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Abstract. Modularity allows to estimate the quality of a partition into commu-
nities of a graph composed of highly inter-connected vertices. In this article, we
introduce a complementary measure, based on inertia, and specially conceived to
evaluate the quality of a partition based on real attributes describing the vertices.
We propose also I-Louvain, a graph nodes clustering method which uses our cri-
terion, combined with Newman’s modularity, in order to detect communities in
attributed graph where real attributes are associated with the vertices. Our experi-
ments show that combining the relational information with the attributes allows to
detect the communities more efficiently than using only one type of information.
In addition, our method is more robust to data degradation.

Keywords: Attributed graph, Graph clustering, Social network, Community de-
tection, Modularity

1 Introduction

Clustering of graph vertices is a task related to community detection within social net-
works. The goal is to create a partition of the vertices, taking into account the topo-
logical structure of the graph, in such a way that the clusters are composed of strongly
connected vertices [13, 23, 29, 20, 3]. Among the core methods proposed in the litera-
ture, we can cite those that optimize a function (modularity, ratio cut or its variants,
etc.) in order to evaluate the quality of the partition [19, 30, 10, 25], the hierarchical
techniques like divisive algorithms based on the minimum cut [14], the spectral meth-
ods [34] or the Markov Clustering algorithm and its extensions [28]. We refer to the
survey of Fortunato for a thorough discussion of community detection methods [15].

Graph clustering techniques are very useful for detecting strongly connected groups
in a graph but many of them mainly focus on the topological structure, ignoring the
vertices properties. Nowadays, various data sources can be seen as graphs where ver-
tices have attributes and a new challenge in graph clustering consists in combining
the relational information corresponding to the network and attributes describing the
vertices. Generally, this is not the case in clustering of vertices where only the rela-
tionships between the vertices are used, nor in unsupervised classification based only
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on the attributes. Recently, several methods have been proposed to take into account
the relational information as well as the attributes in the aim to detect patterns in at-
tributed graphs [26, 31] or to tackle this problem of hybrid clustering [6, 11]. In this
article, we propose a method, called I-Louvain, which allows to partition the vertices
of an attributed graph when numerical attributes are associated to the vertices. In social
networks, these attributes can correspond to features (age or weight) or tf-idf vector
representing documents associated to the nodes. This method is based on a local op-
timization of a global criterion which is a function on the one hand of the modularity
[24] and on the other hand of a new measure based on inertia.

After a presentation of related work in section 2, we define this measure, called in-
ertia based modularity, in section 3, and the method I-Louvain in section 4. The exper-
imental study of section 5 confirms that clustering, based on the relational information
and attributes provides more meaningful clusters than methods taking into account one
type of data (attributes or edges) or than ToTeM which exploits attributes and edges [6].

2 Related work

Recently, methods exploiting both information types were introduced in order to detect
communities in social networks or graphs where vertices have attributes.

Steinhaeuser and Chawla propose to measure the similarity between vertices ac-
cording to their attributes and then to use the result as a weight of the edge linking the
two vertices. After this pre-treatment, they use a graph partitioning method in order to
cluster the new weighted graph [32]. In the hierarchical clustering of Li et al., after a
first phase consisting in detecting community seeds with the relational information, the
final communities are built under constraints defined by the attributes [21]. This leads
to merging the seeds on the base of their attributes’ similarity. So, in these previous
methods, the two types of information are not exploited simultaneously.

Zhou et al. exploit the attributes in order to extend the original graph [36, 37]. They
add new vertices representing the attributes and new edges that link original vertices
having similar attributes through these new vertices. A graph partitioning is then carried
out on this new augmented graph. However, this approach cannot be used when the
attributes have continuous values: it works only with categorical attributes.

Ester et al. study the ”connected k-center problem” and propose a method called
NetScan, which is an extended version of the K-means algorithm with an internal
connectivity constraint [12, 16]. Under this constraint, two vertices in a same cluster
are connected by a path that is internal to the cluster. In NetScan as in many other
partitioning methods, the number of clusters has to be known in advance. However, this
condition is relaxed in the work of Moser [22].

CESNA was introduced by Yang et al. to identify Communities from Edge Struc-
ture and Node Attributes [35]. One advantage of this method is its ability to detect
overlapping communities by modeling the interaction between the network structure
and the node attributes.

