
HAL Id: ujm-01248274
https://ujm.hal.science/ujm-01248274

Preprint submitted on 24 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FINITE CONVERGENT PRESENTATIONS OF
PLACTIC MONOIDS FOR SEMISIMPLE LIE

ALGEBRAS
Nohra Hage

To cite this version:
Nohra Hage. FINITE CONVERGENT PRESENTATIONS OF PLACTIC MONOIDS FOR
SEMISIMPLE LIE ALGEBRAS. 2015. �ujm-01248274�

https://ujm.hal.science/ujm-01248274
https://hal.archives-ouvertes.fr


FINITE CONVERGENT PRESENTATIONS OF PLACTIC MONOIDS FOR
SEMISIMPLE LIE ALGEBRAS 1

NOHRA HAGE

Abstract – We study rewriting properties of the column presentation of plactic monoid for any

semisimple Lie algebra such as termination and confluence. Littelmann described this presentation

using L-S paths generators. Thanks to the shapes of tableaux, we show that this presentation is finite

and convergent. We obtain as a corollary that plactic monoids for any semisimple Lie algebra satisfy

homological finiteness properties.

Keywords – Plactic algebra; Littelmann path model; standard tableau; convergent presentations.

M.S.C. 2010 – 16S15, 68Q42, 20M05, 68R05, 06B15

1. INTRODUCTION

Using his path model, Littelmann defined in [Lit96] a plactic algebra for any semisimple Lie algebra.

As a consequence, he gave some presentations by generators and relations of the plactic algebra of

types A, B, C, D and G2. Using a case-by-case analysis, the plactic congruence can be also defined

using Kashiwara’s theory of crystal bases [DJM90, Kas91, KN94, Kas95]. Lascoux, Leclerc and Thibon

presented in [LLT95] the plactic monoid of type A using the theory of crystal bases and gave a presen-

tation of the plactic monoid of type C without proof. Shortly after that, Lecouvey in [Lec02] and Baker

in [Bak00] described independently the plactic monoid of type C using also Kashiwara’s theory of crystal

bases. Plactic monoids of types B, D and G2 were introduced by Lecouvey, see [Lec07].

The plactic monoid of rank n introduced by Lascoux and Schützenberger in [LS81], corresponds to

the representations of the general linear Lie algebra of n by n matrices. This Lie algebra is of type A, so

the corresponding plactic monoid is known as the plactic monoid of type A, and denoted by Pn(A).

The monoid Pn(A) has found several applications in algebraic combinatorics and representation the-

ory [LS81, LLT95, Ful97, Lot02]. Similarly, plactic monoids for any types have many applications like

the combinatorial description of the Kostka-Foulkes polynomials which arise as entries of the character

table of the finite reductive groups [Lec06].

More recently, plactic monoids were investigated by rewriting methods. In [KO14], Kubat and

Okninski showed that for n > 3, there is no finite completion of the presentation of the monoid Pn(A)

with the Knuth generators. Bokut et al. in [BCCL15] and Cain et al. in [CGM15] constructed indepen-

dently finite convergent presentation of the monoid Pn(A) by adding columns generators. This presenta-

tion is called the column presentation. Having a finite convergent presentation of the monoid Pn(A) had

many consequences. In particular, the column presentation was used by Lopatkin in [Lop14] to construct

Anick’s resolution for the monoid Pn(A) and by the author and Malbos in [HM15] to construct coherent
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2. Plactic algebra

presentations of it. Note that coherent presentation extends the notion of a presentation of the monoid

by homotopy generators taking into account the relations among the relations. Using Kashiwara’s theory

of crystal bases, the author generalized the column presentation for type A and constructed a finite con-

vergent presentation of plactic monoid of type C by adding admissible column generators [Hag14]. A

bit later, a similar column presentation was obtained by Cain et al. for plactic monoids of types B, C, D

and G2 [CGM14].

