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Abstract

Ultrafast laser excitation can induce fast increases of the electronic subsystem temperature. The subsequent electronic evolutions

in terms of band structure and energy distribution can determine the change of several thermodynamic properties, including one

essential for energy deposition; the electronic heat capacity. Using density functional calculations performed at finite electronic

temperatures, the electronic heat capacities dependent on electronic temperatures are obtained for a series of metals, including free

electron like, transition and noble metals. The effect of exchange and correlation functionals and the presence of semicore electrons

on electronic heat capacities are first evaluated and found to be negligible in most cases. Then, we tested the validity of the free

electron approaches, varying the number of free electrons per atom. This shows that only simple metals can be correctly fitted with

these approaches. For transition metals, the presence of localized d electrons produces a strong deviation toward high energies of

the electronic heat capacities, implying that more energy is needed to thermally excite them, compared to free sp electrons. This is

attributed to collective excitation effects strengthened by a change of the electronic screening at high temperature.

Keywords: Ultrashort laser; Femtosecond laser-excited electrons; First-Principles calculations; Electronic Heat Capacities.

1. Introduction

Material response to intense laser excitation is the subject of important research activities, and recent advances

have revealed the determinant role of primary excitation events. Their accurate comprehension is necessary to cor-

rectly describe ultrafast structural dynamics [1, 2], phase transitions [3, 4], nanostruture formation [5], ablation dy-

namics [6, 7], or strong shock propagation [8]. The interplay between ultrafast excitation and resulting excited material

response still requires a comprehensive theoretical description for highly excited solid materials. Ultrashort laser irra-

diation produces a strong inhomogeneous heating of electrons that rapidly exchange energy through electron-electron

collisions, leading the electronic subsystem to a thermalized state which is intimately related to the electronic structure

of the material. This fast heating of the electronic subsystem leads in turn to a significant electron-phonon nonequilib-

rium, as the energy of the laser pulse is deposited before relaxation takes on and the material starts dissipating energy

by thermal or mechanical ways.

During intense laser exposition, the irradiated material undergoes successive stages of extreme constraints, start-

ing from the inhomogeneous excitation of electrons, the swift rise of electronic temperature and electronic pressure

after thermalization of the electronic subsystem on the tens of femtosecond timescale [9]. These rapid processes
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are followed by the rise of the ionic temperature associated to thermally-triggered phase transitions, before ablat-

ing or returning to ambient conditions from further energy dissipations occurring at larger timescale. The accurate

knowledge of these rapidly evolving conditions, in intensity and time, is of importance as they modify material

properties. Evolution of electronic and ionic temperatures, Te and Ti respectively, are generally calculated with the

two-temperature model [10, 11] which involved transient parameters such as electronic heat capacity, electron-phonon

coupling strength, thermal conductivity, electronic pressure and material absorptivity.

The basic underlying assumption in the two-temperature model is that the electron subsystem consists of a ther-

malized population of a certain amount of electrons, a condition easily fulfilled in ablation processes conditioned by

high electronic temperatures [7]. The energy evolution is determined by photon absorption, energy accumulation and

thermal/mechanical transport (involving electron-electron and electron-phonon interaction) based on nonequilibrium

dynamics. The effective number of charge carriers taking part in absorption, storage and dissipation of the energy

has to be carefully evaluated to give a correct description of the evolution of the corresponding transient properties.

A certain amount of free electrons responds collectively to the laser field through intraband transitions, associated

to one-electron excitation corresponding to interband transitions. Modelling this absorption stage is rather complex,

particularly for ultrashort laser irradiation as it initiates a strong charge disorder. The consequence of a nonthermal

electron-ion population on the electronic energy storage is also of major importance. Finally, thermal and mechan-

ical transports are often described by the concept of ”free carriers”, since mobility is required for these processes.

Electronic pressure has been seen to follow a free electron like behavior at high Te, even at solid density [12]. The

electronic heat capacity Ce plays an important role since it connects the quantity of absorbed energy to the rise of

the electronic temperature of the system, regardless to energy dissipation processes. Electronic heat capacities have

been derived from post-treatment of first-principles calculations where electronic excitation was not fully taken into

account [13, 14]. Further, these quantities have been refined from density functional calculations dependent on the

electronic temperature [12, 15].

