
HAL Id: ujm-01186632
https://ujm.hal.science/ujm-01186632v1

Submitted on 25 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Countermeasure against the SPA attack on an
embedded McEliece cryptosystem

Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-Louis Cayrel,
Viktor Fischer

To cite this version:
Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-Louis Cayrel, Viktor Fischer. Coun-
termeasure against the SPA attack on an embedded McEliece cryptosystem. Microwave and Ra-
dio Electronics Week 2015, Apr 2015, Pardubice, Czech Republic. pp. 462-466, �10.1109/RA-
DIOELEK.2015.7129055�. �ujm-01186632�

https://ujm.hal.science/ujm-01186632v1
https://hal.archives-ouvertes.fr


Countermeasure against the SPA Attack
on an Embedded McEliece Cryptosystem

Martin Petrvalsky∗, Tania Richmond†, Milos Drutarovsky∗, Pierre-Louis Cayrel† and Viktor Fischer†
∗Department of Electronics & Multimedia Communications, Technical University of Kosice

Park Komenskeho 13, 041 20 Kosice, Slovakia
Email: {martin.petrvalsky,milos.drutarovsky}@tuke.sk
†Hubert Curien Laboratory, Jean Monnet University

18, Rue du Prof. B. Lauras, 18, 42000 Saint-Etienne, France
Email: {tania.richmond,fischer,pierre.louis.cayrel}@univ-st-etienne.fr

Abstract—In this paper, we present a novel countermeasure
against a simple power analysis based side channel attack on a
software implementation of the McEliece public key cryptosys-
tem. First, we attack a straightforward C implementation of the
Goppa codes based McEliece decryption running on an ARM
Cortex-M3 microprocessor. Next, we demonstrate on a realistic
example that using a “chosen ciphertext attack” method, it is
possible to recover the complete secret permutation matrix. We
show that this matrix can be completely recovered by an analysis
of a dynamic power consumption of the microprocessor. Then, we
estimate the brute-force attack complexity reduction depending
on the knowledge of the permutation matrix. Finally, we propose
an efficient software countermeasure having low computational
complexity. Of course, we provide all the necessary details
regarding the attack implementation and all the consequences
of the proposed countermeasure especially in terms of power
consumption.

I. INTRODUCTION

The code-based cryptosystems are very attractive because
of their robustness regarding attacks based on the use of
quantum computers. The first code-based cryptosystem was
proposed by R. McEliece in 1978 [1]. However, it appeared
that the code-based cryptosystems are as vulnerable to side
channel attacks (SCA) proposed by Kocher in 1996 [2] as other
cryptosystems. The first known SCA against the McEliece
public key cryptosystem (PKC) appeared in 2008 [3].

Since the first published attack, several other vulnerabilities
were discovered [4]–[12]. In this paper, we propose a new
countermeasure against a variant of the attack described in [6].
In our attack, we target a straightforward C implementation of
the syndrome computation on the ARM Cortex-M3 micropro-
cessor [13]. We explain on a realistic example using simple
power analysis (SPA) and chosen ciphertext attack (CCA) that
the secret permutation matrix can be completely recovered.

After introducing the context, we start the paper by pre-
senting Goppa codes and the McEliece PKC in Section II.
Next, we briefly introduce the state of the art in Section III.
We describe all necessary implementation details regarding
considered SPA attack in Section IV. Furthermore, we provide
an efficient countermeasure against the implemented attack in
Section V. Finally, we conclude the paper in Section VI.

II. THEORETICAL BACKGROUND

A. Goppa codes

Goppa codes represent a large class of linear error-
correcting codes proposed in 1970 [14], [15]. However, our
interest is focused exclusively on irreducible binary Goppa
codes that are commonly used in cryptography. For the
sake of simplicity, we will call them simply Goppa codes.
Given a monic irreducible polynomial g(x) over F2m [x] with
deg(g) = t and a set L = {α1, α2, .., αn} representing a
subset of F2m such that g(αi) 6= 0, the Goppa code is defined
as:
Γ(L, g) = {C ∈ Fn2 | SC(x) ≡ 0 mod g(x)}.
We call a polynomial associated to C ∈ Fn2 the syndrome
polynomial:

SC(x) =
n∑
i=1

Ci

x⊕αi
.

