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Abstract 

This paper reviews the current situation regarding design protection in the microelectronics industry. Over 

the past ten years, the designers of integrated circuits and intellectual properties have faced increasing threats 

including counterfeiting, reverse-engineering and theft. This is now a critical issue for the microelectronics 

industry, mainly for fabless designers and intellectual properties designers. Coupled with increasing pressure 

to decrease the cost and increase the performance of integrated circuits, the design of a secure, efficient, 

lightweight protection scheme for design data is a serious challenge for the hardware security community. 

However, several published works propose different ways to protect design data including functional locking, 

hardware obfuscation, and IC/IP identification. This paper presents a survey of academic research on the 

protection of design data. It concludes with the need to design an efficient protection scheme based on several 

properties. 

1. Introduction 

The economic model on which most microelectronics companies are based has changed over the last decade 

[1]. This is because the cost of a manufacturing facility has increased exponentially to reach billions of dollars. 

As a consequence, many designers cannot afford to produce their own circuits, and as a result, the production 

system has split into two different entities. The same entity is no longer responsible for both the design and 

manufacture of the circuit. The firms who are only responsible for the design part are called designers and are 

referred to as fabless since they cannot produce the circuit themselves. In parallel, there are companies that own 

the means of production, and are called foundries. 

Due to the distinction between the location of the design and production, fabless companies depend on 

foundries for the production facilities they need to build their circuits. Here we distinguish two design categories. 

On the one hand, companies who produce specifications for integrated circuit (IC) layouts that can be directly 



 

used in the photo-lithography process. They can also provide RTL schematics of the design. On the other hand, 

firms specialize in selling VHDL/Verilog codes, part of a netlist or layout, and FPGA bitstreams. These pieces of 

design are then used as building blocks, called intellectual properties (IP), to be embedded in a more complex 

system, or used on their own. 

As shown in Fig.1, in both cases, the design has to be transferred from the party who owns the rights to the 

manufacturer/integrator. In the case of ICs (top of Fig. 1), the fabless designer has to send the design layout to 

the foundry. In the case of IPs (bottom of Fig. 1), the IP designer has to send the VHDL/Verilog source, netlist 

or FPGA bitstream to the system integrator. 

 

Figure 1 - The asymmetrical transfer of design data. 

Clearly, there is a weight asymmetry between the two parties. Indeed, to get the system properly built, the 

rights owner has to give the entire design to the foundry or the system integrator, and thus is no longer the sole 

owner of the specifications. As a result, the original terms of use may not be respected, and the design may be 

misused by the foundry or the system integrator. In this way, the number of counterfeit electronic circuits 

collected by U.S. Customs between 2001 and 2011 increased 700-fold [2]. U.S. Customs collected 5.6 million 

counterfeit electronic products between 2007 and 2010 [3]. Overall, counterfeiting is estimated at about 7% of 

the semiconductor market [4] representing a loss of about $22 billion for the lawful industry in 2014. 

This paper presents a survey of hardware protection schemes of the design data for ICs and IPs. We focus 

mainly on hardware protection, hardware identification techniques and specific protection schemes for IP 

licensing. The paper is organized as follows: In section 2, we discuss the threats to semiconductor devices we 

identified, from which we built a threat model. In section 3, we review published protection schemes. In sections 

4 to 6, we provide detailed information on the different categories of protection schemes: hardware protection, 

hardware identification and specific protection schemes for IPs. In section 7, we compare the protection schemes 

using different metrics, and then outline the characteristics of a good solution. Finally, in section 8, we point out 

the gaps in existing schemes, and other possible ways to envisage protection. 
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2. Threat model 

2.1 Parties involved 

Before presenting the schemes used for the protection of design data by IC and IP designers, it is important to 

identify all the parties who could be involved in the process of exchanging designs. These parties are often 

mentioned in the literature, so it is important to understand what they represent. We list ten parties: 

The Design owner is the person who owns the rights to the design. They can also be called the rights owner. 

The designated design can be described in different ways, from layout to HDL code. The design owner is the 

person who sells the design to the system integrator, and allows the system integrator to use it under specified 

conditions.  

The IP provider is the person who sells IPs as building blocks intended to be used later by the system 

integrator.  

The Manufacturer is also called the founder. He/she is the builder of the chip and the integrated circuit. To 

manufacture the device, the manufacturer requires the complete design specifications, as explained in Fig. 1. 

The System integrator is the person who designs the final product and sells it to the customer. Their role is 

to link the design owner, the manufacturer and the market.  

The Tester is the person whose responsibility is to check the circuit was correctly built. He/she guarantees 

the circuit complies with the original specifications. 

A Competitor, in an economic context, is an adversary of the design owner. Their aim is to acquire market 

shares. Some competitors may use illegal methods to recover the design data from the design owner in order to 

produce a similar integrated circuit or IP without paying for the original design. In addition, using such illegal 

methods, the time-to-market could be shorter than for the design owner. 

The User or customer is the one who originally provided the specifications. He/she is the person who will 

use the device once it is built. 

A Broker, also called stockist, buys a large quantity of integrated circuits and sells them in smaller quantities 

to system integrators and/or direct users. The broker is a critical entity in the microelectronics supply chain; most 

of the counterfeiting cases in the last decade involved a broker [2, 4]. 

A Trustworthy party is a party who has no commercial interest in the transaction, but is only present to 

ensure the design and product exchanges are conducted correctly. The Trustworthy party is supposed to prevent 

theft or leaks during the transaction. He/she thus ensures each party that the other party is trustworthy, and to a 

certain extent, thus plays the role of a middleman. 