There are some other methods, focusing on dense subgraph detection, that integrate
the homogeneity of the attributes inside the subgraphs, cf. for instance [17, 18].
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Finally, we can mention a family of methods which propose to extend the well-
known Louvain algorithm and for this reason, they are probably the most related works
to our concerns. Dang et al. suggest to modify the modularity by considering not only
the link between two vertices but also the similarity of their attributes. Thus, the two
types of information are simultaneously considered in the partitioning process but with
this approach, the communities provided can contain non linked vertices [9]. In [7],
the optimization phase of the Louvain algorithm is based not only on the modularity
but also on the entropy of the partition but, again, the two types of information are not
exploited simultaneously.

Recently, some of these methods have been compared and these experiments have
confirmed that the detection of communities in an attributed graph is not a trivial prob-
lem [6, 11]. To solve it efficiently, we consider that the attributes and the relational
information must be exploited simultaneously and this is not the case for several meth-
ods cited. Moreover, the majority of the methods quoted previously exploit categorical
attributes but they are not suited for numerical attributes. This is the reason for which,
in this article, we propose I-Louvain, a method to detect communities in a graph where
numerical attributes are associated to the vertices. These attributes can correspond to
features (age or weight) or to a tf-idf vector representing documents associated to the
vertex. I-Louvain consists in optimizing on the one hand the modularity introduced by
Newman [24] and on the other hand a new measure that is defined in the next section.

3 Inertia based modularity

Let V be a set of N elements represented in a real vector space such that each element
v ∈ V is described by a vector of attributes v = (v1, . . . , v|T |) ∈ R|T |. The inertia
I(V ) of V through its center of gravity g, also called second central moment, is an
homogeneity measure defined by I(V ) =

∑
v∈V ‖v − g‖

2, where ‖v′ − v‖ denotes
the euclidean distance between v and v′, g = (g1, . . . , g|T |), the center of gravity of V
is such that gj = 1

N

∑
v∈V vj .

The inertia I(V, v) of V through v is equal to the sum of the square euclidean
distances between v and the other elements of V : I(V, v) =

∑
v′∈V ‖v′ − v‖

2

Given a partition P = {C1, . . . , Cr} of V in r disjoint clusters, we introduce a
quality measure Qinertia(P) of P defined by:

Qinertia(P) =
∑

(v,v′)∈V ·V

[(
I(V, v) · I(V, v′)
(2N · I(V ))2

− ‖v − v
′‖2

2N · I(V )

)
· δ (cv, cv′)

]
(1)

where cv denotes the cluster of v ∈ V and δ is the Kronecker function equal to 1 if
cv and cv′ are equal and 0 otherwise.

Thus, while the modularity, introduced by Newman, considers the strength of the
link between vertices in order to cluster strongly connected vertices, our measure at-
tempts to cluster elements which are the most similar. This appears in the second term
of the equation 1, which is a function of the square of the distance between v and v′,
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corresponding to an observed distance between v and v′. This observed distance be-
tween v and v′ is compared with an expected distance deducted from their respective
inertia. This expected distance, which appears in the second term of the equation 1, is a
function of the square distance of each of these elements v and v′ to the other elements
of V .

Therefore, Qinertia allows to compare, for each pair of elements (v, v′) from the
same community, the expected distance with the observed distance. If the former is
greater than the latter, then v and v′ are good candidates to be affected in a same cluster.

Given the normalization factors in the denominators of the expected and observed
distances, the criterion Qinertia ranges between -1 and 1. Indeed, the maximum value
of the left term in the subtraction (Eq. 1), containing the product of the inertia for all
pairs of elements is 1. Similarly, the right term of the criterion Qinertia (Eq. 1) can not
exceed 1. Both terms are strictly positive. Consequently the measure, constrained by
the Kronecker function, varies between -1 and 1.

This criterion has several interesting properties. Firstly, it has the same value irre-
spective of the affine transformation applied to the attribute vectors, in other words the
addition of a constant and / or the multiplication by a scalar of the vectors associated to
the elements do not affect the value Qinertia. Secondly, the order of attributes has no
effect on the result.

However, this criterion has also limitations. It is undefined if the vectors are identi-
cal, since the total inertia is then zero. This is not really a problem, because in this case,
the detection of the communities will be based only on the relational data. Moreover, as
the modularity introduced by Newman, this criterion could present a resolution limit.
If it is the case, the solution proposed by Arenas et al. or Reichardt and et al. could be
adapted for our criterion [1, 27].