In this paper, the electronic heat capacity of a series of transition metals is discussed in detail, first according to

various modelling conditions, considering the effect of the exchange and correlation energy functionals and then the

effect of semicore electrons. Ce are then discussed in the framework of a free electron approach in order to evaluate

the impact of d electrons of transition metals on this crucial thermodynamic quantity.

2. Calculation details

The modelling of Al, Ni, Cu, Au, Ti and W metals is performed with the code Abinit [16], which is based

on plane-waves description of the wavefunctions. Calculations are carried out within the density functional theory

[17, 18] extended to finite electronic temperatures [19]. Projector augmented-waves atomic data [20] are used to take

into account the effects of nuclei and core electrons. A cutoff energy of 40 Ha is applied to restrict the number of

plane-waves and the Brillouin zone is meshed with a 30×30×30 k-point grid using the Monkhorst-Pack method [21].

The local density approximation (LDA) [22] and the generalized gradient approximations (GGA) [23] are used with

or without semicore electrons depending on the metals, in order to evaluate effects of semicore electronic states on

computed properties. Computations are realized at the theoretical equilibrium lattice parameter of the crystal phase

obtained at Ti = 0 K. Thus, electronic temperatures from 10−2 to 105 K are applied through a Fermi-Dirac distribution

of electrons within a cold lattice. Such high Te are conjectural and interrogate about phase stabilities. As we need to

achieve a high temperature asymptotic behavior in this study, we will assume here that time and spatial conditions are

not fulfilled for phase transitions to occur.

The calculated electronic heat capacity is derived from the variation of the internal energy E with respect to the

electronic temperature as Ce = ∂E/∂Te. This thermodynamic quantity is computed for a series of metals at various Te

using LDA or GGA functionals with or without semicore electrons. Results are provided in Fig. 1 alongside the values

of Lin et al. obtained from electronic structures calculated at Te = 0 K [14]. At a first glance, the agreement between

their results and ours is rather good for the low temperature range, the deviations appear at Te above 4× 104 K, where

electronic structures start to react significantly to the heating of the electronic subsystem. In particular, transition

and noble metals having a d-block within their valence band are sensitive to Fermi smearing, impacting d electron

population, that induces a change of the electronic screening which in turn produces a significant energy shift of the

d-block [4, 12]. At high temperature, this produces a significant effect on the band structure, with consequences on

the electronic heat capacities. The effect of exchange and correlation functional appears to be weak on computed Ce.
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The LDA method generally provides lower equilibrium parameters than the GGA, leading to slightly higher electronic

electronic heat capacities per unit of volume.

The effect of semicore electronic states are also evaluated and Fig. 1(f) shows clearly that 4 f semicore electrons

of W have an impact at high Te. Despite the fact that the 14 f electrons lie on deep states, around 19 eV below

the valence band, they are significantly impacted by the increase of Te starting from 4 × 104 K. For Al, Ni and Cu,

the highest semicore electronic states correspond to 2p ones, they are located 50 eV below the valence band and are

weakly impacted, even at high Te. Nevertheless, a small effect of semicore electronic states is noticeable, with stronger

Ce values for Al and Ni and lower values for Cu, compared to calculations where semicore states are not considered.

With first semicore electronic states located at −27 eV for Ti, a significant effect of semicore electronic states is likely

effective at high Te. A deeper investigation of the evolution of the electronic semicore states when Te increases shows

that they are as sensitive as the d band to changes of the electronic screening. Depopulation or population of the d

band with Te, induces either a decrease or an increase of the electronic screening which is signalled by changes of the

Hartree energy, and which is effective on localized electrons of the system, from d electrons to semicore electrons.

As an example, at 105 K the energy of the electronic semicore states are shifted for −3 eV for 2p6 electrons of Ni,

−8 eV for 2p6 electrons of Cu, 2 eV for 2p6 and −4 eV for 4 f 14 electrons of W. Semicore states are not shifted for

Al, since this metal does not have a d block in its valence band. The shifts of these deep electronic states follow

the changes of the electronic screening as discussed in Ref. [12]. This indicates that the evolution of the electronic

screening, induced by changes of the electronic population of the d block, propagate to the localized charge density

corresponding to semicore electronic states.

Nonetheless, due to the low energy of electronic semicore states and their corresponding electronic densities more

localized around the nucleus, semicore electrons thermalize slower than valence electrons [24]. According to this

consideration, the following part of this study relies on PAW atomic data without semicore electrons, at least when

they are not needed for a good description of general properties. This implies that the GGA functional is used for Al,

Ni, Cu and the LDA for Au, neglecting the effects of semicore electrons. For Ti and W, the GGA functional is used

with semicore electrons but without the 4 f 14 electrons of W.

