
HAL Id: ujm-01274675
https://ujm.hal.science/ujm-01274675

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

String representations and distances in deep
Convolutional Neural Networks for image classification

Cécile Barat, Christophe Ducottet

To cite this version:
Cécile Barat, Christophe Ducottet. String representations and distances in deep Convolu-
tional Neural Networks for image classification. Pattern Recognition, 2016, 54, pp.104-115.
�10.1016/j.patcog.2016.01.007�. �ujm-01274675�

https://ujm.hal.science/ujm-01274675
https://hal.archives-ouvertes.fr

String representations and distances in deep convolutional
neural networks for image classification

Cécile Barata, Christophe Ducotteta,∗

aUniversité de Lyon, CNRS, UMR 5516, Laboratoire Hubert Curien, Université de Saint-Étienne,
Jean-Monnet, F-42023, Saint-Étienne, France.

Abstract

Recent advances in image classification mostly rely on the use of powerful local features
combined with an adapted image representation. Although Convolutional Neural Net-
work (CNN) features learned from ImageNet were shown to be generic and very efficient,
they still lack of flexibility to take into account variations in the spatial layout of visual
elements. In this paper, we investigate the use of structural representations on top of pre-
trained CNN features to improve image classification. Images are represented as strings
of CNN features. Similarities between such representations are computed using two new
edit distance variants adapted to the image classification domain. Our algorithms have
been implemented and tested on several challenging datasets, 15Scenes, Caltech101, Pas-
cal VOC 2007 and MIT indoor. The results show that our idea of using structural string
representations and distances clearly improves the classification performance over stan-
dard approaches based on CNN and SVM with linear kernel, as well as other recognized
methods of the literature.

Keywords: Convolutional Neural Network, string representation, edit distance, image
classification
2010 MSC: 00-01, 99-00

1. Introduction

The dominant approach to image classification has long been to extract image rep-
resentation vectors from local handcrafted features, e.g. SIFT or SURF. Traditional
approaches such as bag of visual words (BoVW) with spatial pyramid representation
(SPR) or Fisher vectors (FV) first extract the local features, then encode them using a
visual vocabulary and finally pool them into a single image representation vector. In a
second step, a classifier such as Support Vector Machine (SVM), is trained on all resulting
vectors to later recognize the class of unknown images.

Recently, Convolutional Neural Networks (CNNs) have provided outstanding per-
formance in the field [1, 2, 3]. It is attributed to their ability to simultaneously learn

∗Corresponding author, Tel: +33 477915787, Fax: +33 477915781
Email address: ducottet@univ-st-etienne.fr (Christophe Ducottet)

Preprint submitted to Pattern Recognition January 8, 2016

discriminative local features and a powerful image representation vector from an image
without any preprocessing requirement. A CNN structure is generally composed of alter-
nating convolutional layers and sub-sampling layers, followed by fully connected layers
and the output layer. The latter is often a softmax classifier designed to generate proba-
bilistic labels for each class. It is common to find hybrid approaches that combine a SVM
classifier with a CNN feature extractor pretrained on a large dataset such as ImageNet.
The overall idea is to cut off the output of CNN one or two layers before the output layer
and thereby use the image representation vector obtained as input for SVM. Doing so,
it is expected to benefit from generic pretrained CNN features and learn specific models
on smaller datasets using SVM. Instead of using an SVM to learn the specific model,
another alternative is to refine the pretraining of the CNN by adding a fine-tunning step
with the target dataset [2, 3].

≠

Pairwise comparison

, ,)(, ,)(

, ,)(

Structural comparison

Figure 1: Pairwise and structural comparison of two images. Images are represented using spatial sum
pooling of features. For the purpose of simple illustration, three types of local features are used to denote
car features (yellow circles), background features (green triangles) and uniform features (blue stars). In
classical approaches, similarity is computed using pairwise region-to-region comparisons. Here, the
matching fails because the object of interest, i.e. the car, appears at different locations within images.
In structural approaches, images are considered in terms of their parts. Parts at different positions can
be matched together in order to compensate some geometric transformation effects, as translation here.