4 I-Louvain

As stated above, a direct application of our measure Qinertia is the community de-
tection in social networks represented by an attributed graph G = (V,E) where V
is a set of vertices, E is a set of edges and where each vertex v ∈ V is described
by a real attribute vector v = (v1, . . . , vj , . . . , vT ) ∈ R|T | [36]. In this section, we
propose a community detection method for real attributed graphs which exploits the
inertia-based modularity Qinertia jointly with the Newman modularity QNG(P). Our
method, called I-Louvain, is based on the exploration principle of the Louvain method.
It consists in the optimization of the global criterion QQ+(P) defined by:

QQ+(P) = QNG(P) +Qinertia(P) (2)

with:

QNG(P) =
1

2m
Σvv′

[
(Avv′ − kv · kv′

2m
)δ(cv, cv′)

]
(3)

where kv is the degree of vertex v ∈ V , A is the adjacency matrix associated to G,
m is the number of edges and δ the Kronecker function.

It may be noted that another combination of these criteria can be used, for instance to
give more importance to one kind of data. However, in the general case where attributes
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and relational information have the same weight, it is not useful to normalize the criteria
QNG(P) and Qinertia(P) because they have been normalized to take values between
-1 and 1, as mentioned in the previous section.

The I-Louvain method is presented in Algorithm 1. The process begins with the
discrete partition in which each vertex is in its own cluster (line 1). The algorithm is
divided in two phases that are repeated.

ALGORITHM 1 : I-Louvain
Input : An attributed graph G
Output : A partition Pres

1 P ← discrete partition of vertices of V ;
2 A ← adjacency matrix of G;
3 D ← matrix of the squares of the euclidean distances between the vertices of V

calculated on their attributes;
4 repeat
5 end← false;
6 QQ+

anterior ← QQ+(P);
7 repeat
8 foreach vertex u of V do
9 B ← neighbor community maximizing the gain of QQ+;

10 if move of u in B induces a strictly positive gain then
11 Affect u to the community B;
12 Update the partition P after the transfer of u into B;
13 end
14 end
15 until no vertex can be moved anymore;
16 if QQ+(P) > QQ+

anterior then
17 G,A ← Fusion Matrix Adjacency(A,P);
18 D ← Fusion Matrix Inertia(D,P);
19 else
20 end← true;
21 end
22 until end;
23 Pres ←P;

The first one is an iterative phase which consists in considering each vertex v and
its neighbors in the graph and to evaluate the modularity gain induced by a move of v
from its community to that of its neighbors. The vertex v is affected to the community
for which the gain of the global criterion QQ+(P), defined in equation (2), is maxi-
mum. This process is applied repeatedly and sequentially for all vertices until no further
improvement can be obtained.

If there is an increase of the modularity during the first phase, the second phase
consists in building a new graph G′ from the partition P ′ obtained at the end of the
previous phase. This second phase involves two procedures: Fusion Matrix Adjacency
and Fusion Matrix Inertia. The procedure Fusion Matrix Adjacency is identical to the



6

one used in the Louvain method [4] and it exploits only the relational information.
It consists in building a new graph. The vertices of this new graph G′ correspond to
the communities obtained at the end of the previous phase. The weights of the edges
between these new vertices are given by the sum of the weights of the edges between
vertices in the corresponding two communities. The edges between vertices of the same
community lead to a self-loop for this community in the new network.

The procedure Fusion Matrice Inertia exploits the attributes and allows to compute
the distances between the vertices of G′ from the distances between the vertices of G.
If the graph G considered at the beginning of the iterative phase includes |V | vertices
then the matrix D is a symmetric square matrix of size |V | × |V | in which each term
D [a, b] is the square of the distance between the vertices va and vb of V . At the end
of the iterative phase, a partition P ′ of V in k communities is obtained, in which each
community will correspond to a vertex of V ′ in the new graphG′ built by the procedure
Fusion Matrix Adjacency. The matrixD′ associated to this new graphG′ is defined by:

D′ [x, y] =
∑

(va,vb)∈V×V

D [va, vb] · δ(τ(va), x) · δ(τ(vb), y) (4)

where the function τ gives for each vertex v ∈ V the vertex v′ ∈ V ′ corresponding to
its cluster in P ′.