For decoding a binary Goppa codeword containing errors,
one commonly adopted solution is to use the so-called Patter-
son’s algorithm [16]. We will focus on the first step of this
algorithm consisting in computing a product of a parity check
matrix of the Goppa code denoted H and the codeword with
less than or equal to t errors denoted C, i.e. S = CHT . The
result of this operation is called the syndrome and it can be
viewed as a polynomial as SC(x) = [xt−1, . . . , x, 1]S.

B. The McEliece cryptosystem

The McEliece PKC using Goppa codes [1] is performed
using three operations: the key generation, plaintext encryption
and ciphertext decryption.

The key generation consists in the determination of the
Goppa code according to the definition given in Section II-A.
As the Goppa code is linear, it can be generated by a so-called
k×n generator matrix denoted G. We randomly choose a non-
singular k × k matrix S and a n × n permutation matrix P .
We compute the public k × n generator matrix as G̃ = SGP .
The key generation procedure outputs the secret key sk =
(Γ(L, g),S,P) and the public key pk = (n, t, G̃).

During the plaintext encryption, the message M is en-
crypted using the public generator matrix. This operation can
be expressed as C = M G̃. Next, an error vector E of length n



and weight t is randomly selected and added to the codeword,
giving the ciphertext C̃ = C ⊕ E.

During the decryption of the ciphertext C̃, the product
C̃P−1 must first be computed giving a codeword containing
an error, i.e. MSG ⊕EP−1. Then, a decoding algorithm (the
Patterson’s algorithm in our case) must be applied on the
obtained secret code. The attack described in Section IV targets
this phase of the ciphertext decryption. The obtained MSG is
multiplied by G−1

r on the right side, such that GG−1
r = Ik is

the k × k identity matrix, in order to find M̃ = MS . Finally
we compute M = M̃S−1 to recover the plaintext.

III. EXISTING SIDE CHANNEL ATTACKS

Several side channel attacks against the McEliece PKC
were published recently. Most of attacks target the Patterson’s
decoding algorithm and exploit different weaknesses. The most
common are timing attacks aiming either the message [3], [4],
[8] or the private key recovery [5], [10]. Some fault injection
attacks are also known, e.g. that published in [7], based on two
variants of Goppa codes. A combined timing and fault injection
attack targeting the message recovery was proposed in [17].
Finally, the attacks using SPA like those published in [6], [9]
or [12] (for another type of codes) or attacks using differential
power analysis (DPA) [11] (again, for different type of codes)
tend to recover the private key.

In this paper, we focus on the kind of power analysis
attacks proposed in [6]. Based on this principle, we implement
an attack against the syndrome computation. Next, we propose
a countermeasure featuring a linear computational complexity,
which uses similar idea to that published in [3, Algorithm
3]. However, contrary to our solution, this countermeasure
is focused on another type of attack and it has a quadratic
computational complexity.

Four implementation profiles were introduced in the pa-
per [6]. In profile I, rows of the parity check matrix are
computed as they are needed. Profile II uses precomputed
parity check matrix. Profiles III and IV omit multiplication
with permutation matrix in the first step of the decryption.
In profile III, syndrome is directly computed from permuted
support. Profile IV uses precomputed and permuted parity
check matrix. Profile I is favorable for embedded devices due
to low memory requirements. Our countermeasure can be used
for profiles I and II (profile I only if all computations are
constant in time). For testing purposes, we use profile II due
to simplified measurements. If profiles III and IV are used
than the SPA attack and our countermeasure are not applicable
because the permutation matrix is merged with the parity check
matrix or with the support L.