In the present work, we consider plactic monoids for any semisimple Lie algebra. The column

presentation of these monoids was introduced by Littelmann in [Lit96] using L-S paths. An L-S path

corresponds to a column for type A, and to an admissible column for types C, B, D and G2 in the

Lecouvey sense, see [Lec07]. We study the column presentation using rewriting methods. For this, we

consider a rewriting system where the generating set contains the finite set of L-S paths. The right-hand

sides of rewriting rules are standard tableaux. The rewriting system rewrites two L-S paths that their

concatenation do not form a standard tableau to their corresponding standard tableau form. Using the

shapes of tableaux, we show that this presentation is finite and convergent. As a consequence, we deduce

that plactic monoids for any types satisfy some homological finiteness properties.

Note that the convergent column presentation of plactic monoids for any semisimple Lie algebra

given in this paper using L-S paths coincides with the presentations constructed for type A in [CGM15,

BCCL15], for type C in [Hag14] and for types B, C, D and G2 in [CGM14].

The paper is organised as follows. In Section 2, we recall the definitions of paths, root operators

and L-S paths. After we present the definition and some properties of standard tableaux as defined

by Littelmann and we recall the definition of the plactic algebra for any semisimple Lie algebra. In

Section 3, we recall some rewriting properties of the presentations of monoids in term of polygraphs.

After, we show that the column presentation of the plactic monoid for any semisimple Lie algebra is

finite and convergent.

2. PLACTIC ALGEBRA

2.1. L-S Paths

In this section, we recall the definitions and properties of paths, root operators and L-S paths. We refer

the reader to [Lit94, Lit95, Lit96] for a full introduction.

2.1.1. Root system. Let g be a semisimple Lie algebra. Let V be the finite vector space with standard

inner product 〈·, ·〉 spanned by Φ ⊂ V \ {0} the root system of g. Let Φ+ be the set of its positive roots.

A positive root α inΦ+ is simple, if it can not be written as α1 + α2, where α1, α2 ∈ Φ
+. For a root α,

define by α∨ := 2α
〈α,α〉 its coroot. Denote by

X =
{
v ∈ V

∣

∣ 〈v, α∨
i 〉 ∈ Z, for all i

}

the weight lattice of the Lie algebra g and set XR := X ⊗Z R. A fundamental weight ωi in X satisfy

〈ωi, α
∨
j 〉 = δij, for all i and j. The set of dominant weights is

X+ =
{
λ ∈ X

∣

∣ 〈λ, α∨
i 〉 ≥ 0, for all i

}
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2.1. L-S Paths

and the dominant chamber is

X+
R

=
{
λ ∈ XR

∣

∣ 〈λ, α∨
i 〉 ≥ 0, for all i

}
.

2.1.2. Example. Let g = sl3. Consider V =
{
(x1, x2, x3) ∈ R

3
∣

∣ x1+x2+x3 = 0
}

and let {ε1, ε2, ε3}

be the canonical basis of R3. The simple roots of g are α1 = ε1 − ε2 and α2 = ε2 − ε3. Its fundamental

weights are ω1 = ε1 and ω2 = ε1 + ε2 (we still denote by εi the projection of εi into V). An example

of dominant weight isω1 +ω2. The dominant chamber is the hatched area on the following figure:

ε1 = ω1

ε2

ε3

α1

ω1 +ω2

ω2α2

0

2.1.3. Example. Let g = sp4. Consider V = R
2 with its canonical basis {ε1, ε2}. The simple roots are

α1 = ε1 − ε2 and α2 = 2ε2. The fundamental weights are ω1 = ε1 and ω2 = ε1 + ε2. An example of

dominant weight is ω1 +ω2. The dominant chamber is the hatched area on the following figure:

0
ε2 α2

ε1 = ω1
α1 ω2

ω1 +ω2

For more informations, we refer the reader to [Bou68, Hum78].

2.1.4. Paths. A path is a piecewise linear, continuous map π : [0, 1] −→ XR. We will consider paths

up to a reparametrization, that is, the path π is equal to any path π ◦ ϕ, where ϕ : [0, 1] −→ [0, 1] is a

piecewise linear, nondecreasing, surjective, continuous map. The weight of a path π is wt(π) = π(1).

For example, for the Lie algebra g = sln, the paths πεi : t 7→ tεi are of weight εi, for i = 1, . . . , n.

