noted [7] in the
cases where no nonsmooth point is encountered, otherwise
[8, 9, 10] report catastrophic failures (convergence to a non-
optimum) of the direct methods. The traditional algorithms
for nonsmooth optimization are based on a stabilization steep-
est descent by exploiting gradient or subgradient information
evaluated at multiple points, which is the essential idea behind
subgradient methods [11, 12], the bundle methods [9, 13], and
the gradient sampling algorithm [14, 15]. These algorithms
are successful for nonsmooth problems with sublinear rate of
convergence.

Another class of algorithms for solving the problem (1)
use the general idea of variable splitting: introduction of aux-
iliary variables in order to decouple minimizations of f and
of r. The proximal forward-backward iterative scheme in-
troduced in [16] and [17] is a notable representative algo-
rithm of this class; see the recent survey [18] and the refer-
ences therein for very general convergence results of proximal
forward-backward algorithms under various conditions and
settings. relevant to problem (1). Unlike the algorithms using
second-order information (quasi-Newton methods), the prox-
imal forward-backward algorithms use only first order infor-
mation, and are slower having only sublinear convergence
rate, but enjoy global convergence guarantees for nonsmooth
convex problems. The convergence rates of these algorithms
have been further improved in [19, 20] by using the idea of
Nesterov [21] developed in 1983, which suggest to use the in-
formation from the previous iterations in a smart way at each
new iteration.

The two instances of the general proximal forward-
backward algorithm are Alternating Minimization Algo-
rithm (AMA) [22], and closely related Alternating Direction
Method of Multipliers (ADMM) [23] whose developments



backs to 1970s. These algorithms use augmented Lagrangian
(AL) terms to handle the constraints, and are closely related to
algorithms such as dual decomposition, the method of mul-
tipliers, Douglas-Rachford splittings, Dykstra’s alternating
projections, Bregman iterative algorithm, and others. ADMM
is a blend of decomposability of dual ascent and superior con-
vergence properties of the method of multipliers. Because of
its flexibility to in handling different types of objective func-
tions/constraints, and its simplicity in implementation for
distributed optimization, ADMM has gained popularity in
both signal processing and machine learning communities
since the last two decades. However, only sublinear rate of
convergence have been achievable by the ADMM, and con-
vergence speed is highly dependent upon the chosen penalty
parameters. Optimal tuning of those parameters remains
largely an open question. In this paper we propose an al-
gorithm for solving nonsmooth bound-constrained convex
optimization problem, which uses variable splitting and AL
to handle the nonsmooth part, and the robust quasi-Netwon
method to handle the bound-constraint and smooth part. The
proposed algorithm is as fast as the other algorithms in the
same class with fewer number of tuning parameters, and is
immune to large range variation in the tuning parameter.

2. PROPOSED ALGORITHM

The problem (1) without the bound constraint can be written
equivalently after variable splitting as:

arg min
x, z

{ f(x) + r(z) } s.t. x− z = 0. (2)

The Augmented Lagrangian of problem (2) can be written:
Lρ(x, z,u) = f(x) + r(z) +

ρ

2
‖x− z + u‖22, (3)

where u is dual scaled variable, and ρ > 0 is a augmented
penalty parameter.

The method of multipliers solves the problem (2) with
bound constraint, (x ∈ Ω), by the following iterations (k be-
ing the iteration counter):

{x(k+1), z(k+1)} := arg min
z,x∈Ω

{ f(x) + r(z)

+
ρ

2
‖x− z + u(k)‖22 } (4)

u(k+1) := u(k) + x(k+1) − z(k+1) (5)
Rather than jointly minimizing with respect to x and z vari-
ables, ADMM solves the same problem by following itera-
tions:
x(k+1) := arg min

x∈Ω
{ f(x) +

ρ

2
‖x− z(k) + u(k)‖22 } (6)

z(k+1) := arg min
z
{ r(z) +

ρ

2
‖x(k+1) − z + u(k)‖22 } (7)

u(k+1) := u(k) + x(k+1) − z(k+1) (8)
The above two methods for solving the problem (2) are very
similar. ADMM is viewed as a version of the method of
multipliers with a single Gauss-Seidel iteration over x and
z. The real advantage of these methods is their convergence

to the solution under very general conditions [23]: (i) the
extended-real-valued functions f and r in problem (2) are
closed, proper, and convex; and (ii) the unaugmented La-
grangian L0 has a saddle point. Moreover, the two methods
converge even when x-, z-updates are not carried out exactly,
provided that the errors between the approximate and exact
solution at each iteration are summable [24].