IV. SPA ATTACK DETAILS

A. Measurement setup

We attack a software implementation of the Patterson’s
decryption algorithm running on the STM32F103 microcon-
troller [18] featuring a 32-bit ARM Cortex-M3 core. The STM
microcontroller is fitted on a custom evaluation board [19]
aimed at power analysis attack implementations. The board
is equipped with a serial port connector for data transfers. It
has two SMA connectors for oscilloscope probes, which are

PC

DSO9404A

DUT

Oscilloscope
Trigger

Power consumption

Control
signals

Traces

Input data

Acknowledgement

Fig. 1. Workflow of the power traces acquisition – the whole process is
controlled by the oscilloscope’s PC

used to get the power consumption traces. We measure power
consumption near the grounding pin of the microcontroller.
The on-chip PLL of the microcontroller generates the core
clock of 72 MHz from an external quartz oscillator oscillating
on 8 MHz. The main features of the selected microcontroller
are:

• Instruction set Thumb2,

• 20 kB RAM, 128 kB Flash,

• ADC, USB, RTC, USART, 7 timers, ...

The power traces were acquired using the Agilent Tech-
nologies oscilloscope DSO9404A [20] with four analog chan-
nels having 4 GHz bandwidth at 50Ω. The power traces
acquisition workflow is depicted in Fig. 1

All power traces needed for attacking unprotected device
are acquired at 1 GS/s sample rate. Power traces obtained after
the countermeasure deployment was collected at 100 MS/s
sample rate in order to reduce the acquired data to the accept-
able level for the oscilloscope. The 500 MHz passive probes
were connected directly to the SMA connectors available on
the evaluation board.

The data acquisition process is controlled by the software
running on the oscilloscope’s internal PC. The software sets
up the oscilloscope, sends the ciphertext to the microcontroller
(design under test – DUT in Fig. 1) via UART and waits for the
acknowledgment from the microcontroller. DUT rises a trigger
and starts the ciphertext decryption. The oscilloscope measures
the power consumption during the ciphertext decryption. Once
the acquisition is finished, the PC stores the measured power
consumption trace to the hard disk. The measurement process
is repeated depending on the desired number of traces. The
acquired traces are ready for further processing.

B. Principle of the SPA attack on the syndrome computation

As explained earlier, our idea is derived from the attack
published in [6]. It is a kind of the SPA attack, which can
recover the secret permutation matrix. Its principle is illustrated
in Fig. 2.

The permutation matrix is the first private information used
in the McEliece decryption. The input ciphertext is permuted
using a permutation matrix. This operation is implemented as
a binary vector-matrix multiplication. The next step after the
permutation is the syndrome computation S = CHT , which
is also implemented as a binary vector-matrix multiplication.
In a straightforward implementation, the binary multiplication



P-1 HT S P A

1st measurement:

2nd measurement:

3rd measurement:

4th measurement:

Known to attacker Secret data

Input codewords (CCA) Permutation matrix Parity-check matrix

Leakage Reconstruction of the P matrix

Attack Reconstructed bit
permuted codewords

Reconstructed P matrix
by comparing with inputs

Power consumption
traces

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

P*

Bit permuted codewords

Fig. 2. Principle of the SPA attack on the syndrome computation: the chosen ciphertext has one bit equal to one in a row, data are then permuted and multiplied
with the parity check matrix in order to get the syndrome – the permutation matrix can be reconstructed by analyzing power traces of different chosen ciphertexts

is realized by adding modulo 2 only the rows of the matrix
that have indexes of the vector bits equal to one. Rows having
indexes where the vector bits are equal to zero are omitted.

The SPA on the syndrome computation is based on de-
tecting special parts of the algorithm in power consumption
traces. The sequences, where the row of the matrix is added
modulo 2 and sequences where the row addition is omitted
have different patterns in power consumption traces as it can
be seen in Fig. 3b).

We generated subsequent input ciphertexts having a Ham-
ming weight equal to 1. For each measurement, the isolated
bits equal to 1 were placed in a different position. Once the
permutation matrix was applied on the input ciphertext, the
bit was permuted to another (unknown) position for the new
measurement.