Denote by

Π =
{
π : [0, 1] −→ XR

∣

∣ π(0) = 0 and π(1) ∈ X
}

the set of all paths with sources 0 such that their weight lies in X. Given two paths π1 and π2 in Π, the

concatenation of π1 and π2, denoted by π := π1 ⋆ π2, is defined by:

π(t) :=

{
π1(2t) for 0 ≤ t ≤ 1

2

π1(1) + π2(2t − 1) for 12 ≤ t ≤ 1

3



2. Plactic algebra

Denote by ZΠ the algebra of paths defined as the free Z-module with basis Π whose product is given by

the concatenation of paths and where the unity is the trivial path

θ : [0, 1]−→ XR

t 7→ 0.

2.1.5. Example. Let g = sl3. Consider the paths π1 : t 7→ tε1 and π2 : t 7→ tε2. The path π1 ⋆ π2 is

the path on the following figure:

ε1 = ω1

ε2

ε3

ω2

0

2.1.6. Root operators. For each simple root α, one defines root operators eα, fα : Π → Π ∪ {0} as

follows. Every path π in Π is cutted into three parts, i.e., π = π1 ⋆ π2 ⋆ π3. Then the new path eα(π) or

fα(π) is either equal to 0 or π1 ⋆ sα(π2) ⋆ π3, where sα denote the simple reflection with respect to the

root α. In other words, consider the function

hα : [0, 1]−→ R

t 7→ 〈π(t), α∨〉

Let Q := min(Im(hα) ∩ Z) be the minimum attained by hα. If Q = 0, define eα(π) = 0. If Q < 0, let

t1 = min{ t ∈ [0, 1]
∣

∣ hα(t) = Q }

and

t0 = max{ t < t1
∣

∣ hα(t) = Q + 1 }.

Denote by π1, π2 and π3 the paths defined by

π1(t) :=π(tt0)

π2(t) :=π(t0 + t(t1 − t0)) − π(t0)

π3(t) :=π(t1 + t(1− t1)) − π(t1), for t ∈ [0, 1].

By definition of the πi, we have π = π1 ⋆ π2 ⋆ π3. Then eα(π) = π1 ⋆ sα(π2) ⋆ π3.

Similarly, one can define the operator fα. Let

p = max{ t ∈ [0, 1]
∣

∣ hα(t) = Q }.

Denote by P the integral part of hα(1) −Q. If P = 0, define fα(π) = 0. If P > 0, let x > p such that

hα(x) = Q + 1 and Q < hα(x) < Q+ 1, for p < t < x.

4



2.1. L-S Paths

Denote by π1, π2 and π3 the paths defined by

π1(t) :=π(tp)

π2(t) :=π(p + t(x− p)) − π(p)

π3(t) :=π(x + t(1− x)) − π(x), for t ∈ [0, 1].

By definition of the πi, we have π = π1 ⋆ π2 ⋆ π3. Then fα(π) = π1 ⋆ sα(π2) ⋆ π3.

These operators preserve the length of the paths. We have also that if fα(π) = π
′
6= 0 then

eα(π
′
) = π 6= 0 and wt(fα(π)) = wt(eα(π)) − α.

For all simple root α, let A be the subalgebra of EndZ(ZΠ) generated by the root operators fα and

eα. Define Π+ to be the set of paths π such that the image is contained in X+
R

and denote by Mπ the

A-module Aπ. Let Bπ be the Z-basis Mπ ∩Π ofMπ. In other words, for a finite set I, we have

Bπ =
{
fi1 . . . fir(π)

∣

∣ π ∈ Π+ and i1, . . . , ir ∈ I
}
.

For a dominant weight λ, consider the path πλ(t) = tλ that connects the origin with λ by a straight

line. Denote byMλ the A-module Aπλ generated by the path πλ. In addition, the Z-module Mλ has for

a basis the set Bπλ consisting of all paths inMλ.

Given two paths π and π
′

in Π+, if π(1) = π
′
(1), then the A-modulesMπ andMπ

′ are isomorphic.