 

A Waste collector is in charge of recycling electronic items, but in practice only around 17% of electronic 

waste is officially recycled [5]. This has led to the emergence of unofficial treatment facilities in Asia and Africa 

[6]. As a consequence, waste collectors play a significant role in counterfeiting schemes. 

2.2 The main threats to design data 

A threat model allows designers to identify possible threats to their design and to estimate the effort required 

to place the design under secure protection. The entry points for the attacker are the different descriptions 

produced for each design. From silicon to the entire ASIC, or from the logic gates to the IP, a system can be 

described in many different ways. All these ways can thus also be considered as potential entry points for an 

attacker to find out exactly what a design involves. We now detail the four main types of threats: reverse 

engineering, counterfeiting, theft (hardware theft and cloning) and hardware Trojans. 

Reverse engineering is a major concern for both IP rights owners and IC designers. Reverse engineering is 

very commonly used to investigate how a device works [7]. Some companies are specialized in providing this 

kind of service. Reverse engineering basically consists in subjecting the device to all kinds of tests. This makes it 

possible to extract the components from the device’s responses to the tests. We use the term ‘test’ as a general 

descriptor for all the methods that can be used in the investigation process. Reverse engineering can be either 

invasive, i.e. the device can no longer be used after it has been tested, or non-invasive in which case the device's 

integrity is maintained after the tests. Invasive reverse engineering can lead to two types of results. The attacker 

can recover the RTL schematic of the IC, or find weaknesses in the design in order to attack it. The first goal can 

be achieved using pattern recognition. The circuit is first taken apart, and then micro-photographed. The pictures 

are then processed by the pattern recognition algorithm. The final result is the RTL schematic of the IC. Before 

reaching this stage, many different processes can be used. For example, it is possible to extract the via from a 

silicon implementation [8]. This technique is also widely used to analyse weaknesses in the cipher design of an 

RFID tag. It allows the reverse-engineers to find weak random numbers in the device [9], and break the secret 

key. Non-invasive methods of reverse engineering are also described. Their main objective is to discover the 

behaviour of a design (i.e. the finite state machine diagram or the logical truth tables). The first naive method is 

to examine outputs after applying different word combinations to the inputs of the circuit [10]. This requires 

prior investigation of the type of device. It includes distinguishing between a Moore or Mealy finite state 

machine, and identifying an initial state. After that, states are simply determined by deducing correlations 

between input and output words. A generic investigation environment has also been described, which provides 

standard means to describe all kinds of combinational or sequential finite state machines [11]. 



 

Counterfeiting is a major problem for the microelectronics industry. Basically three types of counterfeiting 

exist [12]. The first is relabeling. Here the aim is to make the device look like it actually comes from another 

supplier (Fig.2-b), or is of a higher grade (Fig.2-c). This is simply done by erasing serial numbers or identifiers, 

which are then replaced by others. Such a method can be used, for instance, to pretend a chip fulfils military 

specifications when in fact it does not, or to advertise a very high computing frequency when the real one is 

lower [13, 14]. Counterfeiting can also take the form of refurbishing (Fig.2-d). Refurbishment is the act of 

reintroducing discarded products in the supply chain. It can also consist in reselling old parts as new ones. 

Refurbished parts are aesthetically improved to make them look new, and sold. The third type of counterfeiting 

we identified is repackaging (Fig.2-e). Repackaging consists in taking the original IC out of its package, and 

putting it into a different one. The aim may be to modify the number of pins, or to use smaller packaging. 

Obviously, the process of repackaging can alter the circuit. Because repackaging is usually undertaken in poor 

handling conditions, the final circuit may be altered and not work properly. For example, the top passivation 

layer could be scratched, or pins could be broken [15]. All these practices obviously deceive the end user as they 

have purchased products which are different from what they expected. Several detection techniques are possible, 

which we describe in Section 3. 

 

Figure 2 - Possible types of counterfeiting (b, c, d and e) from an original 

device (chip-package-label) (a) 

 

Theft (hardware theft and cloning) has three types of consequences. First, the attacker can use 

overbuilding. That means the foundry or system integrator in charge of manufacturing the devices produces 

more of them than originally specified by the designer [16]. It can also result in cloning when the attacker makes 

an illegal copy of the design data. This happens when a copy of the design is obtained by an 

untrustworthy/unauthorised person. Finally, hardware parts may also be stolen, such as masks or ICs, which can 

then be used to build more devices than expected. Finally, the main consequence of theft is that extra circuits are 

built, unbeknownst to the rights owner. The attacker can then sell the design data or hardware to other parties, 
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and claim to be the owner. 

A Hardware Trojan is a small piece of hardware, barely detectable, able to impair part of a device or allow 

information leakage without affecting system performance [17, 18]. Although hardware Trojans are a hot topic 

in the field of hardware security and applied cryptography, in this paper we only focus on the three first threats 

which are counterfeiting, reverse-engineering and theft. Indeed, hardware Trojans can be used to attack the 

design data, but are usually used to attack security critical data (i.e. the cipher secret key) or system security. For 

example, a hardware Trojan can steal a secret cypher key and send it outside the circuit, or trigger a denial of 

service [19]. But in this paper, we only consider threats which are mainly focused on design data.  

Several of the parties listed in the previous sub-section are involved in the lifecycle of integrated circuits and 

IPs, from their manufacture to when they are discarded. Each could represent a threat to the security of the 

designer’s intellectual properties. The rows in Table 1 represent the parties involved, while the columns 

represent the threats. A star at the intersection of a row and a column indicate that the threat represented by the 

column could come from the party represented by the row. The position of the stars in Table 1 is not the same 

throughout, but the manufacturer, system integrator, and broker appear to be the most threatening parties, and, in 

point of fact, these three parties do have easy access to design data and hardware (for the purpose of theft). As a 

consequence, protection schemes should be focused mainly on protecting the manufacturing process, the stock of 

ICs, and IP integration. In the following section (section 3), we present possible ways to protect design data from 

the abovementioned threats. 