Observing the traces of the syndrome computation can
help in detecting the modulo 2 additions. If the attacker is
able to locate every position of the modulo 2 additions during
the syndrome computation for every possible input ciphertext
containing only one bit equal to one, the reconstruction of the
permutation matrix is possible as shown in Fig 2.

C. From the knowledge of P to the knowledge of g(x)

Once the attacker found the private permutation matrix P ,
the order of elements in the support L is revealed. The only
remaining part of the private key is the Goppa polynomial
g(x). Indeed, the knowledge of the scrambling matrix S is
useless because SG and G generate the same code.

A way to find g(x) from P is to see the Goppa code
as an alternant code [21] i.e. a sub-code of a generalized
Reed-Solomon (GRS) code on the sub-field F2. The public
Goppa code, defined by SGP = G̃, is equivalent to the private
Goppa code, defined by G. Since the dual code of a GRS
code is another GRS code [21, chapter 10], the attacker can
compute a parity check matrix denoted H̃ from the public
generator matrix G̃. The H̃ matrix is a generator matrix
of the dual code, so G̃H̃T = 0. This relation provides a
system of linear equations with n unknowns After solving this
system, these unknowns correspond to the evaluation of the
Goppa polynomial on each element on the support L. By a
Lagrange polynomial interpolation, the attacker can recover
all coefficients of the Goppa polynomial g(x)..

The complexity of solving the system of linear equations
with n unknowns is roughly O(n3) and that of the Lagrange

interpolation is about O(n2). The cost of multiplications in
F2m is m2. This means that the complexity of the given attack
is m2(n3 + n2) binary operations. In example given in the
following subsection, the attack complexity can be decreased
to 237 binary operations from the original complexity of
262 [22]. This represents a critical threat for the decryption
algorithm.

D. Realistic example of the CCA based on SPA

Usual implementations of the McEliece PKC use code-
words of n = 1, 024, n = 2, 048 and more bits. In this
work, we chose the codeword of n = 1, 024 bits. Parameter
n = 1, 024 provides the level of security sufficient only for
short-term uses. For more secure embedded implementation,
at least n = 2, 048 should be used. Of course, the attack can
be easily modified for any other code lengths.

As explained in the previous section, we use the chosen
ciphertext method for attacking the syndrome computation.
We measure 1,024 traces corresponding to processing of input
ciphertexts chosen as follows:

0 2000 4000 6000 8000 10000
−50

0

50

Samples − Fs = 1GS/s

Po
we

r c
on

su
mp

tio
n [

mA
]

0 0.5 1 1.5 2 2.5 3 3.5 4
x 105

−50

0

50

Samples − Fs = 1GS/s

Po
we

r c
on

su
mp

tio
n [

mA
]

0 0.5 1 1.5 2 2.5 3 3.5 4
x 105

−1

−0.5

0

0.5

1

Samples − Fs = 1GS/s

Co
rre

lat
ion

 co
eff

ici
en

t

a)

b)

c)

Fig. 3. Typical power traces and correlation traces of the SPA using chosen
ciphertext: Top panel (a) – power trace of 1024 consecutive additions modulo
2 featuring a typical pattern (zoomed from the middle panel (b)); Middle
panel (b) – power trace of one chosen ciphertext decryption; Bottom panel
(c) – correlation trace obtained from the power trace of the middle panel.



• 10000000000...0 for the first measurement,

• 01000000000...0 for the second measurement,

• ...,

• 000...000000001 for the last measurement.

An example of traces acquired for 1,024 bit codewords is
presented in Fig. 3. Fig. 3b) shows one typical 400,000-sample
power trace of the ARM Cortex-M3 during one syndrome
computation. In all other traces, the pattern of the modulo 2
addition appeared at different time. This pattern appearance
depends on the position of the value ’1’ in corresponding
row of the permutation matrix. Indeed, we consider that the
permutation is not seen as a vector of positions but as a
permutation matrix corresponding to the linear application.
This means that there is just one ’1’ in each row and each
column. Our aim is to find all values of ’1’ in this matrix.