3. Electrons involved in Ce

In the framework of a free electron model, Ce has a linear behavior at low temperature that can be modelled

by a low temperature limit Cl
e = π

2N f nik
2
B
Te/2εF and saturates at high temperature to a non-degenerate limit Ch

e =

3/2N f nikB. Here, N f represents the number of free electrons per atom, ni the ionic density, kB the Boltzmann constant

and εF the Fermi level. In Fig. 2, Ce is plotted for all the studied metals, and free electron like limits are presented at

low and high temperatures. These limits are fitted to Ce with an effective number of electrons N
e f f
e , provided in the

figure, such as N f = N
e f f
e . At low temperature, the fit is performed up to an electronic temperature of 5×103 K, while

at higher temperature, the corresponding number of electrons is a rough estimation since the asymptotic limit is not

reached for most of the studied systems.

In order to facilitate the comparison between the number of effective electrons N
e f f
e required to fit Ce and classical

free electron numbers, their respective values are reported in Table 1. N f from Ref. [25] are not designed to evolve

with the increase of Te due to the rigid definition of this number, which is based on the most extended orbitals

of the electronic configuration of the isolated atoms. On the contrary, temperature dependent N f (Te) are obtained

from extended-orbital overlapping considerations based on temperature-dependent electronic structure calculations

[12], that allows electronic transfer between bands and Fermi-Dirac redistribution of electrons. Unsurprisingly, both

free electron numbers remain quite close at low temperature, with a significant increase of N f (Te) compared to N f

when the temperature increases. This originates in the redistribution of electrons from localized d electronic states to

delocalized electronic states of higher energies.

As expected, both low and high temperature approaches perfectly catch the limit behaviors of the free electron

metal Al, with an effective number of electrons equals to 3, in agreement with the numbers of free electrons expected

for this element. However, the number of effective electrons, needed to correctly fit the complex evolution of electron

heat capacities of transition metals, can be very high and somewhat unrealistic. At low electronic temperature, an

important gap is observed between N
e f f
e and expected N f for transition metals. For W, the number of effective

electrons equals the number of electrons in the valence band, while for Ti N
e f f
e is even higher than available electrons
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in the valence band. Reducing the temperature interval where the fit is applied does not modify significantly N
e f f
e ,

except in the case of Ni where this number reaches 19 electrons to catch the particularly strong slope of Ce at Te = 300

K [13]. In all cases, N
e f f
e remains remarkably high compared to the number of free electrons classically used.

Table 1. Typical free electron numbers N f from Ref. [25] and temperature-dependent free electrons numbers N f (Te) from Ref. [12], with estimated

number of effective electrons N
e f f
e required to fit Ce in the low and high temperature regimes.

Al Ni Cu Au Ti W

Te = 5 × 103 K

N f 3 2 1 1 2 2

N f (Te) 3.0 1.5 1.9 2.4 1.3 2.1

N
e f f
e 3 5 5 5 6 6

Te = 105 K

N f 3 2 1 1 2 2

N f (Te) 3.0 2.9 3.3 4.2 2.2 3.5

N
e f f
e 3 5 7 8 6 6

From the low temperature to the high temperature regime, N
e f f
e values evolve differently from a material to an

other, remaining constant for Ni, Ti and W, while increasing for Cu and Au. These values still strongly exceed typical

values of N f , even if the temperature dependence is considered, signalling a collective effect of d-electrons.

4. Discussion

The significant differences between N
e f f
e and the typical values of N f at low and high temperatures, demonstrate

the inability of asymptotic limits derived from free electron approaches to grasp the complex behavior of transition

metals, which relies on the presence of localized d electrons. Indeed, these localized electrons also contribute to the

change of the electronic heat capacity, through the change of free energy in the system as Te increases. The electronic

heat capacity informs about the amount of energy needed to rise the electronic temperature of a given system. The

fast deviation toward high values of Ce observed for transition metals, which is illustrated by values of N
e f f
e much

higher than the classical values of N f , implies that the energy required to heat the localized d electrons is higher than

the energy needed to heat free electrons. Moreover, non-linear evolution of N
e f f
e with the increase of Te also indicates

a complex impact of d electron contribution to Ce. Finally, previous studies showed that the change of d electron

numbers with Te modifies the electronic screening that in turn induces an energy shift of the d-block affecting all

localized d electrons [4, 12]. Consequently, the effect of d electrons on Ce has to be considered as a collective effect

of the overall localized d electrons. Thus, the number of electrons to be considered in the electronic heat capacity

limits at low and high temperature should be reevaluated, according to an activity coefficient applied to the different

types of electrons:

N
e f f
e = α f N f + αdNd + αscNsc (1)

where N f represents the number of free electrons as defined before, Nd = Nv − N f is the number of d electrons, with

Nv being the number of valence electrons, and Nsc is the number of semicore electrons. αi stands for the activity

coefficient for each category of electrons. α f is set to the value of 1 for all metals as it corresponds to the free

electron approaches. Since PAW atomic data used here exclude most of the semicore electrons and Nsc is set to 0.

Considering that N
e f f
e is equal to the values provided in Fig. 2 it is then possible to deduce the activity coefficients

of d electrons for all the transition metals at low and high temperatures from αd = (N
e f f
e − N f )/Nd. This is solved

within a temperature dependence of free electron numbers and d electrons numbers that are presented in Table 2. The

corresponding activity coefficients of d electrons are provided in Fig. 3.

As expected, αd for Al remains equal to 0 due to the absence of d electrons. For Ni, Cu and Au, the coefficient

values are in the range of 0.2-0.5, with an increase for Cu and Au and a decrease for Ni when Te increases. These
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Table 2. Temperature-dependent free electron numbers N f (Te) from Ref. [12] and corresponding number of localized d electrons Nd(Te) =

Nv − N f (Te) in the low and high temperature regime.

Te = 5 × 103 K Te = 105 K

N f (Te) Nd(Te) N f (Te) Nd(Te)

Al 3.0 0.0 3.0 0.0

Ni 1.5 8.5 2.9 7.1

Cu 1.9 9.1 3.3 7.7

Au 2.4 8.6 4.2 6.8

Ti 1.3 2.7 2.2 1.8

W 2.1 3.9 3.5 2.5

significant activity coefficients of d electrons - that applies on all localized d electrons - imply that the response of

these electrons is strong, even when the Fermi smearing weakly affects them at low temperature, as for Cu and Au.

On the contrary, αd reach high values for Ti and W, around 2 and 1 respectively and slowly evolve with Te. The

strong values obtained for Ti and W originate from the fact that the Fermi level lies within the d block, even when Te

increases. Excitation effects directly involves population or depopulation of localized d electronic states with strong

impact on Ce. With a Fermi energy located on the top of the d block at low electronic temperature, a similar effect

should also be observed for Ni, but this is actually hidden by the fit on large range of electronic temperatures. As we

will see later, this phenomenon becomes visible when the fit is performed at lower temperatures. For W, once αd is

obtained from calculations that neglect the effect of semicore electrons, it is then possible to use this value to derive

αsc from the Ce curve obtained by taking into account the 4 f 14 electrons (GGAsc curve in Fig. 1(f)). This leads to

a new fit in the high temperature limit, with N
e f f
e being equal to 9. Accordingly, αsc equals to 0 at low temperature

and reaches the value of 0.2 at high temperature, confirming the effect of these electrons on Ce, assuming they are

thermalized.

Since Ce is supposed to evolve linearly in the low temperature regime, it is often characterized by the electronic

heat capacity coefficient γ = Ce/Te. Values at 5 × 103 K are provided in Table 3, where a relative good agreement is

found between calculated values and the low temperature free electron limit γl based on N
e f f
e . However, for Ni the

linear evolution of Ce is not respected, and a strong change of the slope occurs at low temperature. At Te equals to 300

and 103 K, the corresponding γ values reach 1183.3 and 631.1 J K−2 m−3 respectively. In the low temperature limit,

this involves very high values of N
e f f
e , 19 and 10 respectively, leading to activity coefficients of d electrons of 2.1 and

1.0 respectively. This strong change of Ce slope at low temperature corresponds to a major difference in the behavior

of Ni compared to Cu and Au. This difference of behavior originates from the position of the Fermi level, at the top

of the d block for Ni while it is higher for Cu and Au, due to difference in their number of valence electrons. Thus,

at low temperature, depopulation of the d block is direct for Ni, while the d block is not impacted yet for Cu and Au.