In all previous approaches, an image is represented as a fixed length vector. The
importance of capturing the spatial layout of the image through this global vector has
been recognized for object and scene classification tasks. In contrast to BoVW which
ignores the spatial layout of the features, CNN tends to preserve it too much, reducing
in all cases the invariance to geometric transformations. Invariance of the BoVW model
is coupled with the invariance properties of the local features. Spatial pyramid pooling
was definitely the most noticeable contribution to integrate their spatial layout in the
model. In SPR like methods, the final representation vector captures the local invariance
but assumes that similar parts of a scene or an object generally lay in similar regions

2

of the image, limiting the robustness to translation, rotation, scaling or other viewpoint
change. In the same manner, CNN pretrained on very large datasets such as ImageNet
has the ability to learn complex transformations and the local invariance of features
through max-pooling within each feature map. The fully connected layers encode their
spatial layout, independently from the image content, limiting the robustness to geomet-
ric transformations. Recent research works aim to propose more orderless representations
on top of CNN to improve classification results, for examples, for texture [4] or for scene
[5, 6, 7, 8]. To sum up, a first limitation of these models, while very efficient, is that
they resolve local visual ambiguities, but still, the final global representation vector is
not invariant to geometric transformations.

A second limitation of these representations is the lacking ability to represent rela-
tionships that might exist between different regions of an image. As a result, to compute
a measure of similarity between each pair of images as required by SVM, the only possi-
bility is to make pairwise region-to-region comparisons, limiting the ability of the system
to recognize images that are visually similar but not identical because of some geometric
transformation of the total image or one of its part. It would seem interesting to intro-
duce flexibility during the matching process and find the best correspondences between
the different regions taking into account their visual content (Figure 1).

So far, in the mentioned methods, image representation vectors capture the local
properties of images, and an approximate global matching of these local features among
images is actually computed for classification. Our idea in this paper is to increase
the representation power of these models by using a structural approach. We propose to
model images as strings of visual features. Combining SPR and CNN models with strings
allows us to get the best of the two worlds and offers several advantages. First, it allows
keeping the discriminative information about the local regions, but also to describe their
adjacency dependencies, and implicitly the image structure. An image is now considered
in terms of its parts. Second, the concept of approximate matching can be applied to
make the comparison of two images more robust to geometric transformations. One
popular category of methods for approximate matching uses the edit distance. It can
be seen as an active process that finds the best alignment between two strings owing to
three main edit operation, i.e. insertion, deletion and substitution. Importantly, parts
at different positions in images can now be compared and the number of parts does not
have to be fixed. It may be adapted to the visual content. Third, an edit distance enables
to define a string kernel encoding similarity between each pair of images represented as
strings, and therefore, it offers the possibility to benefit from all SVM classification tools
on structured data.

In this paper, we investigate the use of structural representations of images to improve
image classification. Our contributions are multiple. First, we propose solutions to
generate strings with local generic features extracted from a pretrained CNN. A great
advantage of using available pretrained CNN tools is to avoid the time consuming CNN
training or fine-tuning step. Second, we introduce two edit distance variants dedicated
to approximate matching between images represented as strings of visual feature vectors.
Third, through a thorough evaluation of our method on different datasets, we show the
benefit of taking into account the structural relationships between local CNN features
compared to a standard pairwise matching. Also, we show it is more efficient than
learning weights of a fully connected layer. Fourth, in our approach with CNN, any size
of image can be processed by the convolutional and pooling layers without any resizing.

3

Moreover, a single pass through the network is required.
The paper is organized as follows. Section 2 presents the related work and section

3 introduces our approach to generate strings from local features. Section 4 explains
how to use an edit distance to compare such strings and proposes two new edit distance
variants adapted to the image classification domain. Section5 describes experiments and
results on image classification tasks. Section 6 concludes the paper and indicates future
work.

2. Related work

In the image domain, several problems have successfully been modelled and solved
using strings rather than local feature vectors, e.g. text recognition [9, 10, 11], shape
matching [12, 13], image classification [14, 15, 16, 17] and video classification [18]. In this
section, we focus on the related work that addresses the question of spatial information
and topological relationships within SPR and CNN frameworks for image classification.