The correlation traces were obtained by computing corre-
lation coefficients between modulo 2 additions pattern from
Fig. 3a) and a sliding window of currently measured power
trace (e.g. that depicted in Fig. 3b). As can be observed, it
is possible to locate the modulo 2 addition pattern at around
270,000th sample, for which the correlation coefficient is equal
almost to 1.

We developed a software for automatic evaluation of the
traces. It computes correlation traces as shown in Fig. 3c),
determines the exact location of the beginning of the modulo
2 addition pattern and finally it sorts these positions in the
whole trace set in order to reconstruct the P matrix.

In a straightforward implementation, the permutation ma-
trix P could successfully be deduced from positions of modulo
2 additions during the syndrome computation for all measured
traces.

In most experiments, we were able to extract the permuta-
tion matrix stored in the Flash memory of the ARM Cortex-

0 2 4 6 8 10 12
x 105

−60

−40

−20

0

20

40

60

Samples − Fs = 100MS/s

Po
we

r c
on

su
mp

tio
n [

mA
]

0 2 4 6 8 10 12
x 105

−60

−40

−20

0

20

40

60

Samples − Fs = 100MS/s

Po
we

r c
on

su
mp

tio
n [

mA
]

a)

b)

Fig. 4. Power traces after a straightforward countermeasure (a) and an
advanced countermeasure (b) against the simple power analysis attack on
syndrome computations

M3 with a 100% success rate. There were only few cases
where we missed only one position of value ’1’ in the whole
1,024×1,024 matrix. Due to permutation matrix properties, if
we miss one value another value is also pushed out of its
correct position. Incorrect position detection can be minimized
by improving the data processing algorithm - trace aligning,
filtration, averaging, choosing better modulo 2 addition pattern
and using more robust correlation analysis.

V. SPA RESISTANT COUNTERMEASURE

Our countermeasure is based on a basic principle of avoid-
ing branch statements and data dependent timings. Next, we
provide a C implementation of both insecure and protected
syndrome computation:

for(i=0; i<DIM_N; i++) // insecure s = H*cp
if (MPL_TESTBIT(cp, i) == TRUE) // @72MHz: 4ms avg
MPL_XOR(s, s, H[i], j, DIM_NK_WORD);// range: 0.4ms - 8ms

//------------------------------------------------
for(j=0; j<DIM_NK_WORD; j++) // mask syndrome
s[j]ˆ=0xAAAA;

for(i=0; i<DIM_N; i++){ // protected s = H*cp
mul = 0 - (MPL_TESTBIT(cp, i)); // @72MHz: 12ms
for(j=0; j<DIM_NK_WORD; j++) s[j]ˆ=H[i][j] & mul;

}
for(j=0; j<DIM_NK_WORD; j++) // unmask syndrome
s[j]ˆ=0xAAAA;

In the code, s is the computed syndrome of size (n−k) bits, cp
is the bit-permuted ciphertext of n bits, H is the parity check
matrix of n × n bits, DIM N is the parameter n = 1024,
DIM NK WORD is the number of words needed to store
(n−k)-bit variable (380/sizeof(s) corresponding to k = 624,
m = 10 and t = 38), mul is a temporary variable indicating
that the row of the binary matrix should be added (all bits ’0’
for no addition; all bits ’1’ for corresponding row addition).

In a straightforward unprotected implementation, one scans
the codewords bit by bit. If he finds a ’1’ value, he adds
the corresponding row of the multiplied matrix to the result
(the syndrome). These additions create characteristic patterns
in power traces, which can serve as basis for the SPA attack.
In our solution, we perform identical steps for each bit of
the codeword, which removes special patterns in power traces
such as patterns in Fig. 3b). Furthermore, we need a special
initialization of the syndrome variable, in order to remove the
effect presented in Fig. 4.