2.1. Motivation

In general the global convergence rate of ADMM is limited
to sublinear rate, however, recently numerous algorithms [25,
26, 27] based on ADMM for solving the instances of the gen-
eral problem (1) in applications related to image reconstruc-
tion and other linear inverse problems have proven to be more
efficient, and converges faster in comparison to many state-
of-the-art algorithms [28, 19, 20]. The convergence speed of
ADMM is highly dependent upon the penalty parameters, and
only optimally tunned parameters result in high convergence
speed. The optimal tunning of the penalty parameters is still
an open problem. It has also been observed that the con-
vergence speed is higher when separate penalty parameters
are used for each augmented term introduced in the ADMM.
The experimental results in [27] clearly demonstrate that the
ADMM with i). sufficient number of variable splittings (so
that each variable updates can be carried out in closed-form),
and ii). optimally tunned penalty parameters, converges faster
than the other variants of ADMM. Following this suggestion,
a nonsmooth convex problem such as image deblurring prob-
lem with total variation(TV) regularization, the one consid-
ered in section (3), requires multiple variable splittings, which
requires to tune multiple parameters hindering the conver-
gence speed. In this paper, we consider going back to the
method of multipliers and avoiding as many splitting as pos-
sible so as to reduce the number of penalty parameters. We
show that by using a hierarchical optimization approach, an
efficient algorithm is obtained.

2.2. Derivation of the algorithm

Going back to the method of multipliers (4)-(5), the joint min-
imization problem can be formulated in a hierarchical way:
x∗ := arg min

x∈Ω
f(x) + r(z∗(x)) +

ρ

2
‖x− z∗(x) + u‖22

with z∗(x) = arg min
z

r(z) +
ρ

2
‖x− z + u‖22 (9)

The inner optimization problem is often known in closed
form. We use a quasi-Newton method to compute the solu-
tion of the outer minimization problem.

Proposition 1. The gradient of the partially optimized aug-
mented Lagrangian with respect to x is given by:
∇xLρ(x, z∗(x),u) = ∇f(x) + ρ(x− z∗(x) + u) . (10)

Proof. When r is a smooth function, this follows directly
from the chain rule formula since the gradient of augmented



Lagrangian with respect to z is zero at the optimal value z∗. In
the non-smooth case, the augmented Lagrangian is still differ-
entiable by virtue of the augmented term that smooths r [29].
In order to prove our proposition in the non-smooth case, we
use a classical characterization of the gradient of a convex
function, namely that the function lies above its gradient.

As z∗(x) is the solution of the inner minimization:

∀z, ∀x, r(z) +
ρ

2
‖x− z + u‖22

≥ r(z∗(x)) +
ρ

2
‖x− z∗(x) + u‖22 . (11)

For a fixed z, the gradient of the augmented Lagrangian
Lρ(x, z,u) with respect to x is:

∇xLρ(x, z,u) = ∇f(x) + ρ(x− z + u) . (12)
By convexity of f , we have:
∀x, ∀z, Lρ(x, z,u) ≥ Lρ(x̂, z,u)

+ [∇f(x̂) + ρ(x̂− z + u)]t(x− x̂) . (13)
Equation (11) applied to z∗(x) and x̂ and equation (13) ap-
plied to z∗(x) lead to:
∀x, Lρ(x, z∗(x),u) ≥ Lρ(x̂, z∗(x̂),u)

+ [∇f(x̂) + ρ(x̂− z∗(x) + u)]t(x− x̂) . (14)
This inequality is close to the gradient inequality sought, ex-
cept that z∗(x) appears instead of z∗(x̂) in the second line.
We thus need to prove that (z∗(x̂)− z∗(x))t(x− x̂) ≥ 0 for
all x. By expanding the squared norm in equation (11), we
can show that
∀z, ∀x, r(z) +

ρ

2
‖z‖22 − ρzt(x + u)

≥ r(z∗(x)) +
ρ

2
‖z∗(x)‖22 − ρz∗(x)t(x + u) . (15)

Combining equation (15) applied to (z := z∗(x), x := x̂)
and to (z := z∗(x̂), x) gives the desired result. In conclusion,
the following inequality holds:
∀x, Lρ(x, z∗(x),u) ≥ Lρ(x̂, z∗(x̂),u)

+ [∇f(x̂) + ρ(x̂− z∗(x̂) + u)]t(x− x̂) , (16)
which proves the proposition in Eq.(10).