For π in Π+, let η in Mπ be an arbitrary path. The minimum of the function hα(t) = 〈π(t), α∨〉 is an

integer for all simple roots. In addition, we have eα(η) = 0 if and only if η = π.

2.1.7. Example. Let g = sl3 and let α1, α2 be its simple roots and ω1,ω2 be its fundamental weights.

For λ = ω1 +ω2, consider the path πλ : t 7→ tλ. Let us compute Bπλ . We have

ω1

ε2

ε3

fα2
(πλ )

α1

fα2
(fα1

(πλ))

fα2
(fα2

(fα1
(πλ )))

fα1
(fα2

(πλ))

fα1
(fα1

(fα2
(πλ )))

λ

πλ
ω2

fα1
(πλ)

α2

fα2
(fα1

(fα1
(fα2

(πλ))))
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2. Plactic algebra

where
πλ : t −→ tλ

fα1
(πλ) =: π2 : t −→ tα2

fα2
(πλ) =: π3 : t −→ tα1

fα2
(π2) =: π4 : t −→

{
−tα2 for 0 ≤ t ≤ 1

2

(t− 1)α2 for 1
2
≤ t ≤ 1

fα1
(π3) =: π5 : t −→

{
−tα1 for 0 ≤ t ≤ 1

2

(t− 1)α1 for 1
2
≤ t ≤ 1

fα2
(π4) =: π6 : t −→ −tα2

fα1
(π5) =: π7 : t −→ −tα1

fα2
(π7) = fα1

(π6) =: π8 : t −→ −tλ

Hence we obtain Bπλ = {πλ, π2, π3, π4, π5, π6, π7, π8}.

2.1.8. Crystal graphs. For π in Π+, let G(π) be the oriented graph with set of vertices Bπ and an

arrow π
i→ π ′ means that fαi

(π) = π ′ and eαi
(π ′) = π. The graph G(π) is also called a crystal

graph, see [Kas95].

For example, consider the semisimple Lie algebra g = sl3. For λ = ω1 +ω2, the elements of Bπλ
obtained in Example 2.1.7 can be represented in the following crystal graph G(Bπλ)

πλ
1

����
��
�� 2

��
??

??
??

π
2

2
��

π3

1
��

π4

2
��

π5

1
��

π6

1   
@@

@@
@@

π7

2��~~
~~
~~

π8

2.1.9. L-S paths. For a dominant weight λ, the Lakshmibai-Seshadri paths, L-S paths for short, of

shape λ are the paths π of the form

π = fα1
◦ . . . ◦ fαs(πλ)

where α1, . . . , αs are simple roots of a semisimple Lie algebra g. That is, these paths are all the elements

of Bπλ .

2.1.10. Example. Consider g = sl3 and let ω1 and ω2 be its fundamental weights. Let λ = ω1 +ω2,

the L-S paths of shape λ are all the elements of Bπλ as obtained in Example 2.1.7. The L-S paths of

shape ω2 are the elments of Bπω2
, with

Bπω2
= { πε1+ε2 , πε1+ε3 , πε2+ε3 }.

For the Lie algebra sln, the L-S paths of shape ω1 are the paths πεi , for i = 1, . . . , n + 1.

6



2.2. Tableaux

2.2. Tableaux

In this section, we recall the definition of standard tableaux as defined by Littelmann in [Lit96]. Fix an

enumeration ω1, . . . ,ωn of the fundamental weights of a semisimple Lie algebra g.

2.2.1. Young diagram. A Young diagram is a finite collection of boxes, arranged in left-justified rows

such that the length of each row is bigger or equal to the one below it. Note that the rows are enumerated

from top to bottom and the columns from the right to the left. For example, the Young diagram with six

boxes in the first row, four boxes in the second boxes and one box in the third row is the following

.

2.2.2. L-S monomials. Let λ = λ1 + . . . + λk, where λ1, . . . , λk are dominant weights. If for all

i = 1, . . . , k, πi is an L-S path of shape λi, then the monomial m = π1 ⋆ . . . ⋆ πk is called an L-S
monomial of shape λ = (λ1, . . . , λk).