Figure 4a) shows 1,200,000-sample power trace after ap-
plying simple above mentioned countermeasure. However, we
noticed that appearance of ’1’ values in bit-permuted ciphertext
was still visible. It can be seen in top panel of Fig. 4 that the
positive peaks of the power traces reach about 55 mA. Around
the 800,000th sample (where the value ’1’ was handled), these
values drop down to 50 mA. This power decrease is caused
by changing the syndrome variable. In a straightforward imple-
mentation, this variable is initialized to zero at the beginning
of the algorithm. In every iteration, the syndrome is loaded and
then saved into the memory. Registers in the ARM Cortex-M3
are pre-charged to value 0xFFFFFFFF and then the new values
are written to them. If the current written value is zero, the
consumption is the highest because of the flip-flop switching
and vise versa. As a basis for the new countermeasure, we used
the fact that the rows and columns of the parity check matrix
H have approximately the same amount of ones and zeros. We



successfully used this property to hide the visible amplitude
decrease from Fig. 4a) and initialized the syndrome to the
masked value ’10101010...1010’ before the multiplication. The
result of application of this new countermeasure is shown in
Fig. 4b) where no clearly visible voltage drops are present.

VI. CONCLUSION

In this paper, we successfully deployed an SPA attack
targeting the computation of the private permutation matrix of
the McEliece PKC on an ARM Cortex-M3 based microcon-
troller. We showed that without a countermeasure, we were
able to recover the whole 1,024 × 1,024 bit permutation
matrix using just 1,024 power traces. Next, we quantified the
security threat represented by the revelation of the permutation
matrix in terms of the computational complexity. Finally, we
proposed, implemented and successfully tested an efficient
countermeasure against this SPA attack.

The disadvantage of our implementation of the countermea-
sures is that it needs longer time for the multiplication – our
implementation is about 3 times slower than a straightforward
unprotected implementation on average. However, in compar-
ison with [3, Algorithm 3], our solution provides a linear time
complexity compared to a quadratic time complexity proposed
in the previous paper.

The countermeasure proposed here ensures that the power
consumption and execution time are constant, which prevents
SPA attacks and timing attacks. On the other hand, the constant
time algorithm does not avoid other kinds of more sophisti-
cated attacks (such as DPA) to be deployed.

ACKNOWLEDGMENT

This work was performed in the framework of the COST
Action IC1204 (Trustworthy Manufacturing and Utilization of
Secure Devices). It was supported by APVV-0586-11 grant
and in part by NATO’s Public Diplomacy Division in the
framework of “Science for Peace”, SPS Project 984520. The
authors would also like to thank Alain Couvreur for his helpful
advices.

REFERENCES

[1] R. J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” California Inst. Technol., Pasadena, CA, Tech. Rep. 44, January
1978.

[2] P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Advances in Cryptology
(CRYPTO’96), ser. LNCS, N. Koblitz, Ed., vol. 1109. Springer,
1996, pp. 104–113. [Online]. Available: http://dx.doi.org/10.1007/3-
540-68697-5 9

[3] F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, and A. Shoufan,
“Side channels in the McEliece PKC,” in The Second International
Workshop on Post-Quantum Cryptography (PQCrypto 2008), ser.
LNCS, J. Buchmann and J. Ding, Eds. Springer, October
2008, vol. 5299, no. 5299/2008, pp. 216–229. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-88403-3 15

[4] A. Shoufan, F. Strenzke, H. G. Molter, and M. Stöttinger, “A
timing attack against Patterson algorithm in the McEliece PKC,” in
Proceedings of the 12th International Conference on Information,
Security and Cryptology (ICISC 2009), ser. LNCS, D. Lee and
S. Hong, Eds. Springer, 2010, vol. 5984, pp. 161–175. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-14423-3 12

[5] F. Strenzke, “A timing attack against the secret permutation in
the McEliece PKC,” in Proceedings of the Third international
conference on Post-Quantum Cryptography (PQCrypto 2010), ser.
LNCS, N. Sendrier, Ed. Springer, 2010, vol. 6061, pp. 95–107.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-12929-2 8

[6] S. Heyse, A. Moradi, and C. Paar, “Practical power analysis attacks on
software implementations of McEliece,” in Proceedings of the Third
international conference on Post-Quantum Cryptography (PQCrypto
2010), ser. LNCS, N. Sendrier, Ed. Springer, 2010, vol. 6061,
pp. 108–125. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
12929-2 9

[7] P.-L. Cayrel and P. Dusart, “McEliece/Niederreiter PKC: Sensitivity to
fault injection,” in 5th International Conference on Future Information
Technology (FutureTech 2010), May 2010, pp. 1–6.

