
HAL Id: ujm-01180564
https://ujm.hal.science/ujm-01180564

Submitted on 28 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reversible Denial-of-Service by Locking Gates Insertion
for IP Cores Design Protection

Brice Colombier, Lilian Bossuet, David Hely

To cite this version:
Brice Colombier, Lilian Bossuet, David Hely. Reversible Denial-of-Service by Locking Gates Insertion
for IP Cores Design Protection. IEEE Computer Society Annual Symposium on VLSI, CNRS-LIRMM,
France, Jul 2015, Montpellier, France. �ujm-01180564�

https://ujm.hal.science/ujm-01180564
https://hal.archives-ouvertes.fr

Reversible Denial-of-Service by Locking Gates
Insertion for IP Cores Design Protection

Brice Colombier, Lilian Bossuet
Hubert Curien Laboratory, UMR CNRS 5516, University of Lyon

42000 Saint-Étienne - France
{b.colombier, lilian.bossuet}@univ-st-etienne.fr

David Hély
LCIS, Grenoble Institute of Technology

26000 Valence - France
david.hely@lcis.grenoble-inp.fr

Abstract—Nowadays, electronics systems design is a complex
process. A design-and-reuse model has been adopted, and the
vast majority of designers integrates third party intellectual
property (IP) cores in their design in order to reduce time to
market. Due to their immaterial form and high market value,
IP cores are exposed to threats such as cloning and illegal
copying. In order to fight these threats, we propose to achieve
functional locking, equivalent to a triggerable and reversible
denial-of-service. This is done by inserting locking gates at specific
locations in the netlist, allowing to force outputs at a fixed
value. We developed a new method based on graph exploration
techniques for locking gates insertion. It selects candidate nodes
ten thousand times faster than state-of-the-art fault analysis-
based logic masking techniques. Methods are then compared on
ISCAS’85 combinational benchmarks.

Keywords—Intellectual property protection, logic masking, func-
tional locking, graph analysis.

I. INTRODUCTION

Electronics system design has become a complex and
demanding task. Due to a shorter time to market, a design-
and-reuse paradigm has been widely adopted. It allows system
integrators to design electronics systems faster, using functional
building blocks. Companies have specialized in providing these
pieces of design, known as intellectual property (IP) cores.
The question of a fair IP cores distribution system, however,
remains open. Indeed, an IP core designer must disclose the
design entirely to the system integrator. Since IP cores can be
extremely valuable and are provided as data file, they are a
prime target for people with malicious intent. Multiple cases
of counterfeiting and non-contracted overbuilding have been
reported in recent years, and the trend is growing [1], [2], [3].
Facing such threats, the development of an efficient design data
protection scheme is necessary.

An increasingly studied solution is to make the system
unusable unless it has been unlocked beforehand. The activation
procedure is initiated by the designer. In case the design has
been obtained illegally, it remains locked and unusable, until
the activation procedure is carried on. To ensure appropriate
security, the activation requires a key. This secret key is
delivered by the designer, who can thus precisely control how
many instances of the design have been instantiated. In order
to lock the design, a solution is to insert extra logic gates on
specific nodes, that will modify them if the wrong values are
applied to the gates’ inputs. For instance, XOR/XNOR gates
can be used to invert the value of the nodes if the wrong key
is applied [4]. In this first article, however, gates are placed

randomly. A better placement algorithm, based on fault analysis
[5], allows the designer to select more suitable nodes to lock,
in order to have a stronger locking power with lower area
overhead.

Instead of using XOR or XNOR gates to cause disturbances
to the circuit, we propose to achieve a reversible denial-of-
service by forcing the outputs to a fixed value if the wrong
key is applied. For this purpose, (N)AND and (N)OR gates
are used instead, and inserted as deep as possible in the netlist,
yet achieving total functional locking. These logic gates are
used to force specific nodes to logical 0 or 1. We developed an
algorithm, based on graph exploration, to select the best nodes
in a netlist for locking gates insertion. Our method enables us
to select optimal candidate nodes ten thousand times faster than
the fault analysis-based technique. Moreover, since it conducts
an exact analysis and is not based on any simulation, the
optimal subset of nodes to modify is reached, and the analysis
does not rely on any external software.