  Table 1 – Threats to design data and the parties most likely responsible 

 Reverse engineering Counterfeiting Hardware theft 
Cloning 

Hardware 

Trojan 

Insertion  Invasive Non-invasive Repackaging Relabeling Refurbishing Overbuilding Circuit theft 

Designer           

IP Provider          

System integrator          

Manufacturer          

Tester          

Competitor          

User          

Broker          

Waste collector          

3. Protection schemes 

3.1 Protecting design data  

Many methods for the protection, detection and limitation of threats to design data have been already 

published. Before discussing the impact of each protection scheme on the threats described above, we first 

summarize the main ways of protecting design data based on hardware. 

Hardware locking/unlocking is used to protect ICs and IPs from theft or cloning. This method consists in 



 

making the circuit (or IP) unusable immediately after it has been built or sold. The unlocking step can be done 

before or after distribution/integration by the original designer, by the IP provider, or by a trustworthy party. 

Hardware locking/unlocking schemes can be integrated in the design control unit (FSM locking), memory unit, 

or even input-output blocks.  The locking mechanism should be sufficiently secure to provide strong protection 

in case of hardware theft and cloning. Sometimes, locking schemes are called hardware encryption (when an 

unlocking key is required) or obfuscation. Obfuscation comes from the field of computer science in which 

developers wish to protect program codes against unauthorized reading. The following definition of code 

obfuscation is proposed by Hachez [20]: Transform a program P into another program P’ harder to reverse 

engineer with the same observable behaviour. If P fails to terminate or terminates with an error, then P’ fails to 

terminate or terminates with an error. Otherwise, P’ must terminate and produce the same output as P. 

Hardware obfuscation consists in applying this definition in the hardware field, by changing the logic, FSM, or 

other part of a design. 

Hardware camouflaging is used to protect design data against reverse engineering. Camouflaging is mainly 

used for military purposes. We propose the following definition for camouflaging: set of means to physically 

hide details of a system from an optical inspection (which could use image processing techniques) without any 

modification of the system behaviour. So, hardware camouflaging mainly consists in protecting the circuit layout 

against image processing based extraction of a gate-level netlist from an IC (reverse engineering). 

Reconfigurable hardware is a flexible piece of hardware whose behaviour (functionality) can be changed 

(once only or in runtime) without modifying the hardware. FPGAs are a common example of reconfigurable 

hardware. Using reconfigurable hardware could protect the design data against non-invasive reverse engineering 

but the reconfiguration data (usually called bitstream) also needs to be protected. To do so, it is possible to use 

cryptographic services such as confidentiality and authentication.  

Hardware identification can be implemented in different ways. The first is to embed a unique identifier 

(ID) inside the device, and to read it afterwards. It can be stored in non-volatile memory as a secret key (used for 

cipher/decipher), or be the output of a physical unclonable function (PUF). It can also be the result of an 

intended modification of the design, like in a watermarking scheme. Another way is to measure the physical 

properties of the device. This is called fingerprinting. Raw physical properties can simply be read or can be 

processed, for example using side channel (such as power consumption, electromagnetic emanation, thermal 

dissipation) analysis. 

IP licensing (permanent or temporary) is specific protection because the IPs are delivered to the end user 



 

in the form of a HDL code or a netlist (as shown in Fig.1). This type of protection scheme is inspired by software 

protection. For example, in microelectronics, it may be interesting for the designer to be able to offer IPs in 

demo mode. The performances of the IP would be lower, but the customer would be able to test it before 

purchasing. Moreover, the point here is also to sell IPs using a different business model. Instead of paying for a 

permanent license to use an IP and to be allowed to implement it in an unlimited number of devices, it may be 

attractive to only pay for the number of times the IP will be implemented. 

3.2 Protections vs. threats 

Table 2 lists the main hardware protections and their impacts on the threats described in Section 2 above 

(except for hardware Trojan). For each solution, Table 2 classifies the impact on each threat as protection, 

limitation or detection. Protection is the term used when the solution stops the threat; in this case the attacker has 

to perform an attack on the protection system in order to achieve a successful attack on the design data. 

Limitation is used when the solution reduces the threat, in this case the attacker has to invest more effort in 

making the design data attack succeed. Detection is used when the solution does not protect the design against 

attack but informs the user that an attack on design data has been successfully carried out. In some cases, it is 

also possible to trace the attack, and transmit it to the original designer. 

Table 2 – Different protection schemes for different threats 

 Reverse engineering Counterfeiting Theft 

Cloning 
 Invasive Non-invasive Repackaging Relabeling Refurbishing Overbuilding 

Hardware 

theft 

FSM locking / obfuscation      Protection Protection Protection 

Memory locking      Protection Protection Protection 

IOB locking      Protection Protection Protection 

Logic encryption / obfuscation  Limitation    Protection Protection Protection 

IC camouflaging Protection Protection       

Reconfigurable area  Protection    Protection Protection Protection 

FPGA bitstream encryption  Protection    Protection Protection Protection 

ID in non-volatile memory   Detection Detection Detection   Detection 

PUF   Detection Detection Detection Detection Detection Detection 

Watermarking   Detection Detection Detection Detection Detection Detection 

Fingerprinting   Detection Detection Detection Detection Detection Detection 

IP licensing        Protection 

Time-limited IP        Protection 

 

In the following sections (4, 5 and 6), we give examples of protection schemes by explaining typical 

solutions, and provide the reader with references for further reading. We have used the following classification; 

hardware locking/unlocking (hardware encryption and obfuscation), hardware camouflaging, reconfigurable 

hardware and encryption bitstream of FPGA have been merged in the hardware protection section (Section 4) 

according to their impact on threats of reverse engineering, theft, and cloning. Identification techniques are 

presented in Section 5, and more details are given on IP dedicated schemes in Section 6. 