One advantage of the Louvain method is the local optimization of the modularity
done during the first phase [2]. In the same way, in I-Louvain, the global modularity
of a new partition can be quickly updated. There is no need to compute it again from
scratch after each move of a vertex. Indeed, the modularity gain can be computed using
only local information concerning the move of the vertex from its community to that
of its neighbor. Given P = (A,B,C1, .., Cr) the original partition and P ′ = (A \
{u} , B ∪ {u} , C1, .., Cr) the partition induced by the move of a vertex u from its
community A to the community B where A \ {u} denotes the community A deprived
of the vertex u, the modularity gain induced by the transformation of P in P ′ is equal
to:

∆Qinertia =Qinertia(P
′)−Qinertia(P) (5)

=
1

N · I(V )

∑
v∈B

[
I(V, u) · I(V, v)

2N · I(V )
−D [u, v]

]
− 1

N · I(V )

∑
v∈A\{u}

[
I(V, u) · I(V, v)

2N · I(V )
−D [v, v′]

]
(6)

The proof of this proposition is not given due to the limited size of the article but
it is detailed in [5]. One can notice that the variation of modularity resulting from the
move of the vertex u from its community to an other one is the same whatever its
new community. It follows that the modularity gain can be computed in taking only
into account the increase (or decrease) induced by its affectation in its new community
corresponding to the first term in Eq. 6. This confirms that the optimization of Qinertia

can be done using a local computation based on the information related to the affectation
of the vertex u in its new community.
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5 Evaluation of I-Louvain method

Our first experiments aim at evaluating on a real dataset the performances of I-Louvain,
which exploits attributes and relational data, compared with methods based only on one
type of data, K-means for the attributes and Louvain for the relations and with ToTeM,
an other community detection method designed for attributed graphs which exploits
the two types of information, notably numerical attributes [6]. In the following exper-
iments, we study the robustness of our method to various degradations of an artificial
network and we compare its performances, according to the accuracy as well as the nor-
malized mutual information, with K-means, Louvain and ToTeM. Among the methods
exploiting the both kinds of data (relationships and attributes), Totem has been retained
because it has been showned experimentally that it provides better results than simpler
methods [6, 5] Finally, the last experiments aim at studying the impact of increasing the
number of vertices and edges on the run-time evolution.

The I-Louvain source code and the dataset used for the experiments in the paper are
available for download3. The Louvain source code is one proposed by Thomas Aynaud
in 2009 4.

5.1 Evaluation of I-Louvain method on a real network

Firstly, we present results obtained on a real dataset built using the databases DBLP
(06/18/2014) and Microsoft Academic Search (02/03/2014). DBLP allows to generate
a graph G = (V,E) with |V | = 2515 and |E| = 5313 that reflects the coauthor relation-
ship: a vertex represents an author and two authors are linked if they have copublished
at least one article in a conference in computer science also refereed in Microsoft Aca-
demic Search. The 23 keywords (data mining, Computer vision, etc.) associated to the
conferences in the Microsoft Academic Search database are used to define 23 attributes
on the vertices: the number of publications of an author in conferences associated to
a given keyword corresponds to a component of his attribute vector. These keywords
allow also to define a partition corresponding to the ground truth for this dataset: the
true community of an author corresponds to the research field, identified by the corre-
sponding key word, in which he has mainly published.

The results are evaluated using the Normalized Mutual Information (NMI) derived
from the mutual information (MI) and entropy (H), and defined by :[33]

NMI(P1,P2) =
MI(P1,P2)√
H(P1)H(P2)

(7)

Table 1 presents the results provided by I-Louvain and those obtained by Louvain, K-
means with K = 22 and ToTem. In this experiment, where we have a ground truth,
the results confirm the interest of using the two kinds of information. Indeed the NMI
of K-means is equal to 0.58 whereas the number of clusters that must be identified is
given as parameter for this algorithm, when it is equal to 0.69 for Louvain. Moreover,

3 I-Louvain source code and dataset: http://bit.ly/ILouvain
4 http://perso.crans.org/aynaud/communities/
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with a NMI equals to 0.72, the proposed method outperforms ToTeM which obtains
only 0.69. These results confirm the interest of I-Louvain to improve the detection of
the communities.