The remainder of this paper is organized as follows. Section
II provides background of active protection schemes based
on extra gates insertion. It gives formal definitions for logic
masking and functional locking, that are the two protection
methods investigated here. Section III presents the new insertion
method used to select the nodes of a netlist for functional
locking. A comparison is presented in Section IV. It aims at
showing the differences between our insertion method and the
state-of-the-art. Section V discusses design challenges that must
be addressed during protection schemes development. Finally,
the paper is concluded in Section VI.

II. RELATED WORK

In 2007, the first paper describing an active protection
scheme [6] proposes to add extra dummy states before the
original start state of the IP core’s finite state machine (FSM).
A key is required to allow transition through the extra states.
Therefore, access to the original FSM was controlled. This
way, access to the normal behaviour of the system depends
on a secret key, that is only available from the designer. This
solution, however, is cryptographically weak, and requires the
original design to contain an FSM. Another option is to act
on the combinational part of the circuit, and add XOR/XNOR
gates at specific locations. Similarly, applying the wrong key
on these gates inverts the associated value, and therefore the
behaviour of the circuit is altered. This is the principle of logic
masking.

Logic masking: XOR or XNOR gates are inserted on the
data path in order to change the logical behaviour of the circuit
if the wrong key is applied to these additional gates. In this
case, some internal nodes have their value inverted. Ideally, the
output obtained when a wrong key is applied is not correlated
with the original output.

This was first proposed in [4], in which the authors place
logic masking gates randomly. Using the random placement
method, the correlation between the normal and masked output
reduces slowly with respect to the number of masking gates
inserted, and the area overhead to obtain low correlation is not
negligible. A better placement technique was then necessary.
In [5], the authors elaborate on this idea, and propose another
method to place the masking gates. The point is to place these
gates more efficiently, in order to reduce correlation faster and
thus limit the area overhead for an identical level of disturbance.
They develop a placement method based on fault analysis, called
logic encryption. In order to determine on which nodes of a
design XOR or XNOR gates should be placed, they compute a
metric, named Fault Impact, for each node. This metric takes
into account the number of patterns that detect a s-a-0 and s-a-1
fault for this node, and the total number of output bits that get
affected by these faults. Then, the node for which the Fault
Impact is maximal is selected. An XOR or XNOR gate is added
on it, according to a user defined key, and the process is carried
out again until the number of output bits that are affected by a
fault reaches 50% on average. This criterion is fulfilled when
the Hamming distance between correct and masked output
vectors is close to 50%. Once this value is obtained, the logic
is considered as ”encrypted”, according to [5] (Section V-C
will discuss it in more details). This method can not be referred
to as logic encryption though, due to the lack of security proofs
and the absence of ciphering and deciphering steps. Instead,
this protection technique should be classified as logic masking.
What we propose here is to use another method to alter the
outputs of the system, called functional locking:

Functional locking: a triggerable and reversible denial-of-
service. The circuit can be rendered useless, and then come
back to its normal behaviour. This is achieved by forcing the
outputs of the netlist to logical 0 or 1 after inserting AND,
NAND, OR or NOR locking gates in the netlist.

In both cases, a method is required to select the appropriate
nodes to act on, i.e. the ones on which an XOR or XNOR
will be placed for masking, or a locking gate for functional
locking. In the next section, we present the placement method
we developed. It detects sequence of gates in the netlist that
can propagate a locking value to one or more outputs.

III. PROPOSED GATES-INSERTION METHOD FOR
FUNCTIONAL LOCKING: GRAPH EXPLORATION FOR GATES

SEQUENCES

A. Principle

In order to force the output of a logic gate to logical 0 or
1, a specific value must be present on one of its inputs. For
instance, the output of a NAND gate is forced to 1 if one input
is set to 0. Similarly, the output of an OR gate is forced to 1 if
one input is set to 1. Therefore, it follows that all logic gates
are able to propagate a locking value if one of their input is
set to the right value.