2.2.3. Young tableau. A Young tableau of shape λ = a1ω1 + . . . + anωn is an L-S monomial

⋆
1≤i≤n
1≤j≤n

π1,ωj
⋆ . . . ⋆ πai,ωj

where πi,ωj
is an L-S path of shape ωj, for 1 ≤ i ≤ n. That is, the first a1 paths are of shape ω1, the

next a2 are of shape ω2,. . . , the final an paths are of shape ωn.

2.2.4. Standard tableau. Let m be a Young tableau of shape λ = a1ω1 + . . . + anωn. The Young

tableau m is called standard of shape λ ifm ∈ A(πω1
⋆ . . . ⋆ πωn).

2.2.5. Example. For typeAn, consider the ordered alphabet An+1 = {1 < · · · < n+1}. For a dominant

weight λ = a1ω1 + . . . + anωn, set pi = ai + . . . + an. Consider the Young diagram with p1 boxes

in the first row, p2 boxes in the second row, etc. A Young tableau of shape λ and type A is a filling of

the boxes of this Young diagram with elements of the alphabet An+1 such that the entries are striclty

increasing in the column from top to bottom.

A standard tableau of shape λ = ω1 + . . . +ωk is a Young tableau of shape λ and type A such that

the entries are weakly increasing in the rows from left to right. In other words all the standard tableaux

of shape λ are the elements of Bπω1
⋆...⋆πωk

, where the L-S monomial πω1
⋆ . . . ⋆πωk

corresponds to the

Young tableau with only 1’s in the first row, 2’s in the second row,. . . , k’s in the k-th row. Note that the

standard tableaux of type A are also called semistandard tableaux in [Ful97].

For type A3, the following Young tableau is standard of shape ω1 + 2ω2 +ω3

1 1 1 2
2 3 3
3 .

2.2.6. Example. For type Cn, consider the ordered alphabet Cn = {1 < . . . < n < n < . . . < 2 < 1}.

For a dominant weight λ = a1ω1 + . . . + anωn, set p1 = a1 + 2a2 + . . . + 2an and for i ≥ 2

7



3. Finite convergent presentation of plactic monoids

set pi = 2ai + . . . + 2an. Consider the Young diagram with p1 boxes in the first row, p2 boxes in

the second row, etc. A Young tableau of shape λ and type C is a filling of the boxes of this Young

diagram with elements of the alphabet Cn such that the entries are striclty increasing in the column from

top to bottom, but i and i are never entries in the same column. In addition, for each pair of columns

(Ca1+2j−1, Ca1+2j), j = 1, . . . , a2 + . . . + an, either these columns are equal or the column Ca1+2j is

obtained from Ca1+2j−1 by exchanging an even number of times an entry k, 1 ≤ k ≤ 1, in Ca1+2j−1 by

k, see [GL12, Section 4.2].

A standard tableau of shape λ = ω1 + . . . +ωk is a Young tableau of shape λ and type C such that

the entries are weakly increasing in the rows from left to right. Note that the standard tableaux of type C

are also called symplectic tableaux in [Lec02].

For type C3, the following Young tableau is a standard tableau of shape ω1 + 2ω2

1 1 1 2 3

2 2 3 3

3 3 2 1

.

2.3. Plactic algebra for any semisimple Lie algebra

Let us recall the definition of the plactic algebra for any semisimple Lie algebra and we refer the reader

to [Lit96] for more details.

Let ZΠ0 be the A-submodule AΠ+ of ZΠ generated by the paths in Π+. For two paths π1 and π2 in

ZΠ0, denote by π+1 and π+2 the unique paths inΠ+ such that π1 ∈Mπ+1
and π2 ∈Mπ+2

. One can define a

relation ∼ on ZΠ0 by : π1 ∼ π2 if, and only if, wt(π+1 ) = wt(π+2 ) and ψ(π1) = π2 under the isomorphism

ψ :Mπ+1
−→Mπ+2

. The plactic algebra for g is the quotient

ZP := ZΠ0/ ∼ .

For π ∈ ZΠ0, we denote by [π] ∈ ZP its equivalence class. The classes [m] of standard Young tableaux

form a basis of the plactic algebra ZP, see [Lit96, Theorem 7.1].