Table 1. Evaluation according to the normalized mutual information (NMI)

Louvain K-means ToTeM I-Louvain
NMI 0.69 0.58 0.69 0.72

5.2 Evaluation of I-Louvain method on artificial data

In this second set of experiments, we evaluate the robustness of our method on artificial
networks after different transformations of a reference network R, composed of 168
edges and 99 vertices uniformly distributed into 3 classes. This reference network has
also been generated with the model proposed by Dang [8]. Moreover, each vertex is
described by an attribute following a normal distribution with a standard deviation σ
equal to 7 and a mean equal tom1 = 10 for the first class,m2 = 40 for the second class
and m3 = 70 for the third class. The class of the vertex in R is used as a ground truth
for the evaluation. From this reference network R we built four families of networks:

– R.1.x in which the relational information is weakened in R, by the substitution of
a percentage p of edges within class by edges between classes with p = 0.25 for
R.1.1 and p = 0.5 for R.1.2;

– R.2.x in which the values of the attributes are less representative of each class, with
a standard deviation σ = 10 for R.2.1 and σ = 12 for R.2.2;

– R.3.x which contain more vertices than R, 999 vertices for R.3.1 and 5,001 for
R.3.2;

– R.4.x which contain more edges than R by introducing respectively 5 edges per
new vertex in R.4.1 and 10 in R.4.2.

The results of I-Louvain are compared to those of the Louvain method, K-means
with k = 3 and ToTeM. Tables 2 and 3 present respectively the accuracy (AC) and
normalized mutual information (NMI). In exploiting the attributes and the relational in-
formation, the I-Louvain method is more robust than the Louvain method in the case
of a degradation of the relational information. The K-means gives good results when
the size of the network increases, but it requires the number of clusters as parameter.
Despite this advantage, it obtains less good results than I-Louvain in front of a degra-
dation of the attributes, notably for the NMI. Finally, compared to ToTeM, I-Louvain
produces better or similar results. It is notably better for a larger number of vertices.

5.3 Run-time of I-Louvain

In the last set of experiments, we evaluate the run-time of I-Louvain on different net-
works. Figure 1 presents the run-time evolution against the number of vertices |V |.
In our experiments, we consider attributed networks with two attributes and where the
number of edges |E| = 3× |V |. These results indicate that I-Louvain is able to handle
large graphs.
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Table 2. Evaluation according to the accuracy (AC) and the number of clusters (#cl) (* means
that the transformation has no influence on the results for this method)

Louvain K-means ToTeM I-Louvain
AC #cl. AC AC #cl. AC #cl.

Reference network
R 84% 4 96% 97% 3 98% 3
Degradation of the relational information
R.1.1 33% 8 96%* 18% 30 78% 5
R.1.2 23% 9 96%* 14% 36 63% 6
Degradation of the attributes
R.2.1 84%* 90% 95% 3 96% 3
R.2.2 84%* 87% 20% 26 98% 3
Number of vertices
R.3.1 50% 11 97% 97% 3 84% 4
R.3.2 40% 12 98% 0,5% 1,518 85% 4
Number of edges
R.4.1 96% 3 96%* 95% 3 94% 3
R.4.2 97% 3 96%* 98% 3 98% 3

Table 3. Evaluation according to the NMI (* means that the transformation has no influence on
the results for this method)

NMI Louvain K-means ToTeM I-Louvain
Reference network
R 0.78 0.88 0.86 0.93
Degradation of the relational information
R.1.1 0.22 0.88* 0.48 0.60
R.1.2 0.11 0.88* 0.37 0.35
Degradation of the attributes
R.2.1 0.78* 0.72 0.81 0.88
R.2.2 0.78* 0.63 0.56 0.93
Number of vertices
R.3.1 0.59 0.88 0.85 0.80
R.3.2 0.58 0.89 0.37 0.77
Number of edges
R.4.1 0.84 0.88* 0.80 0.81
R.4.2 0.87 0.88* 0.91 0.91

6 Conclusion

In this article, we studied the problem of attributed graph clustering when the vertices
are described by real attributes. Inspired by the Newman modularity, we introduce a
modularity measure, based on inertia. This measure is suited for assessing the qual-
ity of a partition of elements represented in a real vector space. We also introduced
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Fig. 1. Run-time of I-Louvain on different networks G = (V,E) with |E| = 3× |V |

I-Louvain, an algorithm which combines our criterion with Newman’s modularity in
order to detect communities in attributed graphs. We demonstrated formally that this
new algorithm can be optimized in its iterative phase. As we show in the experiments,
using jointly the relational information and the attributes, I-Louvain detects more effi-
ciently the communities than ToTeM or methods using only one type of data. Moreover,
the method is resistant toward a degradation of the relations or the attributes, an increase
in the density of the relations or the size of the network. Finally, the experiments con-
firm the scalability of the method.

The authors would like to thank P.N. Mougel for his help in building the biblio-
graphic dataset.
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