 

4. Hardware protection  

IPs and integrated circuits are becoming increasingly complex, and complete complex systems are now 

included on a single chip. System-on-chip offers the designer many ways to protect the design against the above-

mentioned threats. To illustrate these possibilities, Fig. 3 presents a SoC architecture which contains processor 

cores (an ARM core and DSP), many hardware accelerators (for example an image co-processor, coder/decoder, 

cryptographic engine), a shared memory, a reconfigurable area with dedicated memories and IOB banks, shared 

communication based on buses, cross bar or network-on-chip, many controllers (interruption controller, memory 

controller, DMA, etc.) and peripherals such as CAD/DAC, UART, GPIO, etc. Other SoC architectures could 

have been shown and are available in the literature, but the one presented in Fig. 3 allowed us to include most of 

the published hardware protection schemes. The eight small circles in Fig. 3 identify the location of eight 

possible actions to protect design data based on hardware: (1) locking the control unit by modifying the FSM [21 

- 23], (2) locking processing by logic encryption/obfuscation [16, 24, 25], (3) locking memory by address 

encryption, (4) locking processing using the reconfigurable area [26], (5) locking communication using 

encrypted barriers [27-28], (6) locking peripherals by changing parameters, and (7) locking input-output-blocks 

using an antifuse [30]. In addition, camouflaging techniques could be used at the layout level of the SoC (8) [31-

33]. 

 

Figure 3 – A typical SoC architecture with eight possible locations for hardware protection. 

4.1 Hardware locking/unlocking (hardware encryption and obfuscation) 

To protect the digital synchronous circuit, the FSM can be modified, as shown in Fig. 4. The aim is to add 

extra blocking states to an FSM to prevent it from functioning if it remains in these states. The states concerned 

are usually start-up states. 
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Figure 4 – Modification of a finite state machine  

 

This was the first protection scheme based on a modification of the FSM, and was proposed in 2007 [21]. 

After a certain sequence is applied on the inputs, the FSM reaches its normal functional mode. The specific 

sequence applied to the inputs to unlock the circuit is called a key. The key is sometimes coupled with a random 

unique block [22] to strengthen the unlocking mechanism. This block has a single function, which is specific to 

each individual IC. It is composed of a bit selector circuit, which takes advantage of path delays, non-linearity, 

and the unique physical properties of each circuit. 

Another way to use FSM properties as a protection is to exploit FSM synchronicity. This approach was 

recently described in [23] and has the advantage of not adding any extra states to the FSM. This property ensures 

that in any given state, after applying a predetermined sequence of inputs, the system will switch to a unique 

known state. In this way, it ensures the right key owner will be able to unlock the system, even if it is in an 

unknown state. 

Different locking/unlocking schemes at the logical level have been proposed [25]. In [16] and [24], Roy et al. 

simply proposed adding XOR gates on non-critical paths. The key will then be applied to the inputs of these 

XOR gates, and will invert the signal (or not). Another way proposed in [29] is to block the buses instead, as 

they are particularly critical components of a numeric system. The lock is designed to use Benes networks, 

because they are cheap and relatively easy to use, and hard to recover. The key is transmitted using a Diffie-

Hellman cyphering scheme. Key based locking schemes can be improved, the point being to add more security. 

The first way to do this is to replace the chosen secret identifier by a physical one. This is achieved by using a 

random unique block [22] or a physical unclonable function (PUF) [34]. Indeed, most locking/unlocking 

schemes require strong cryptographic services and secure storage of a secret key as illustrated in Fig. 5. One 
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example of such a secure locking scheme is described in [35]. The unlocking system presented in [35] is based 

on a unique chip identifier and a corresponding key, which is sent by the IP rights owner. The chip identifier 

consists in two identities, one which is secret and stored in non-volatile write-once registers, and a public 

identity, which could be a label on the package, for instance. The system integrator sends the public identity to 

the IP rights owner in order to obtain the secret key. He/she can then unlock the circuit by entering the key he 

received in it, which will be compared internally with the one stored in the permanent memory. If they match, 

the device will be unlocked. This basic scheme, named symmetric cryptography, is used in most key-based 

protection schemes. 

 

Figure 5 - Example of integrated circuit unlocking using a crypto-function and 

a secure storage of IC's ID 

 

However, it is also possible to use public cryptography. In [36], each IC owns a unique signature, which is 

embedded in the memory. To unlock the IC, the user has to ask the designer for the proper key. The user does 

not see the key, as it is first encrypted by the public key, but sends it to the rights owner, who can send back the 

key to unlock the circuit, after deciphering it using his/her own private key. In this way, the user cannot unlock 

the IC unless he/she sends the right word to the designer. The designer can thus choose to unlock the ICs (or 

not), and can maintain a database to know how many circuits have been activated. He/she can also ensure that a 

circuit will not be activated twice. 

As the reader can see, a wide range of key-based protection schemes is available. They can be adapted to 

most FPGA devices and ASIC, from low-cost to high-end systems.  

4.2 Hardware camouflaging 

Hardware camouflaging is a layout-level technique which consists in designing an ASIC with a non-standard 

gate library and dummy contacts [31]. The usual reverse engineering techniques, such as image recognition to 
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identify cell functions, are not efficient because it is impossible to distinguish the functionality at the transistor 

level using optical means. Such a camouflaging technique is proposed by a company called SypherMedia [32], 

who also propose EDA tools to help the designer. Another technique is to use split manufacturing when only one 

part of the IC manufacturing is outsourced, and a trustworthy manufacture (local manufacture) is used for the 

final manufacture of the IC (for example: wire connections, testing and packaging). Such a technique could be 

efficiently used in 3-D chips [33]. But the designer needs to have a foundry or to trust a local manufacturer to 

perform such a scheme. Perhaps split manufacturing could be a new way to manufacture ICs in the near future. 