2.1. SPR based models

Inspired by SPR, many methods rely on spatial pooling to form an image signature
vector that encodes spatial information. Different strategies can be adopted to partition
an image into spatial bins. The standard SPR model uses three layers of grids 1 ×
1, 2 × 2, 4 × 4. Other grid configurations have been proposed combining for instance
1 × 1, 3 × 1 (three horizontal lines), 2 × 2 divisions [19, 20, 21]. [22] suggested to learn
the grid divisions. Other configurations were proposed such as pyramidal rings [23],
oriented partitions [24] or randomized partitions [25] to make the image representation
more robust to geometric transformations. Once the partitioning scheme is defined,
most methods consist in computing a local BoVW within each of the spatial bins and
concatenate the obtained vectors. The classification step is performed using a distance
between those image vectors, ending up to measure the similarity between pairwise spatial
regions. These methods offer the advantage to decompose an image into its parts, but
loose their topological relationships.

Some attempts have been made to introduce order and topological information into
this type of representations using strings [16, 17]. In [16], the authors use a 4× 4 parti-
tioning (SPR level 2). Then, an image is represented as a string of 16 local SIFT BoVW
obtained following the raster-scan ordering. Images are compared using an edit distance
metric as discussed in section 4. The drawback of this approach is that two successive
symbols in the string may not correspond to neighboring regions of the image. To over-
come this drawback, authors in [17] suggest to represent an image as a set of multiscale
strings. First, they use a multiscale grid partitioning. Second, strings are formed by
scanning vertically each column of the grids. Doing so, in each string, neighboring sym-
bols correspond to adjacent regions in the image. The vertical ordering is explained by
the natural sequencing of objects in a scene along the vertical direction. In our work, as
explained in the following section 3, we retain this approach to build strings from images
decomposed into grids.

4

2.2. CNN based models

CNN have emerged as the new state-of-the art approach for image classification. The
standard approach consists in pre-training the CNN architecture with a large dataset (ie
ImageNet) and to learn a specific classification model either by training a SVM or by fine
tunning the CNN on the target dataset [1, 2, 3]. Interestingly, as said in introduction,
a CNN model pre-trained on a large dataset can be used as a generic feature extractor.
Several available tools exist for this purpose such as OverFeat [26] or Caffe [27].

While the output feature vector is robust to local changes, its robustness to global
deformations needs improvements since it preserves too much spatial information. Several
very recent works address this question [5, 6, 7, 8]. In [5, 7, 8], authors propose a similar
coarse-to-fine analysis of the image within a pyramid structure at N levels. At each level,
all patches of a given size are extracted from an image and fed to a CNN network. The
7th layer output which is 4096 dimension is taken as the representation vector of the
patch. At level 1, the global image is processed. The three methods differ in the way the
obtained CNN features are encoded. In [5], all patch responses are aggregated using a
VLAD approach. In [7], a codebook is first learnt from these CNN features and second,
the final representation vector is obtained using Locality-constrained Linear Coding and
max pooling. In [8], the final representation vector is obtained by average pooling of
patch responses of a given scale and concatenation of the different scale resulting feature
vectors. These three interesting approaches unfortunately require a lot of computation
time to extract the feature vectors from images because each patch must be processed by
the CNN. Moreover, the spatial layout of patches extracted at a given scale is ignored.

Another closely related work is the work of He et al. [6], where it is suggested to
replace the last pooling layer with a spatial pyramid pooling layer. The obtained vector
is then fed to the fully-connected layer. To handle variable image sizes, the authors
propose to train several versions of the CNN at various sizes which increase the time
required to train the CNN. Moreover, as in BoVW models, this approach increases the
local invariance properties, but still preserves the global pairwise matching of the local
features that limit the image comparison during the classification step.

To the best of our knowledge, no work in the field so far attempted to unify the CNN
based models and structural approaches to improve classification performance.

3. Image representation

Our proposition is to combine the great potential of different ideas seen previously to
capture information about local regions together with their spatial adjacency properties.
We propose to model images using 1) pretrained CNN features, 2) spatial pyramid pooling
applied at the output of the last convolution layer (layer 6) 3) a set of multiscale strings.
The pipeline is illustrated in Figure 3.