2.3.1. Example ([Lit96, Theorem C]). For type A, consider the alphabet {1, . . . , n}. The plactic con-

gruence coincides with the congruence generated by the following families of relations on the word

algebra Z{1, . . . , n} :

(a) xzy = zxy for 1 ≤ x < y ≤ z ≤ n.

(b) yxz = yzx for 1 ≤ x ≤ y < z ≤ n.

(c) 12 . . . n is the trivial word.

3. FINITE CONVERGENT PRESENTATION OF PLACTIC MONOIDS

3.1. Rewriting properties of 2-polygraphs

In this section, we recall some rewriting properties of the presentations of monoids. These presentations

are studied in terms of polygraphs. For more informations, we refer the reader to [GM14].

8



3.2. Column presentation

A 2-polygraph (with only one 0-cell) is a pair Σ = (Σ1, Σ2) where Σ1 is the set of generating 1-cells

and Σ2 is the set of generating 2-cells, that is rules of the form u ⇒ v, with u and v are words in the

free monoid Σ∗
1. A monoid M is presented by a 2-polygraph Σ if M is isomorphic to the quotient of the

free monoid Σ∗
1 by the congruence generated by Σ2. A 2-polygraph Σ is finite if Σ1 and Σ2 are finite. A

rewriting step of Σ is a 2-cell of the form wϕw ′ : wuw ′ %9 wvw ′, where ϕ : u %9 v is a 2-cell in

Σ2 and w and w ′ are words of Σ∗
1. A rewriting sequence of Σ is a finite or infinite sequence of rewriting

steps. We say that u rewrites into v if Σ has a nonempty rewriting sequence from u to v. A word of Σ∗
1

is a normal form if Σ has no rewriting step with source u. A normal form of u is a word v of Σ∗
1 that is

a normal form and such that u rewrites into v. We say that Σ terminates if it has no infinite rewriting

sequences. We say that Σ is confluent if for any words u, u ′ and u" of Σ∗
1, such that u rewrites into u ′

and u", there exists a word v in Σ∗
1 such that u ′ and u" rewrite into v. We say that Σ is convergent if it

terminates and it is confluent. Note that a terminating 2-polygraph is convergent if every word admits a

unique normal form.

3.2. Column presentation

Let g be a semisimple Lie algebra and let ω1, . . . ,ωn be its fundamental weights. Let Bi be the set of

L-S paths of shape ωi and B = ∪ni=1Bi. Denote by B
∗ the free monoid over B. A word on B

∗ is a

concatenation of L-S paths.

For every L-S paths c1 and c2 in B such that c1 ⋆ c2 is not a standard tableau, we define a 2-cell

c1 ⋆ c2
γc1,c2

%9 T

where T is the unique standard tableau such that [T ] = [c1 ⋆ c2].

Let denote by Path(n) the 2-polygraph whose set of 1-cells is B and the set of 2-cells is

Path2(n) =
{
c1 ⋆ c2

γc1,c2
%9 T

∣

∣ c1, c2 ∈ B and c1 ⋆ c2 is not a standard tableau
}
.

This presentation is called the column presentation. It is a presentation of the plactic monoid for any

semisimple Lie algebra [Lit96, Theorem B]. Let us prove that it is terminating and confluent.

3.2.1. Order on the tableaux. Consider the partial order 6 of dominant weights defined by

λ1 6 λ2 if and only if λ1 − λ2 ∈ NΦ+

where λ1 and λ2 are dominant weights. That is, λ1 − λ2 is a nonnegative integral sum of positive roots.

Using this order, one can find for each dominant weight, a finite number of dominant weights that are

smaller than it, then the partial order 6 is a well-founded order.

Let us define an order � on the tableaux of B∗ as follows. For two tableaux m and m ′ of shape λ

and λ ′ respectively, we have

m �m ′ if and only if λ 6 λ ′.

3.2.2. Remark. In the proof of Theorem B in [Lit96], Littelmann showed that for every tableau m of

shape λ that it is not standard, the shape of the standard tableau m ′ such that [m] = [m ′] is strictly

smaller than λ.