4.3 Reconfigurable area 

Another way to protect an IC and to make design leaks useless is to add a reconfigurable area to the circuit, 

as shown in Fig. 6. The point here is to make a critical area, such as the instruction decoder unit of a processor 

[26] or a bus [27], reconfigurable. In the case of design theft, the attacker will not be able to use the circuit unless 

he/she has the bitstream required to make the reconfigurable area functional. This bitstream can be kept secret 

from the manufacturer, so that only the design rights owner and the system integrator share it. This protects it 

from theft, as the manufacturer cannot sell the design under his/her own name. An algorithm was proposed in 

[28] to find the best area to be made reconfigurable. The point is to choose the smallest possible area because 

integrating reconfigurable logic in a circuit is expensive in terms of silicon area overhead. But, at the same time, 

the impact of this area on the global design must be as high as possible. This is why data buses are good 

candidates, as they can easily lock the entire circuit [27]. 

 

Figure 6 - Used of an embedded reconfigurable area to lock the device. 
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this case, a dynamic and partial reconfiguration of the FPGA is used. However, the system proposed in [39] 
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requires a complex control unit and configuring it also takes longer. Since this first work many propositions 

target static and partial secure reconfiguration [40-46]. Now, FPGA vendors propose bitstream encryption 

schemes for SRAM and FLASH technologies. Such schemes are suitable for many industrial applications. 

However, the security provided by current FPGA devices is not sufficient for many security applications. Recent 

works highlight security flaws in commercial products for Xilinx Virtex II [47], Virtex 4 and Virtex-5 [48], 

Altera Stratix II [49] and Actel/Microsemi ProASIC3 [50]. 

5. Hardware identification 

Several methods of hardware identification are described in [12] and [13], including incoming inspection, 

which refers to shipping conditions. One can also use an external visual inspection to find labels, or use X-ray to 

identify the contents of a package [14]. Destructive methods can also be used like package stress exposure, die 

inspection, packaging evaluation, or characterization of the material, which are focused on clearly identifying the 

materials used to build the chip. It may be sufficient to determine if a product is counterfeit, but it is more 

interesting to have direct schemes to check whether or not the IC is a fake. Such schemes are called 

watermarking and fingerprinting. Fingerprinting is the measurement of a physical or behavioural characteristic 

of an IC (or an IP). This characteristic ensures one IC can identify another. Watermarking is a technique of 

steganography which proves the ownership of an IC (or an IP) by checking for the presence of hidden 

information called the watermark. The following two sub-sections give some examples of watermarking and 

fingerprinting schemes. 

5.1 Watermarking 

Watermarking can be used in two ways in the IC lifetime. First, the system integrator or the end user may 

want to check if all the items in a set of ICs he/she purchased are authentic. To do so, they check the watermark 

which is applied on all ICs, and authenticates each of them as illustrated at the top of Fig. 7. On the other hand, a 

designer can use watermarking to check that his IP has not been copied and fraudulently integrated in another 

system. To do so, he/she can compare the watermark he/she owns and the one which is on the IC, as illustrated at 

the bottom of Fig. 7. If they are identical, he/she can prove that the IC manufacturer has used his IP illegally. 

 



 

Figure 7 – Two scenarios for the use of watermarking, (top) detection of IC counterfeiting and (bottom) 

detection of IC or IP cloning. 

Published watermarking schemes act on three different levels of abstraction from the application 

specifications to the circuit layout [51] and [52]. Firstly, pre-synthesis IP watermarking leads to algorithmic 

modifications of the application to hide the signature [53-56]. In [53] and [54], the authors target algorithm-level 

IP watermarking in the design flow. Both approaches [53] and [54] are based on slight changes to the digital 

filter parameters and do not affect system behaviour. [55] and [56] are based on adding new input/output 

sequences to the IP FSM. However, all the pre-synthesis IP watermarking schemes are too algorithm dependent; 

although these schemes may be suitable for some digital signal processing (DSP) applications, they are not 

practical for rapid marketing. Secondly, in-synthesis IP watermarking benefits from an automatic synthesis 

(behavioural or logic synthesis) tool to add a digital signature to the IP without significant overhead [57-59]. In 

[57], Kirovski presents IP watermarking based on combinational logic synthesis solutions. IP watermarking 

focused on behavioural synthesis techniques is described in [58] and [59]. It is also possible to modify the netlist 

before "place and route" to add a watermark to LUTs which are not entirely occupied [60]. By comparing the 

LUT content extracted from the bitstream and the original watermark, the designer can check the authenticity of 

the IP. However, this solution is not suitable if bitstream encryption is already used. Thirdly, post-processing IP 

watermarking uses the designers’ knowledge of the circuit to manually change the IP hardware architecture and 

to add a digital signature [61, 62]. 

To conclude, pre-synthesis IP watermarking techniques are application dependent, and overhead costs are 

hard to measure. Post-synthesis IP watermarking techniques are time consuming, handmade, and design/device 

dependent. In-synthesis IP watermarking techniques introduce a power/area/timing overhead. Generalizing 

watermarking usage for IP identification is important. However, it requires sufficient generic IP watermarking 

techniques with very low area and timing overheads. Such techniques need to be implemented in automatic 

design flows for rapid component tagging in a designer friendly process. 
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Obviously, for the solutions listed above, extraction of the IP watermark cannot be described in detail here. 