Note that the CNN is just used as a feature generator. In our work, we never train the
CNN with any test dataset, but we use the weights trained from ImageNet by Sermanet
et al. [26] team.

3.1. CNN feature extractor

The architecture of the CNN we consider for feature extraction is based on the model
of Krizhevsky et al. [1]. We use the OverFeat implementation ([26]) available with two

5

network architectures: a fast model and an accurate one. We chose the accurate model
pre-trained on the ImageNet ILSVRC 2013 dataset ([28]). It is composed of nine layers
including 6 convolutional ones and 3 fully connected ones, the last one being a softmax
classifier (Figure 2).

Input

7x7

Max

pool

Conv.

Layer 1

3x3

7x7

Conv.

2x2

Layer 2

3x3

Conv.

Layer 3

Conv.

3x3

Layer 4

Conv.

Layer 5

3x3 Max

pool

3x3

Layer 6

Layer 7

full

Layer 8

full

Layer 9

softmax

4096 1000 4096

96

36x36

256

15x15

Max

pool
512

15x15

512

15x15
3x3 1024

15x15

Conv.

1024

15x15

3
221x221 1024

5x5

Figure 2: Architecture of the fast Overfeat model. An input image of size 221*221 is fed to the network.
This image is then passed through several convolutions (red) and max pooling (blue) operations at
different layers. Layers 7 and 8 are fully connected layers. The final layer is a softmax classifier. Note
that the last convolutional feature maps at layer 6 (dashed grey box) are used in our pipeline.

This architecture operates on images of spatial input size of 221 × 221 pixels. This
constraint, imposed by the fully connected layers, often appears as a strong limitation
in the use of CNN for image classification. However, in OverFeat, when the feature
extractor mode is used, a sliding input window principle is implemented. The input
images can be of any size greater than the spatial input size. It is then decomposed
into overlapping square 221 pixels windows with an offset of 36 pixels in each dimension.
The resulting feature matrix available at the output of a CNN layer has a spatial size
augmented by one unit each 36 additional pixels in each spatial dimension.

In our work, to deal with arbitrary input image sizes without cropping, we first resize
the image so that the smallest dimension becomes 221 pixels and the other dimension
preserves the aspect ratio. Indeed, although the feature extractor may not require any
resizing, a standardization of the input size is a common practice to provide efficient
image classification for datasets of variable image sizes. Then, in our method, we extract
features from the last convolution layer (layer 6, before max pooling) to build the strings.
In addition, to compare our results with previous works, we also extract features from
the first fully connected layer (layer 7) as a baseline. At the convolutional output of
layer 6, feature vectors have 1024 dimensions and the feature matrix has a minimum
spatial size of 15 × 15. If X is the largest spatial size of the image after resizing, the
feature matrix is expended by (X−221)/12 units in this dimension. The 12 factor is the
sub-sampling ratio of the network at this layer. At the output of layer 7, there is only
one feature vector of 4096 dimensions per input window. The same way, (X − 221)/36
additional feature vectors are computed in the largest dimension.

It is common to observe that image classification results increase with the number of
6

features. When using a CNN feature extractor, it is possible to generate higher number
of features by reducing the stride between them. Two approaches are possible: reducing
the stride only or reducing the stride and the scale of features simultaneously. The
stride reduction alone relies on the computing of several sets of features using translated
versions of the input image [26]. The translation factor is chosen to be a fraction of
the sub-sampling ratio of the features at the given layer. In our case, to get four times
more features at the output of layer 6, we use four images translated by 6 pixels in each
direction (the sub-sampling ratio is 12). To reduce the size and the scale of features
simultaneously, we only need to start from a larger input image. Instead of using an
image of 221 pixels in the smaller dimension, we resize it so that it is becomes 442 pixels.
This produces also four times more features together with decreasing their scale in the
original image.

3.2. Spatial pyramid pooling and string representation

As just explained, our method extracts CNN features at layer 6. Then, our proposition
is to pool the features across a spatial pyramid and to structure the spatial bins of the
pyramid as a set of strings.