AND: Set one input to 0 forces the output to 0
NAND: Set one input to 0 forces the output to 1

OR: Set one input to 1 forces the output to 1
NOR: Set one input to 1 forces the output to 0

The AND and NAND gates can propagate a locking value
if one of their inputs is set to 0. The OR and NOR gates can
propagate a locking value if one of their inputs is set to 1.
Hence, it is the value on one of the inputs that determines if a
gate propagates the locking value. This value only depends on
the preceding gate. An example showing how a sequence of
gates (AND → NAND → OR) can propagate a locking value
is shown in Fig. 1:

0
0

1
1

Fig. 1. Propagation of a locking value in a sequence of gates

In order to lock the outputs of a netlist, we must identify
such sequences of gates that lead to an output. For that, we
compute the two following features for all nodes in the netlist:

• Vforced: this is the value at which the node will be
forced at. It depends on which type of logic gate
precedes the node. For example, if the node is the
output of an OR gate, then Vforced = 1.

• Vlocks: this is the value at which the node should be
forced to propagate the locking It depends on which
type of logic gate succeeds to the node. For instance, if
the node is the input of a NAND gate, then Vlocks = 0.
It should be noted that if a node has a fan-out higher
than 1 and spans NAND and OR gates for example,
then Vlocks = {0, 1}.

A summary of the Vforced and Vlocks values for a node G
depending on the type of the preceding and following gates is
given in Table I.

Preceding gate Vforced(G)

AND 0
NAND 1

OR 1
NOR 0

Following gate Vlocks(G)

AND 0
NAND 0

OR 1
NOR 1

TABLE I. Vforced AND Vlocks VALUES FOR A NODE G, DEPENDING ON
THE PRECEDING AND FOLLOWING LOGIC GATE

It follows that, for sequences that propagate a locking value,
Criterion 1 is fulfilled for all the nodes in the sequence.

Criterion: Vforced ∈ Vlocks (1)

To represent the netlist more easily and identify interesting
sequences of gates, we use graph exploration techniques. They
are presented in the following subsection.

B. Graph building

First, a directed acyclic graph is generated from the netlist.
Logic gates are represented as follows: inputs and outputs are
vertices connected by edges labelled after the logic gate type.
This is illustrated in Fig. 2.

AA

B

A

B

A B

C

C

B

A

B

A

C

C

 AND

 AND

 NOR

 NOR

B
NOT

Fig. 2. Logic gates conversion to vertices and edges

This process is carried out on the original netlist. An
example of this conversion is shown in Fig. 3.

G1

G2

G3

G4

G9

 G8

G5

G6

 G11

 G14

 G13

G1

G2

G3

G4

G5

G6

G8

AND

AND

G9

G10

G11

G13

G14

OR

 OR

NAND

NAND

 AND

 AND

 NOR

 NOR

 NAND

 NAND

G10
G12

G12
NOT

G7
G7

Fig. 3. Sample from a netlist and its equivalent graph

In order to identify interesting sequences in the netlist, we
use the previously built graph and compute Vforced and Vlocks
for each vertex. Here are the values of Vforced and Vlocks for
all the nodes of the netlist in Fig. 3:

Node Vforced Vlocks

G1 — 0
G2 — 0
G3 — 1
G4 — 1
G5 — 0
G6 — 0
G7 — 0

Node Vforced Vlocks

G8 0 0
G9 1 0
G10 1 0
G11 0 {0, 1}
G12 0 1
G13 1 —
G14 0 —

TABLE II. EXAMPLES OF Vforced AND Vlocks

According to these values, nodes that do not belong to
locking sequences are deleted. Inputs and output nodes are
retained. Then nodes that do not fulfil Criterion 1, i.e. Vforced /∈
Vlocks are removed from the graph, except if one of their direct
successors fulfils Criterion 1 or is an output. Incoming edges
should be removed in that case though, because the node cannot
propagate the locking value. The outcome is a graph in which
all connected vertices can propagate a locking value. This graph,
however, is usually disconnected. Connected components that
do not include an output of the netlist are removed, since they
are not useful for functional locking.