Watermark extraction and checking can be difficult, especially when the IP is embedded in a larger system on 

chip (SoC). Other works propose dedicated schemes for checking watermarking: [63], [64] and [65] propose 

using side-channels (power consumption) to return the watermark data, which allows the designer to identify its 

design. Other examples are given in [66] and [67], in which heat is used as a contactless communication vector.  

5.2 Fingerprinting 

One of the common methods of IC fingerprinting is measuring specific path delays [68, 69]. With a 

theoretical delay for a specific path, and another after five years of use, it is possible to sort other circuits with 

more than 90% precision. This makes it possible to distinguish between new and old circuits, and refurbishing 

can be detected. Based on this principle, sorting functions have been proposed which could separate new and 

used circuits using a measurement vector [70]. The sorting function is built after a statistical study of trusted ICs 

provided by trustworthy manufacturers. Since it involves more parameters, it is more efficient in detecting old 

circuits. These methods can be applied on existing circuits, and do not require adding extra functions on the 

circuit. 

The fingerprinting task can be much harder when it comes to IPs. Indeed, IPs are assumed to be implemented 

on different platforms or with different area constraints and timing requirements. Therefore, the sorting function 

used to distinguish between a tampered IP and a different form of the original IP will have some ‘fuzzy edges’. 

For this task, soft physical hash functions are particularly useful. They can also be found in the literature using 

the following search terms: robust hash functions or perceptual hash functions. A hash function is defined as soft 

if it has the following property: soft hash functions are such that similar objects should return highly correlated 

digests while different objects should produce uncorrelated ones [71]. This property will allow the function to be 

immune to minor variations such as different place-and-route constraints, but larger modifications like security 

block tampering should be clearly highlighted. Both [72] and [73] suggest using power consumption as an input 

vector for the soft hash function. 

Another fingerprinting technique involves physical unclonable functions (PUFs). This takes advantage of 

unpredictable physical variations in the silicon, which are caused by the fabrication process and can identify each 

IC in a unique way. Many silicon PUF structures have already been proposed, although only a few basic 

principles are known: one can use the race of delays between two symmetrical delay lines (arbiter PUF [61]), 

frequency mismatch in multiple ring oscillators (RO-PUF [74, 75]), metastability of a couple of cross-coupled 

elements (SRAM-PUF [76], TERO-PUF [77] and butterfly PUF [78]), and a mixture of a chain of configurable 



 

delay lines and a ring oscillator (Loop-PUF [79]). 

Finally, IC fingerprinting can be used to estimate the number of ICs built [80]. Based on animal counting 

methods, this method makes it possible to determine approximately how many chips were built, by measuring IC 

physical characteristics such as transistor threshold or power consumption. By randomly picking ICs and 

knowing the dispersion of the physical characteristics, it estimates with a precision of about 10% the number of 

chips which were produced. This is one way to fight overbuilding. 

6. IP specific schemes 

The IP market may need a different economic model than the IC market. This is due to the hybrid aspect of 

IPs between software and hardware. It is therefore necessary to develop a specific marketing scheme, which 

would allow designers to sell IPs under better suited conditions. In practice, IPs are not sold in the same way as 

circuits. Indeed, their target customers are system integrators, who may want to use only a small number of 

copies of the IP for their application. It is thus important to propose an alternative to the current system of 

marketing IPs. Basically, most people working in this field agree that a cryptographic approach is a good choice 

to build an IP protection scheme. This would make it possible to switch from a “pay once” to a “pay per use” 

licensing scheme [81], and would make it possible for small system integrators to purchase sophisticated IP 

cores, avoiding high one-off engineering charges. Cryptography can help by allowing the IP rights owner to 

unlock only a specified number of devices, and giving him/her control over the quantity of IPs he/she wants to 

sell. Examples of IP licensing schemes and IP temporary licensing schemes are presented in the following sub-

sections. 

6.1 IP licensing 

The first IP licensing scheme was based on mutual identification between the IP rights owner and the 

manufacturer [82]. The IP rights owner has a smart card for each device, which is then used to individually 

authenticate it. The smart card is used in combination with a chip identifier to encrypt the design. The design is 

then deciphered inside the FPGA. It has also been proposed to include a trusted third party in the design 

exchange procedure. The third party would make the exchange more secure. The third party could be a 

middleman between other parties [34], or could contribute actively by ciphering and deciphering the design for 

secure exchanges between the parties [83]. Other more complex design encryption based schemes exist which 

take advantage of both symmetric and asymmetric cryptographic protocols [84]. 

An offline protocol was also defined to enable offline activation of IPs [85], with a trusted third party to 



 

secure the exchange of information. An authentication module is embedded in each manufactured FPGA. Then 

the signature of each device is sent to the IP rights owner who can send back the encrypted IP. The IP will be 

deciphered inside the FPGA. In that way, the system integrator can use IPs which are proven to be original, and 

the IP rights owner only allows a specified number of FPGAs to be configured with his/her design. 

When system integrators use IPs, they sometimes need to integrate multiple IPs in the same final design. In 

this case, when using cryptography to secure exchanges, it is important to consider the different cores of the 

design along with their associated unlocking mechanisms. In this context, a generic environment was proposed 

in [86], which would allow multiple cores to coexist in the same device, and solve activation problems. In 

particular, the authors provided details on the security requirements for the activation keys of the IP cores. One 

of the most important is that one key should not help recover the keys of other cores. Following these 

suggestions, efficient and appropriate IP protection schemes based on cryptography could be designed, and 

easily integrated. 

6.1 Temporary unlocking 

Other protection schemes take advantage of the characteristics of IPs, and only unlock the device 

temporarily. Here, temporary unlocking means that the device will only be unlocked for a limited period of time. 