Because of the 1D structure of strings, we must first choose a scanning direction.
Although this choice may appear arbitrary, several works argue the use of a particular
direction. For example, [24] suggests that vertical or horizontal directions can plausibly
better describe relationships among local features. For instance, the sky is above trees,
and trees are above grass. Similarly, for urban scenes, in [20], the authors propose to
replace the SPM grid division with divisions along the vertical axis to better take into
account the composition of this kind of images. Here, following the string definition of
[17], we choose to define a set of P vertical strings by scanning each pyramid level column
by column. For example, with the standard 3 levels 4× 4, 2× 2, 1× 1 pyramid, we can
build 4 vertical strings of 4 symbols at level 2, 2 vertical strings of 2 symbols at level 1
and 1 string of 1 symbol at level 0.

In standard pairwise matching methods, the number of bins in the spatial pyramid
must be kept small to avoid matching errors. In our flexible matching approach, higher
bin numbers can be used in the direction of strings, leading to a non symmetric parti-
tioning. Formally, we introduce two parameters H and W to define our spatial pyramid.
Parameter H (respectively W) represents the number of divisions along vertical (respec-
tively horizontal) axis for the highest level of the pyramid. The number of division for
lower levels are obtained after division by successive powers of two until having only one
horizontal division. In the standard configuration of our feature extractor, a maximum
of H = 15 divisions along the vertical axis are possible. In addition, to the previous
levels we systematically add a global representation of the image by pulling all feature
vectors in a single spatial bin. Figure 3 illustrates the string construction with H = 8
and W = 3.

After pooling, attention must be paid to normalization of resulting feature vectors.
Following the classical spatial pyramid representation, we first normalize feature vectors
from each spatial bin independently and we further normalize each pyramid level ac-
cording to its total number of bins. Vector normalization depends on the classification
kernel used for classification. In the linear case a `2 normalization is applied whereas in
χ2 based kernels a `1 normalization is required.

7

Input image

CNN
feature
extractor

Layer 6

Conv. output

Pyramid
spatial
max pooling

3 pyramid levels

String
representation

Set of 5 strings

of elements 1024x1x1

1024

15x15

1024

15x15

1024

15x15

1024

15x15

3
221x221

8x3

4x1

1x1

1x1
1024

Figure 3: String construction pipeline. The input image is fed to the first 6 layers of the CNN architecture.
The 1024 convolutional maps are spatially max pooled according to a given decomposition scheme. Here,
a vertical decomposition scheme 8×3, 4×1, 1×1 is illustrated. Each vertical band gives rise to a string.
The number of symbols in the string depends on the previous decomposition scheme and is equal to the
number of vertical adjacent regions (here, 3, 1 and 1). The dimension of each symbol is equal to 1024,
resulting from the concatenation of the 1024 feature values obtained in each pooled region.

Typical parameters considered in experiments are H = 15 and W = 3 which corre-
sponds to the three pyramid levels 15×3, 7×1 and 1×1. This spatial pooling generates
a set of P = 5 strings by scanning each pyramid level column by column: three strings of
15 feature vectors each, one string of 7 feature vectors and a final 1 feature vector string
representing the whole image. In section 5, we will investigate the influence of parameter
H by taking H = 15, H = 8 or H = 4.

4. An edit distance for strings of visual features

Comparing strings of visual features is interesting in image classification. Instead
of computing an approximate global matching of the visual features, as in SPR-based
methods, it enables to find the best alignment of the visual features in the two images
that makes it more robust to geometric transformations. Parts at different positions
in images can now be compared. The best alignment results from a sequence of edit
operations and provides a measure of similarity of the two images. It is computed using
the standard edit distance, which will be first recalled in this section. Then, we address
the question of finding edit operations and costs adapted to the context of strings of
visual feature vectors describing image regions and their dependencies.

4.1. The standard edit distance

The standard edit distance allows computing the optimal alignment of two strings of
symbols. A set of edit operations is defined to modify the input string X = x1x2 . . . xN
into the output string Y = y1y2 . . . yM . Several sequences of edit operations exist to

8

transform X into Y . A cost function specifies the cost of each edit operation. In this
way, the global cost of an edit sequence can be computed as the sum of all individual
operations. The idea of the distance is the lower the cost of the necessary operations the
more similar the strings. The edit distance between two strings is indeed defined as the
minimum cost of all possible sequences of edit operations that transform X into Y . The
supported edit operations with their associated cost functions are as follows:

• insertion: a symbol yj can be inserted into X with cost cins(yj),

• deletion: a symbol xi can be deleted from X with cost cdel(xi),

• substitution: a symbol xi can be replaced by a symbol yj with cost csub(xi, yj).