Proposition 2. The gradient difference is independent of the
value of dual variable u:
∇xLρ

(
x(2), z∗(x(2)),u

)
−∇xLρ

(
x(1), z∗(x(1)),u

)
= ∇f(x(2))−∇f(x(1))+ρ

[
x(2)−x(1)+z∗(x(1))−z∗(x(2))

]
Using proposition 1, any smooth optimization method

based solely on cost function and gradient evaluations can
be used to perform joint minimization over x and z. If the
method uses gradient differences to collect second order
information (e.g., quasi-Newton methods), the memorized
previous steps can be used even after the dual variables have
been updated, since gradient differences are not affected by
dual updates, see proposition 2. The applicability of smooth
optimization methods is thus extended to non-smooth prob-
lems typically encountered in image reconstruction.

Table 1: Relative difference between the cost function after
1500 FFT evaluations and at the solution (in %)

method [F (x(1500)) − F (x∗)]/F (x∗)

ADMM 3x .35
ADMM 1x 2.6 (30 it) 2.7 (60 it 2.2 (100 it)

proposed(rst) 2.2 (30 it) .55 (60 it) .20 (100 it)
proposed .06 (30 it) .04 (60 it) .038 (100 it)

3. ILLUSTRATION ON IMAGE DEBLURRING

We evaluate the efficiency of our algorithm on an image de-
blurring problem. We consider maximum a posteriori deblur-
ring with TV regularization and positivity constraints:

x∗ := arg min
x≥0

1

2
‖y −Hx‖2W + λ TV(x) , (17)

where y ∈ Rn is the observed (blurry and noisy) image,
H ∈ Rn×n is the blurring operator (discrete convolution ma-
trix), W ∈ Rn×n is the inverse of noise covariance matrix
(diagonal in our case), λ > 0 is tuned to reach good com-
promise between smoothness of the solution and data fitting.
TV(x) is the isotropic-TV on the unknown image, x, defined
as: TV(x) =

∑n
i=1 ‖(∇x)i‖2, where ∇ = [∇Tx ∇Ty ]T is

first-order finite difference operator in two dimensions (see
e.g., [30]). The ‖v‖2W is defined as vtWv,∀v. As done
in [27], to correctly handle borders, we reconstruct x that is
larger than the available blurred image. Pixel values outside
the field-of-view are given zero weight by matrix W (i.e., if
pixel k is not seen, then Wk,k = 0). We apply the deblur-
ring model (17) on a portion of blurry and noisy Lena image
shown in Figure 3. Note the zero-padding on the border of
the observed image to handle it correctly.

Previous research [27] has shown the superiority of
ADMM with multiple splittings over other state-of-the-
art methods. We compare the convergence speed of (i)
ADMM (hereafter method ADMM 3x) with three splittings:
y −Hx = ξ; ∇x = ω; z = x, and the resulting AL:

1

2
‖ξ‖2W +

ρ

2
‖y−Hx−ξ+u1‖22 +g(z)+

ν

2
‖x−z+u2‖22

+ λ

n∑
i=1

‖ωi‖2 +
γ

2

n∑
i=1

‖(∇x− ω + u3)i‖22 (18)

that makes possible to solve each sub-problems in closed-
form. g is an indicator function for the constraint z ≥ 0.
The three penalty parameters are tuned after many exper-
imental trails; (ii) ADMM (hereafter ADMM 1x) with a
single splitting: ∇x = ω with similar AL as in (18). The
x-update is solved approximately by a quasi-Newton method
(VMLM-B) and ω-update in closed form by the proximal
operator (soft-thresholding); (iii) our proposed algorithm
(hereafter proposed) with or without restarting the quasi-
Newton method (VMLM-B) with the same variable splitting
and AL as in ADMM 1x. All these methods are implemented
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Fig. 1: Convergence speed comparison of the optimization
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Fig. 2: Influence of the penalty parameters on the con-
vergence speed: function cost at 1500 FFT evaluations vs.
penalty parameters, ρ for ADMM 3x (ν and γ at possible
best values), and γ for remaining two methods.