In the previous example, G1 to G6, G13 and G14 are re-
tained since they are inputs or outputs. G9, G10 and G12 do not
satisfy Criterion 1, but G9 is retained since its direct successor,

G11, fulfils Criterion 11. G9 incoming edges are deleted though.
G12 is retained too since its successor, G14, is an output. G3,
G4, G5 and G6 are then in a connected component with no
outputs, and are therefore deleted. Eventually we obtain the
graph shown in Fig. 4. A sequence of gates that can propagate
a locking value is also highlighted.

G1

G2

G3

G4

G9

 G8

G5

G6

 G11

 G14

 G13

G1

G2

G8

AND

G9

G11

G13

 AND

 NAND

G10
G12

G7
G7

AND

 AND NAND

G14

 NOR

G12

Fig. 4. Sample from a netlist and its equivalent graph after analysis. One
locking sequence is highlighted

C. Graph analysis for optimal locking nodes selection

The point is now to select the nodes to lock. This selection
process is independent of the Boolean function. It will be taken
into account later, when locking gates are inserted (Section
III-D). The three different types of connected components that
compose the final graph are presented in Fig. 5.

G1

G2 G3 G4

G7

G8

G6G5

G9 G10

G1

G2

G3

G7

G8

G6G5

G9 G10

G4

G3

G5G6

G7 G8 G9

G4

G2

G1

(a) (b) (c)

Fig. 5. The three different types of connected components. The optimal vertex
to select for functional locking is shown in grey

The case shown in Fig. 5(a), where there is only one source
vertex, is rare. A source vertex has an empty in-neighbourhood.
Selecting the locking node here is trivial: since the graph
is directed and acyclic, only one vertex has all the others
as successors. Forcing this node will lock all the outputs
of the connected component. In Fig. 5(a), forcing G1 will
lock the outputs G7, G8, G9 and G10. The second situation,
shown in Fig. 5(b) is more common: multiple source vertices
span multiple outputs. Only one of them, however, spans
all the outputs of the connected component. Therefore, the
corresponding node is selected. If several vertices span all the
outputs, then the farthest vertex from all the outputs is the best
candidate. It is the case in Fig. 5(b) where G1 and G2 span
all the outputs. G1, however, is the farthest vertex from the
outputs (G8, G9 and G10) and is preferred to G2. The last
case, depicted in Fig. 5(c) requires more computation. Multiple
vertices span multiple outputs, but none of them spans them
all. The best nodes to select are the ones that span the greatest
number of outputs. The number of outputs among each source
vertex successors is computed, and source vertices are sorted
accordingly. Then they are greedily selected until all the outputs
are locked. In the graph shown in Fig. 4, the nodes to lock are
G1 and G12. The complete procedure for graph building and
analysis is summarized in Algorithm 1.

Algorithm 1: Optimal nodes selection by graph analysis
Input: Netlist file
Output: List of nodes to lock list lock

// Build graph
for line in file do

Add vertex to graph for every new node in line
Add edges to graph for Boolean function in line
if ”OUTPUT” in line then

Add vertex to list outputs

for vertex in graph do
Compute Vforced(vertex) and Vlocks(vertex)

// Select vertices
for vertex in graph do

delete ← False
if vertex is neither an input nor an output then

if Vforced(vertex) /∈ Vlocks(vertex) then
delete ← True
for succ in successors(vertex) do

if Vforced(succ) ∈ Vlocks(succ) then
delete ← False
Remove vertex incoming edges

if delete = True then
Remove vertex from graph

// Identify connected components
list cc ← Clustering(graph)

// Analyse connected components
for cc in list cc do

if cc contains no output then
Remove cc from graph

else
Identify source vertices in cc
if #source vertices = 1 then

add source to list lock
else

Identify outputs in cc
for source in source vertices do

Compute distance from source to outputs
if one source spans all outputs then

add source to list lock
else if multiple source spans all outputs then

add farthest source to list lock
else

while some outputs are unlocked do
add the source that spans the greatest
↪→ number of outputs to list lock

Return: list lock

D. Locking gates insertion

We now have a list of nodes to lock, and their respective
Vlocks value. If Vlocks = 0, an AND or a NOR gate is inserted.
If Vlocks = 1, an OR or a NAND gate is inserted. In the
previous example, we insert a NOR gate on G1 to force it at
0, and an OR gate on G12 to force it at 1. Two locking inputs
are added: K1 and K2. The modified netlist is shown in Fig. 6.