A simple example of alignment of two strings using the edit operations is shown in
Figure 4. It can be retained that the edit distance is able to measure the similarity of
corresponding symbols (with the substitution operation), even if they are not at the same
spatial corresponding position. Also, it integrates information about the dissimilarity of
unmatched symbols (with the insertion and deletion operations).

Computing the standard edit distance can be formulated as an optimization problem
and can be carried out with a dynamic programming algorithm. The algorithm consists
in computing a D(N,M) matrix, where D(i, j) represents the minimum cost of trans-
forming X = x1x2 . . . xi into Y = y1y2 . . . yj , with allowable edit operations mentioned
above. The computational complexity is proportional to the product of the length of
the two strings, i.e. in O(N ×M). The computation is carried out using the following
recurrence relation:

D0,0 = 0
D0,j = D0,j−1 + cins(yj), j=1...N

Di,0 = Di−1,0 + cdel(xi), i=1...M

Di,j = min
(

Di−1,j + cdel(xi),
Di,j−1 + cins(yj),
Di−1,j−1 + csub(xi, yj)

)
,

i=1...M,j=1...M

(1)

Note that a variant where only the substitution operation is allowed corresponds to
a classical pairwise matching approach.

The three classical edit operations are known to be powerful to transform one string
into another one and compute their similarity. However, these edit operations can be
defined in many ways, and have to be adapted to the application domain. In the present
paper, we are concerned with image classification and strings of feature vectors describing
image regions. Two questions arise: what does it means to insert/remove feature vectors
when comparing two images? Also, the costs assigned to the three edit operations affect
the resulting optimal alignment between two strings. If the costs are changed, then the
optimal alignment may also be changed. A second important question is how to choose
the costs for strings of visual features. We bring answers in the next sections with two
edit distance variants adapted to image classification.

9

ins

?

X Y
del

sub

sub

sub

sub

Edit path

Figure 4: A toy example to illustrate approximate string matching with the standard edit distance.
Strings are composed of four types of symbols (dots, triangles, circles and squares). String X has to be
modified to match string Y using the classical edit operations. Substitutions occur when symbols are
similar. Deletions and insertions allow mismatches to be corrected. The sequence of edit operations to
align the two strings is : del - sub - sub -sub - ins - sub.

4.2. Edit distance for image classification

Some edit distance variants have been proposed in many pattern matching appli-
cations where strings are composed of a finite set of symbols. For example, several
approaches have been experimented for Optical Character Recognition and word spot-
ting in ancient document images [29, 11]. Few methods have been presented to consider
images represented as strings of feature vectors in image classification [14, 16, 17]. In
[14], the authors propose different solutions to generate strings from the the local signa-
tures of interest points. The feature vectors do not represent region information as in our
approach, and their proposed distance does not apply. In [16, 17], images are represented
as strings of local signatures of regions, i.e. local bag of words, as discussed in 2.1. To
compare such representations, in [16], the authors employ a variant of the edit distance
called the Smith-Waterman distance. Its purpose is to find local alignments between two
feature sequences and thus to search for a short sequence X into a long string Y , which
is not in our focus. In [17], the authors modify the deletion / insertion operations to
virtually adapt the fixed grid initial partitioning. Their new edit operations are indeed
used to remove repetitions between consecutive similar symbols in a string when it allows
the second string to be better matched. Despite its good results, the main drawback of
this approach is to loose the information carried by the deleted histograms, as shown in
Figure 5(a).

Here, we propose two versions of the edit distance to compare strings of visual features.
A symbol in the string corresponds to a CNN feature vector describing an image region.
The first version, denoted cED, could be qualified of traditional. It uses the three
classical edit operations. It counts the overall cost of single symbols manipulations. The
second version, denoted mED, is augmented with a new merge operation, which allows
a combination of symbols to be matched with either one or many combined symbols. It
further extends the notion of inserting/ deleting symbols. The experimental section will
study their performance over rigid matching.