The first time-limited unlocking scheme was developed in 2006 [87]. It is based on key exchange like in the case 

of permanent unlocking. In addition, a timer is embedded in the system. The condition for unlocking the device 

is that the system integrator owns the right key, but time must still remain in the timer. The time which is 

actually deducted can be computed from the use of the device. After this time has expired, the device is locked 

again. 

Another interesting feature which can be achieved with temporary unlocking is distributing devices in demo 

mode [88]. Demo mode is usually characterized by lower performance. When the correct key is applied to the 

circuit, the full-functionality mode is activated. The unlocking mechanism takes advantage of unused 

instructions in the instruction set. These instructions are used to activate of the device. 

An alternative is considering the circuit as initially unlocked, but with the possibility to lock it later. In this 

approach, some schemes are inspired by the techniques used by hardware Trojans. As described in [89], Trojans 

are activated after the circuit has gone through a set of "rare" nodes a certain number of times, at which point the 

circuit is considered to have been properly tested and quits the evaluation mode. At this point, the locking 

scheme is activated and causes the device to function incorrectly. The user can then request the unlocking key 

from the IP designer to disable the protection mechanism. This example shows us that investigating malicious 



 

hardware design and behavior is also an opportunity to improve salutary hardware [90]. 

7. Summary 

In this section, we compare the published protection schemes we referenced in Table 3 and Table 4 based on 

area and power overheads. Indeed, these are good indicators of the feasibility of a protection scheme. In Table 3 

and Table 4, area overhead is sometimes given as a number of slices. Slices refer to the basic building blocks 

used in Xilinx FPGAs, usually four to six look-up tables and D flip-flops. When no other information than “low” 

was given in the article, we put “low”, but the reader should be aware of the subjectivity of such an indication. 

“N/C”.  means no information was given on any particular point. We also give the name of the platform used to 

perform the protection. Finally, “-” in the column means the criterion was not relevant for the method of 

protection concerned. 

Table 3 - Referenced works on hardware locking and IP licensing 

Ref. Year Category Principle Area overhead Power overhead Test platform 

[21] 2007 Hardware locking Modify the FSM +0.5% +0. 5% ISCAS89 benchmark 

[22] 2007 Hardware locking Modify the FSM +100% +125% MCNC91 benchmark 

[23] 2013 Hardware locking Exploit FSM synchronicity low low N/C 

[16] 2008 Obfuscation/camouflaging Lock paths with XORs <1% N/C c880 and c3540 benchmarks 

by ISCAS85 

[36] 2008 Obfuscation/camouflaging Public cryptography 18K slices N/C Xilinx Virtex II 

[24] 2010 Obfuscation/camouflaging Lock paths with XORs 0.036 mm² (130 nm techno) 

+10 000 gates for RSA 

low c880 and c3540 benchmarks 

by ISCAS85 

[29] 2008 Obfuscation/camouflaging Lock buses with XORs 1 500 slices for D-H 

+64 MUX gates 

low N/C 

[35] 2003 Obfuscation/camouflaging Key exchange N/C N/C N/C 

[34] 2008 Obfuscation/camouflaging Key exchange + PUF 

and trusted 3rd party 

+143% +131% MCNC91 benchmark 

[82] 2005 Obfuscation/camouflaging Mutual authentication N/C N/C N/C 

[83] 2012 Obfuscation/camouflaging Design ciphering and 

trusted 3rd party 

low low N/C 

[84] 2007 Obfuscation/camouflaging Symmetric and asymmetric 

ciphering 

3 900 slices N/C Xilinx Virtex IV 

[67] 2008 Obfuscation/camouflaging Key exchange via heat 225 slices 0,5mW Xilinx Spartan 3A 

[85] 2006 Obfuscation/camouflaging Offline protocol 4 400 slices N/C Xilinx Spartan 3 

[27] 2010 Reconfigurable area Reconfigurable bus low N/C MCNC benchmark 

[28] 2010 Reconfigurable area Reconfigurable bus low N/C MCNC benchmark 

[87] 2006 Temporary un-locking Key – timer 5% N/C Xilinx Virtex II 

[88] 2009 Temporary un-locking Demo-mode 250 slices for registers 

1 500 slices for LUTs 

N/C Xilinx Virtex V 

[89] 2012 Temporary un-locking Hardware Trojan techniques 5% 5% ISCAS89 benchmark 

[81] 2002 IP licensing "Pay-per-use" scheme 
- - - 

[86] 2009 IP licensing Generic environment 
- - - 

 

 



 

Table 4 – Referenced works on hardware identification. 

Ref. Year Category Principle Area overhead Power overhead Test platform 

[53] 2000 Watermarking Pre-synthesis watermarking none none DSP algorithms 

[54] 1999 Watermarking Pre-synthesis watermarking 8 to 60% N/C 31-tap FIR filter 

[55] 2000 Watermarking Pre-synthesis watermarking 0.2 to 143% N/C IWLS93 FSM benchmarks 

[56] 2001 Watermarking Pre-synthesis watermarking 10 to 300% N/C ISCAS89 benchmark 

[57] 1998 Watermarking In-synthesis watermarking 5% N/C MCNC suite 

[58] 2005 Watermarking In-synthesis watermarking N/C N/C N/C 

[59] 2012 Watermarking In-synthesis watermarking 0.10% low Xilinx Virtex V 

[61] 1999 Watermarking Post-synthesis watermarking 0.1% N/C MIPS2000, ATR, DES… 

[62] 2003 Watermarking Post-synthesis watermarking no low Data acquisition path, RISC 

core, video encoder and address 

generator 

[64] 2012 Watermarking Side-channel communication 88 slices N/C Xilinx Virtex II Pro 