When Te increases, the Fermi level shift toward energies higher than the d block for both elements, inducing a strong

changes of αd in case of Ni, that progressively tends toward the values of Cu and Au. As in the case of Ti and W, a

direct impact of the Fermi smearing on the d block has a strong effect on Ce which is signalled by important activity

coefficient of localized d electrons. To a lower degree, a similar deviation is observed for Ti around Te = 103 K, with

a γ coefficient reaching the value of 466.3 J K−2 m−3. This is fitted by a value of N
e f f
e equals to 8 and leads to an

even higher αd with the value of 2.5. For these elements, the non-linear evolution of Ce at low electronic temperatures

leads to strong modifications of subsequent derived quantities. Thus, beyond these general observations, the evolution

of these activity coefficients remains difficult to be evaluated accurately and values cannot be extrapolated to other

elements or temperature regime.

Table 3. Coefficient of electronic heat capacity (γ = Ce/Te, J K−2 m−3), at 5 × 103 K.

Al Ni Cu Au Ti W

γ 110.4 320.0 243.9 141.1 340.9 266.8

γl 96.2 309.3 262.5 172.8 328.7 342.2
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5. Conclusion

In this paper, the electronic heat capacities are obtained from first-principles calculations performed at finite elec-

tronic temperatures. The effect of exchange and correlation functional on this thermodynamic quantity is first dis-

cussed. At high electronic temperature a small difference is observed between LDA and GGA functionals that was

attributed to different equilibrium lattice parameters. The impact of semicore electrons, is also tested and demon-

strated at high temperature for 4 f 14 electrons of tungsten. This is dependent on the energy depth of the corresponding

semicore electronic states and is mostly negligible even at high temperatures, except for W. Assuming negligible ef-

fects or lower thermalization times for these electrons, effect of semicore electrons were neglected in the present study.

Electronic heat capacities are also compared to previous theoretical predictions obtained from electronic structures

not relaxed with the electronic temperature, with a very good agreement up to 4 × 104 K. Beyond this temperature,

the response of the electronic structure exhibits differences.

The obtained electronic heat capacities are then discussed in the framework of low and high temperature limits of

a free electron approach. Both are based on a free electron number, which is modified up to an effective number of

electrons in order to fit the theoretical values of Ce. This approach applies correctly to Al as a free electron metal, but

a significant overestimation of free electron numbers is found for the transition metals. Assuming a collective contri-

bution of localized electrons on the Ce evolution, d electrons where considered associated to an activity coefficient.

The high values obtained for this coefficient tend to corroborate the fact that d electrons respond collectively to the

electronic excitation. A strong effect is observed from the impact of Fermi smearing on d electrons, as showed for Ni

at low temperature and Ti and W in the whole range of temperature. For W, at very high temperature, an important

contribution of semicore electrons 4 f is also deduced from this approach, assuming that they are thermalized. At high

temperature, the change of the electronic screening is found to affect significantly the localized d electrons, with a

global shift of the d-block, strengthening the collective behavior of these electrons.

Additionally, the non-linear effect of d electrons, which is shown by an important dispersion of their activity

coefficient, illustrates their non-free behavior and their interactive nature. The large numbers of electrons needed to fit

Ce evolution in the low and high temperature regime is a signature of localized electron influence, mostly d electrons

but also semicore electrons at very high temperature. Consequently, an unique free electron number cannot encompass

the complex evolution of the electronic heat capacity and localized electrons, especially d ones, have to be considered.

This shows that the free electron number is only one of the components on the energy storage of an irradiated material,

and that localized electrons contribute as well, to various degrees depending on the electronic temperature.
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Figure 1. (Color online) Evolution of the electronic heat capacity with Te for Al (a), Ni (b), Cu (c), Au (d), Ti (e), W (f), using

different LDA and GGA exchange and correlation functionals. GGAsc and LDAsc indicate that the effect of semicore electrons

are taken into account. The dotted black curves represent data of Lin et al. [14].
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Figure 2. (Color online) Evolution of the electronic heat capacity with Te for Al (a), Ni (b), Cu (c), Au (d), Ti (e), W (f), and its

corresponding low and high temperature limits. The number of electrons used to fit the theoretical curve in both models is provided.
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Figure 3. (Color online) Histogram representation of activity coefficients of localized d electrons. For each material, the left

histogram corresponds to the low temperature case while the right one (patterned) represents the high temperature case.
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