9



3. Finite convergent presentation of plactic monoids

3.2.3. Lemma. The 2-polygraph Path(n) is terminating.

Proof. Let us show that the 2-polygraph Path(n) is compatible with the order �. We have to prove that

if h %9 h ′, then h ′ ≺ h, where h is not a sandard tableau and h ′ is a standard tableau of shape λ ′.

There is two cases depending on whether or not h is a tableau.

Suppose that h is a tableau of shape λ that it is not standard, then by Remark 3.2.2 we have λ ′ < λ. Thus

we obtain that h ′ ≺ h.

Suppose that h is an L-S monomial of shape λ that it is not a tableau. By decomposing each L-S path

of shape ωi, for i = 1, . . . , n, in h into concatenation of L-S paths of shape ω1, we transform the L-S

monomial h into a tableau of shape kω1, with k ∈ N. Again by Remark 3.2.2, we have λ ′ < kω1. Thus

we obtain that h ′ ≺ h.

Hence, rewriting an L-S monomial that is not a standard tableau always decreases it with repsect to

the order �. Since every application of a 2-cell of Path(n) yields a ≺-preceding tableau, it follows that

any sequence of rewriting using Path(n) must terminate.

3.2.4. Lemma. The 2-polygraph Path(n) is confluent.

Proof. Let m ∈ B
∗ and T , T ′ be two normal forms such that m %9 T and m %9 T ′. It is sufficient

to prove that T = T ′. Suppose T = c1 ⋆ . . .⋆ck, where the L-S monomial c1 ⋆ . . .⋆ck is a standard Young

tableau such that [m] = [c1 ⋆ . . . ⋆ ck]. Similarly, T ′ = c ′1 ⋆ . . . ⋆ c
′
l where the L-S monomial c ′1 ⋆ . . . ⋆ c

′
l

is a standard Young tableau such that [m] = [c ′1 ⋆ . . . ⋆c
′
l ]. Since [m] = [c1 ⋆ . . . ⋆ck] = [c ′1 ⋆ . . . ⋆c

′
l ] and

the standard tableaux form a cross-section of the plactic monoid for a semisimple Lie algebra g, we have

k = l and ci = c
′
i , for all i = 1, . . . , k. Thus T = T ′. Since the 2-polygraph Path(n) is terminating, and

rewriting any non-standard tableau must terminate with a unique normal form, Path(n) is confluent.

Every semisimple Lie algebra g admits a finite number of fundamental weights, then there is a finite

number of L-S paths of shape ωi, for i = 1, . . . , n. Thus the 2-polygraph Path(n) is finite. Hence, by

Lemmas 3.2.3 and 3.2.4, we obtain the following theorem.

3.2.5. Theorem. For any semisimple Lie algebra g, the 2-polygraph Path(n) is a finite convergent pre-
sentation of the plactic monoid for g.

3.3. Finiteness properties of plactic monoids

A monoid is of finite derivation type (FDT3) if it admits a finite presentation whose relations among the

relations are finitely generated, see [SOK94]. The property FDT3 is a natural extension of the properties

of being finitely generated (FDT1) and finitely presented (FDT2). Using the notion of polygraphic

resolution, one can define the higher-dimensional finite derivation type properties FDT∞, see [GM12].

They generalise in any dimension the finite derivation type FDT3. A monoid is said to be FDT∞ if it

admits a finite polygraphic resolution. By Corollary 4.5.4 in [GM12], a monoid with a finite convergent

presentation is FDT∞. Then by Theorem 3.2.5, we have

3.3.1. Proposition. For any semisimple Lie algebra g , plactic monoids for g satisfy the homotopical
finiteness condition FDT∞.
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In the homological way, a monoid M is of homological type FP∞ when there exists a resolution of

M by projective, finitely generated ZM-modules. By Corollary 5.4.4 in [GM12] the property FDT∞

implies the property FP∞. Hence we have

3.3.2. Proposition. For any semisimple Lie algebra g , plactic monoids for g satisfy the homological
finiteness property type FP∞.
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