[66] 2009 Watermarking Communication via heat 1 ring oscillator 

+ 200 slices (sensor) 

N/C Xilinx Spartan 3 

PIC 16F913 

[60] 2008 Watermarking LUT filling 5% N/C DES256 core 

[12] 2011 Fingerprinting Incoming inspection 
- - - 

[13] 2012 Fingerprinting Incoming inspection 
- - - 

[14] 2013 Fingerprinting X-ray inspection 
- - - 

[68] 2013 Fingerprinting Measurement of path delays  N/C N/C HSPICE simulator 

MOSRA model 

[69] 2013 Fingerprinting Measurement of path delays N/C N/C HSPICE simulator 

MOSRA model 

[70] 2013 Fingerprinting Sorting function no no a DSP 

[73] 2008 Fingerprinting Arbiter PUF N/C N/C 180 nm RFID IC 

[74] 2010 Fingerprinting RO-PUF N/C N/C - 

[75] 2012 Fingerprinting RO-PUF N/C N/C ASIC 

[76] 2007 Fingerprinting SRAM-PUF N/C N/C FPGA 

[77] 2013 Fingerprinting TERO-PUF N/C N/C FPGA 

[78] 2008 Fingerprinting Butterfly PUF no N/C FPGA 

[79] 2012 Fingerprinting Loop-PUF low low Altera Cyclone II 

[80] 2011 Fingerprinting Number of ICs estimated N/C N/C ISCAS benchmark 

[71] 2012 Fingerprinting Soft physical hash function no no Atmel 644P 

[72] 2013 Fingerprinting Soft physical hash function no no Xilinx Virtex II 

[63] 2008 Fingerprinting Power consumption as ID N/C N/C Xilinx Spartan III 

Xilinx Virtex II 

 

The works listed in the two tables are very recent, more than 50% of published papers on the protection of 

design data were written in the last five years and 80% in the last seven years. This reflects the increased interest 

in this field. The observed overheads (area and power) vary considerably from one method to another. However, 

the passive methods (watermarking and fingerprinting),  presented in Table 4 are the least expensive, but as the 

term “passive” suggests, they do not prevent the attack from taking place. On the other hand, the active methods 

(locking), listed in Table 3 can be very expensive, especially when they involve cryptographic functions. 

However, these provide the designer with the highest security levels. 



 

Considering all the solutions, we are now able to list the characteristics of an efficient protection scheme. An 

efficient method for the protection of design data can be described using two types of characteristics. First, 

intrinsic specifications which define the system itself. An efficient protection method should be easy to unlock 

by the end user, but hard to analyse and break from a reverse-engineering point of view. According to these 

specifications, protection schemes based on cryptographic principles are clearly good candidates. We can also 

state that the solution should have a low overhead, in terms of both power and silicon area or logical elements. 

Indeed, once the device is finally unlocked, the locking system is useless. Consequently, it should have a low 

overhead and, if possible, no overhead at all. But at the same time, its locking scheme needs to be strong, so that 

circuits which are locked cannot be used. Specifically for IPs, it would be useful to be able to remotely control 

the locking level, in order to provide circuits in demo mode. A protection scheme should also be resistant to 

side-channel analysis. Given the possibility to use cryptographic methods, some specific characteristics are 

necessary. In particular, each instance of the circuit or IP should have its own key. A key that can be used for all 

the instances of the same design is not a sufficient criterion. But owning the key for one instance must not help 

recover other designs’ keys. 

We can also define extrinsic specifications for the protection scheme. This means how it should behave in the 

existing environment. First, it should be compatible with today's technologies and fabrication process in terms of 

physical requirements. In addition, design automation tools should be able to easily integrate it in the design 

flow. 

It would be almost impossible to design a protection scheme which could be used for the protection of both 

ICs and IPs, as the distribution and sales constraints are not the same. In another connection, the protection 

scheme should obviously take economic problems into account, and these are not the same for ICs and IPs. 

Moreover, there is wide variety of threats, and a scheme to address them all would be impossible to develop. 

Considering all these criteria, the protection system must be strong and easy to implement. 



 

Conclusion 

Given all the protection schemes we analysed, we are now able to indicate some of the probable directions 

research will take. First of all, it is important to admit that none of the protection schemes we discussed here are 

effective against all the threats in our threat model. For that reason, a combination of several schemes should be 

used to ensure efficient protection of a circuit. Nevertheless, some significant gaps remain in the state of the art 

solutions. One is the fact that all the locking schemes are designed for synchronous digital logic circuits. To our 

knowledge, no protection scheme has been proposed to lock asynchronous digital logic circuits. This lack is even 

more apparent in the case of analogue circuits, which are mostly ignored. 

In our opinion, locking schemes based on cryptographic protocols are the most reliable. Indeed, given a 

strong ciphering method and good resilience to side-channel attacks, it is possible for the designer to safely lock 

or unlock a circuit. Here, overhead could be increased for increased security, but it should be kept in mind that 

the locking mechanism is designed to be used only once. Theft can also be fought this way, by being able to 

unlock only a certain number of devices. This would prevent overbuilding. Cryptography can also be used to 

encrypt FPGA bitstreams, in order to protect the design against reverse engineering. However, when fighting 

against ASIC reverse engineering, the aim is to make design recovery harder than starting a new design from 

scratch. 

Considering some of the examples we analysed, designing an efficient solution with no overhead at all 

appears to be feasible. It could be achieved by measuring the intrinsic characteristics of the device, which should 

be carefully chosen, based on their dependence on the integrity of the circuit. In this case, if the design is 

modified, it would be easily detected. 

Our main aim now is to design a solution with low overheads and high security, with the ability to provide 

efficient protection against the widest possible range of threats. 
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