[8] R. M. Avanzi, S. Hoerder, D. Page, and M. Tunstall, “Side-channel
attacks on the McEliece and Niederreiter public-key cryptosystems,”
Journal of Cryptographic Engineering, vol. 1, no. 4, pp. 271–281,
November 2011. [Online]. Available: http://dx.doi.org/10.1007/s13389-
011-0024-9

[9] H. G. Molter, M. Stöttinger, A. Shoufan, and F. Strenzke, “A simple
power analysis attack on a McEliece cryptoprocessor,” Journal of
Cryptographic Engineering, vol. 1, no. 1, pp. 29–36, April 2011.
[Online]. Available: http://dx.doi.org/10.1007/s13389-011-0001-3

[10] F. Strenzke, “Timing attacks against the syndrome inversion in
code-based cryptosystems,” in The 5th International Workshop on Post-
Quantum Cryptography (PQCrypto 2013), ser. LNCS, P. Gaborit, Ed.
Springer, 2013, vol. 7932, pp. 217–230, http://eprint.iacr.org/2011/683.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-38616-9 15

[11] C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt, “Differ-
ential power analysis of a McEliece cryptosystem,” Cryptology ePrint
Archive, Report 2014/534, 2014, http://eprint.iacr.org/2014/534.

[12] I. von Maurich and T. Güneysu, “Towards side-channel resistant
implementations of QC-MDPC McEliece encryption on constrained
devices,” in Post-Quantum Cryptography, ser. LNCS, M. Mosca, Ed.
Springer, October 2014, vol. 8772, pp. 266–282. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11659-4 16

[13] ARM, “ARM Cortex-M product information, software and datasheets.”
[Online]. Available: http://www.arm.com/products/processors/cortex-m/

[14] V. D. Goppa, “A new class of linear error-correcting codes,” Problemy
Peredachi Informatsii, vol. 6, no. 3, pp. 24–30, September 1970.

[15] E. R. Berlekamp, “Goppa codes,” IEEE Transactions on Information
Theory, vol. 19, no. 5, pp. 590–592, September 1973.

[16] N. J. Patterson, “The algebraic decoding of Goppa codes,” IEEE
Transactions on Information Theory, vol. 21, no. 2, pp. 203–207, March
1975.

[17] F. Strenzke, “Message-aimed side channel and fault attacks against
public key cryptosystems with homomorphic properties,” Journal of
Cryptographic Engineering, vol. 1, no. 4, pp. 283–292, 2011. [Online].
Available: http://dx.doi.org/10.1007/s13389-011-0020-0

[18] ST Microelectronics, “STM32 product informa-
tion, software and datasheets.” [Online]. Available:
http://www.st.com/web/en/catalog/mmc/FM141/SC1169

[19] M. Petrvalsky, M. Drutarovsky, and M. Varchola, “Differential power
analysis attack on ARM based AES implementation without explicit
synchronization,” in Radioelektronika (RADIOELEKTRONIKA), 2014
24th International Conference, April 2014, pp. 1–4.

[20] Keysight (Agilent Technologies), “DSO9404A datasheet
and product information.” [Online]. Available:
http://www.keysight.com/en/pd-1632456-pn-DSO9404A/oscilloscope-
4-ghz-4-analog-channels?&cc=SK&lc=eng

[21] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes, N.-H. M. Library, Ed. North-Holland, 2006.

[22] D. Bernstein, T. Lange, and C. Peters, “Attacking and defending the
mceliece cryptosystem,” in Post-Quantum Cryptography, ser. Lecture
Notes in Computer Science, J. Buchmann and J. Ding, Eds. Springer
Berlin Heidelberg, 2008, vol. 5299, pp. 31–46. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-88403-3 3