G2

G3

G4

G1'

G9

 G8

G5

G6

 G11

 G14

 G13

G10
G12'

G7
K1

G1

G12

K2

Fig. 6. Modified sample from a netlist with locking gates inserted

In case Vlocks = {0, 1}, then the node has a fan-out superior
to 1, and two locking gates must be inserted. One AND or
NOR gate is inserted to lock part of the fan-out to 0. One
NAND or OR gate is inserted to lock part of the fan-out to 1.

IV. EXPERIMENTAL RESULTS

A. Real case

The implementation of Algorithm 1 has been done in Python.
The igraph extension is used for graph analysis. We validated
our method on ISCAS’85 benchmarks, and typically obtained
the type of connected component shown in Fig. 7. Forcing G27
(light grey vertex) to 0 locks the seven outputs (white vertices)
contained in this connected component: G809, G656, G820,
G636, G845, G704 and G717. For instance, forcing G27 to
0 will force G3176 to 0, that will force G635 to 0, that will
force G636 to 1.

G27

G31
G140

G2824

G845

G656

G809

G636

G704

G717

G820

G2825

G844

G2822
G3176

G3197

G3200

G3203

G3194

G635

G703

G716

G819

not

and

and

and

and

and

and

not

nand

nand

not

and

and

and

and

and
and

and

and

not

not

not

not

Fig. 7. A connected component from the graph obtained after c5315 netlist
analysis

B. Security analysis

Correlation is used to evaluate the security of the protection
schemes. Let S be the output of the system. Sprotected is the
output when the protection scheme is active. Correlation is
computed using Pearson’s correlation coefficient:

ρS,Sprotected
=
cov(S, Sprotected)

σSσSprotected

When considering functional locking though, since the outputs
are stuck at a fixed value, σSprotected

= 0. Thus Pearson’s
correlation coefficient cannot be computed. Nevertheless, since

the output is fixed, it provides no information about the
underlying locking scheme. This is why functional locking
can be analysed as if the correlation had a zero value.

Key size Random [4] Fault analysis [5] Graph analysis

c432 32 bits 0.272 0.012 0
7 outputs 64 bits 0.153 0.019 0
189 nodes 128 bits 0.026 0.014 0

c5315 32 bits 0.902 0.554 0
123 outputs 64 bits 0.873 0.357 0
2362 nodes 128 bits 0.820 0.277 0

c7552 32 bits 0.952 0.254 0
108 outputs 64 bits 0.920 0.235 0
3612 nodes 128 bits 0.761 0.217 0

TABLE III. CORRELATION OBTAINED FOR THREE BENCHMARKS AND
DIFFERENT PLACEMENT TECHNIQUES WITH RESPECT TO THE KEY SIZE

As expected, increasing the key size reduces correlation and
makes the protection more effective (see Table III). The main
drawback that is revealed here is that the efficiency of logic
masking drops drastically for large circuits. For instance, using a
128-bit key instead of a 32-bit one only reduces correlation from
0.254 to 0.217 using fault analysis on c7552, that comprises
3612 nodes. It shows that for large netlists, correlation cannot
reach optimal values, at least not with keys of reasonable length.
It follows that the security can not be proven for such circuits.
On the contrary, by identifying gates sequences in the netlist and
applying functional locking, it is proven that outputs are locked
by forcing the candidate nodes to a specific value. Consequently,
since security requirements are so hard to fulfil with logic
masking, one should use functional locking instead, and rely on
a separate cryptographic function to establish provable security,
as it has been proposed in [5].