in MATLAB, except the core of the VMLM-B (LBFGS up-
date and line-search) is implemented in C language. In all
of methods the most expensive operation is the circular con-
volution, which is done using Fast Fourier Transform (FFT).
Other operations have linear cost and are moreover same in
all the methods, thus we neglect them in the convergence
speed comparison. The Figure 1 compares convergence
speed of the four methods against the number of FFTs con-
sumed, and clearly the proposed method without restarting
VMLM-B has speed comparable to the fastest ADMM 3x.
In ADMM 1x, and proposed methods, the number of maxi-
mum successful iterations in VMLM-B was fixed to 150 and
60 respectively.

Table 1 reports the relative distance between the cost func-
tion after 1500 FFTs evaluations and the optimal value (es-
timated by the value reached after 10000 FFTs by the best
performing algorithm). When the sub-minimizations are per-
formed using an iterative method (VMLM-B), the number of

Fig. 3: On left, the observed image (241x241,
BSNR=37.25dB); on top right corner, the blur kernel (15x15);
on right, the estimated image (255x255, ISNR=6.12dB) after
1000 FFT evaluations by the proposed method. λ is tunned
by hand to have possible best image quality.

iterations influence the convergence speed. We therefore re-
port different values corresponding to 30, 60 or 100 inner it-
erations. As observed in [27], doing several splittings and us-
ing well tuned penalty parameters is preferable than perform-
ing an approximate minimization of the more complex sub-
problem posed with a single splitting. Our proposed method
reaches a better solution after the considered number of itera-
tions if previous gradient steps are re-used after dual variable
update (last row of the table). Loosing this second-order in-
formation noticeably impacts the performance.

Figure 2 illustrates the influence of the penalty parameters
on the convergence speed of the four optimization methods,
and the proposed methods are immune to large range of vari-
ation in the penalty parameter. ADMM 3x can converge very
quickly for well tunned parameters, the convergence degrades
strongly for a bad tuning. Given the number of parameters to
be jointly tuned, this is a clear practical drawback. Reducing
the number of splitting by resorting to iterative minimization
of the sub-problems, as done with ADMM 1x, simplifies pa-
rameter tuning at the cost of a degraded convergence. Our
proposed method offers a remarkable robustness to changes
of the single penalty parameter while showing a convergence
speed comparable to ADMM 3x with optimal tuning.

4. CONCLUSION

We proposed a general approach to handle non-smooth large-
scale optimization problems, which follows the augmented
Lagrangian approach. We have shown that hierarchical op-
timization is preferable to performing an alternate minimiza-
tion, as usually done with ADMM. Quasi-Newton methods
can then be applied efficiently thanks to a simple expression
of the gradient, and the possibility to accumulate gradient dif-
ference knowledge independently of dual variable updates.
Our results on image deblurring problem are promising: com-
petitive convergence speed is reached with a method that is
much simpler to tune.
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able Metric Method in Subspaces and Bound Constrained Opti-
mization Problems,” Tech. Rep. ANL/MCS-P909-0901, Math.
and Computer Science Division, Argonne National Laboratory,
2001.

[4] William W. Hager and Hongchao Zhang, “A New Active Set
Algorithm for Box Constrained Optimization,” SIAM Journal
on Optimization, vol. 17, no. 2, pp. 526–557, 2006.

[5] Mark W Schmidt, Ewout van den Berg, Michael P. Friedlander,
and Kevin Murphy, “Optimizing costly functions with simple
constraints: A limited-memory projected quasi-newton algo-
rithm,” in International Conference on Artificial Intelligence
and Statistics, Clearwater Beach, Florida, April 2009.

[6] Dong C. Liu and Jorge Nocedal, “On the limited memory
BFGS method for large scale optimization,” Mathematical
Programming, vol. 45, pp. 503–528, 1989.
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