C. Area overhead

The second criterion used to evaluate the protection schemes
is the area overhead, since we want it to be as low as possible.
For a fair comparison, ISCAS’85 combinational benchmarks
have been used as references. We give the amount of extra
gates. Results are depicted in Fig. 8. Graph exploration-based
functional locking requires slightly more than 3% extra gates
on average to achieve total functional locking of the netlist. For
small circuits such as c432, comprising 189 nodes, functional
locking requires 3.27% extra gates, when logic masking requires
three times more gates : +10,46%. For large circuits, the
overheads come closer and are similar for logic masking (+5%
for c5315, +1.62% for c7552) or functional locking (+3.57% for
c5315, +2.70% for c7552). Unlike logic masking, however, that
is only partially efficient for large circuits, functional locking
ensures total locking.

D. Computation time

Computation times are given here for the placement method
described in [5] and for graph analysis. The workstation we
used embeds an Intel Core i5-4570 operating at 3.20GHz and
a 16Gb RAM. A log plot of the computation times for all the
benchmarks is given in Fig. 9. As we can see, the proposed
graph exploration method is ten thousand times faster than fault
analysis on average. This is a valuable result. Indeed, those
protection schemes could then be integrated EDA tools, in order

c4
32

c8
80

c1
355

c1
908

c2
670

c3
540

c5
315

c6
288

c7
552

0

2

4

6

8

10

12

R
e
so

u
rc

e
s

o
v
e
rh

e
a
d
 (

%
) Logic masking [7]

Functional locking [III]

3.2

5.7

Average overheads (%)

Fig. 8. Area overhead for the two protection schemes

for the designer to be able to add protection to its design on
the fly. Even for the bigger netlist, c7552, that contains more
than 3600 nodes, the graph exploration method takes only 2.5s
to identify gates sequences and return a list of candidate nodes
for functional locking. Conversely, fault analysis takes several
hours on the same netlist.

c4
32

c8
80

c1
355

c1
908

c2
670

c3
540

c5
315

c6
288

c7
552

10-2

10-1

100

101

102

103

104

105

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)

Fault-analysis [5]

Graph exploration [III]

Fig. 9. Computation time required to analyse the original netlist for the two
techniques

The main advantage of the proposed methods is to not
depend on any external software to conduct the analysis. Only
Python scripts were used to analyse the netlists, providing
optimal locking gates placement and generating the modified,
lockable netlist. It considerably speeds up the analysis in
comparison with fault analysis-based method, that employs
fault analysis and simulation tools.

V. DISCUSSION

A. Exact or simulation-based placement methods

The placement technique proposed in [5] selects the best
candidates with the help of a fault simulator. It evaluates the
Fault Impact after applying one thousand random input patterns
to the netlists. It requires circuit simulation, however, to derive
the nodes to modify for logic masking. Therefore, this method
is sub-optimal, since it is based on a partial exploration of the
design space. In comparison, our technique based on graph
exploration for gates sequences is optimal. Consequently it
always provides the optimal subset of nodes that should be
locked.

B. Security margin for functional locking

In III, we only gave details about how to select as few nodes
as possible in order to lock all the outputs of a design. In the

context of real-life designs protection, however, the designer
may want to add extra locking gates on the locking propagation
path. This ensures that the locking value is set by multiple
gates, and is harder to cancel. Actually, all the vertices that are
present in the final subgraphs can be modified to lock outputs.
Therefore, the designer can choose precisely the number of
gates to be involved in the locking process. For example, as
shown in Fig. 7, G27 can lock all the outputs. All the other
nodes (dark grey vertices) are candidates too, although they
do not lock as many outputs as G27. They can be used to add
redundancy to the locking scheme, and provide better security
through stronger locking. As it is the case for all the proposed
protection schemes, the final implantation is a trade-off between
security and area, power and timing overhead. The minimum
and maximum number of locking gates that can be selected
for each netlist is shown in Fig. 10.

c4
32

c8
80

c1
355

c1
908

c2
670

c3
540

c5
315

c6
288

c7
552

0

10

20

30

40

50

R
e
so

u
rc

e
s

o
v
e
rh

e
a
d
 (

%
) Maximum

locking
power

Minimum
overhead

Security margin

Maximum

Minimum

Fig. 10. Resources used to protect the netlist by functional locking using the
graph analysis method

C. On the necessary separation between the security primitive
and the locking/masking module

The design flow of most of the protection schemes found
in the literature is the following: after designing a strong and
efficient locking scheme, the authors do their best to highlight
cryptographic properties of their system. For instance in [5],
the authors look for a 50% Hamming distance between the
original and masked output vectors. There are some circuits,
however, for which this criterion can be satisfied, that bring
absolutely no security, cryptographically speaking. Therefore,
we believe that instead of trying to develop cryptographic and
locking functions out of the same module, those two essential
parts of the protection scheme must be explicitly separated.
This separation is only suggested in [5]. On the one hand, a
provably secure cryptographic primitive should be selected to
guarantee safe access to the protection scheme. Examples of
lightweight ciphers can be easily found, and some of them have
been extensively studied, such as PRESENT [7]. Moreover, the
advantage of using a dedicated cipher is that the key can be
different for all instances of a given design, and can be derived
from a PUF for example [8]. This is an important security
requirement for design data protection, since unlocking one
device should not be of any help in unlocking others. On the
other hand, a locking scheme with a small footprint is used. Its
only purpose is to make the system useless when the wrong key
is applied to the cryptographic function, nothing more. This
configuration allows the designer to choose the security and
locking functions independently. A crucial point here is how
these two primitives will be combined to form the complete

protection scheme. A one-bit signal triggering the activation
of the locking scheme is not suitable. It could compromise the
security of the whole scheme, since bit flipping is achievable
using a laser for example [9]. A multiple-bit signal should be
used instead, to avoid this issue. The description of a complete
protection scheme, however, is beyond the scope of this paper.

VI. CONCLUSION

This paper discusses a new approach to select candidate
nodes of a netlist for functional locking. The proposed method
has proven to be much more computationally effective than
the state-of-the-art, yet achieving similar area overhead. In
addition, it conducts an exact analysis using clearly defined
parameters, instead of using incomplete simulation. Next, the
necessity of a strict distinction between security and locking
functions was highlighted, and should be taken into account in
future protection schemes design. Thus paired with a secure
yet lightweight cryptographic function, functional locking
techniques form a strong design data protection scheme, that
allows the designer to keep control on its design after it has
been sold.

ACKNOWLEDGEMENT

The work presented in this paper was realized in the frame of
the SALWARE project number ANR-13-JS03-0003 supported
by the French ”Agence Nationale de la Recherche” and by
the French ”Fondation de Recherche pour l’Aéronautique et
l’Espace”, funding for this project was also provided by a grant
from ”La Région Rhône-Alpes”.

The authors would also like to thank Jeyavijayan Rajendran
[5] for providing his results and netlists for comparison.

REFERENCES

[1] Frontier-Economics, “Estimating the global economic and social impacts
of counterfeiting and piracy,” Business Action to Stop Counterfeiting and
Piracy (BASCAP), Tech. Rep., 2011.

[2] IHS Technology. (2012, April) Top 5 most counterfeited parts represent
a $169 billion potential challenge for global semiconductor market. IHS
Technology.

[3] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1207–1228, 2014.

[4] J. A. Roy, F. Koushanfar, and I. Markov, “EPIC: Ending piracy of
integrated circuits,” in Design, Automation and Test in Europe, 2008, pp.
1069–1074.

[5] J. Rajendran, H. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri,
“Fault analysis-based logic encryption,” IEEE Transactions on Computers,
October 2013.

[6] Y. Alkabani and F. Koushanfar, “Active hardware metering for intellectual
property protection and security,” in USENIX Security, Boston MA, USA,
August 2007, pp. 291–306.

[7] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: an ultra-lightweight
block cipher,” in International Workshop on Cryptographic Hardware
and Embedded Systems, Vienna, Austria, September 2007, pp. 450–466.

[8] L. Bossuet, X. Ngo, Z. Cherif, and V. Fischer, “A PUF based on transient
effect ring oscillator and insensitive to locking phenomenon,” IEEE
Transaction on Emerging Topics in Computing, vol. 2, no. 1, pp. 30–36,
2013.

[9] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in International Workshop on Cryptographic Hardware and Embedded
Systems, San Fransisco CA, USA, August 2002.