4.3. cED and mED definitions

cED definition. The cED algorithm works with the three basic edit operations. As
explained previously, the background idea of substitution is to measure the similarity

10

between corresponding symbols, i.e. CNN vectors. An immediate solution is to apply a
classic distance d between feature vectors, such as `1, `2 or χ2. The result defines the
cost of the operation. The lower the cost, the more similar the feature vectors and the
underlying image information. Insertion and deletion model the notion of dissimilarity
between unmatched regions. We propose to associate a fixed cost c to these operations
that acts as a penalty factor. Practically, when feature vectors are normalized, this fixed
cost could be taken as the distance to the null vector which is equal to the norm of the
feature vector. Finally, our proposition comes to consider that two CNN feature vectors
are similar if their distance is inferior to the fixed cost, i.e. two regions are similar if they
have similar CNN features, otherwise a mismatch occurs which is penalized by the fixed
cost in the computation of the distance. It is a natural adaptation of the edit operations
to evaluate image content similarity and dissimilarity. Formally, these rules lead to the
following costs functions:

csub(xi, yj) = d(xi, yj) (2)

cdel(xi) = c (3)

cins(yj) = c (4)

The algorithm requires to compute a dynamic programming table exactly as for the
standard edit distance, with the same complexity.

A merge operation between symbols. In images, due to geometric transformations such as
scale or translation variations, similar content may occupy a varying number of regions of
the grid partition. These changes cause mismatches that are penalized in the alignment
process with cED, while content are quite similar. Authors in [17] suggested such changes
can be seen as adding (or removing) regions similar to their neighbourhood. As a result,
they proposed to define insertion / deletion costs as a function of the distance between
two neighbouring regions. If one symbol is more similar to its following than to the
corresponding one in the other string, the symbol is removed, loosing some information,
as shown in Figure 5(a). We follow the background idea of this approach, denoted sED.
However, while in sED the authors completely remove some regions information and
manipulate individual symbols, we propose to introduce a merge edit operation that
enables to model merge and split operations of regions in an image in order to better
match with another image without any loss of information.

The merge operation works on two successive symbols in a string. It can be used to
associate a pair of symbols of the input string {xi, xi+1} with a symbol of the output
string yj , or inversely, it can be used to match a symbol xi with a combination {yj , yj+1}
of the output string. Since successive merge operations can be applied either in the input
string or the output string, a sequence of symbols {xi, xi+1, . . . , xi+k} can be matched
with a sequence of symbols {yj , yj+1, . . . , yj+l}. The merge operation generalizes the
insertion and deletion operations. From an image point of view, the merge operation
allows a group of consecutive regions of an image to be matched against a group of
regions in the second image. It means that if an object is broken into several regions,
the corresponding local features may be grouped together to match with the same set
of features of the object distributed in one or more regions in the second image. An
example is given in Figure 5(b).

11

More formally, given a sequence of feature vectors {xi, xi+1, . . . , xi+k}, the merge
operation consists in creating a new feature vector denoted x̄i→i+k obtained after com-
bination of the corresponding spatial regions. Following the classical pooling operations
used in BoVW or CNN, the combination can be a pooling corresponding to a component-
wise max or sum:

x̄i→i+k = pool(xi, xi+1, . . . , xi+k) (5)

The cost function of the merge operation between two symbols is defined as the
ground distance d between the two symbols:

cmerge(xi → xi+1) = d(xi, xi+1) (6)

If the first symbols results from the merge of previous symbols, the corresponding
cost is defined recursively by

cmerge(xi → xi+k) = cmerge(xi → xi+k−1) + d(x̄i→i+k−1, xi+k) (7)

As in cED or sED, the distance d can be any distance between feature vectors. To
properly compare symbols resulting from various numbers of merge operations, the sym-
bols must be renormalized before distance computation. In experiments, we choose the
χ2 distance between symbols and we normalized them in `1 before distance computation.

Definition of mED - a merge-based edit distance:. The same way as the standard edit
distance, a merge-based distance is computed by finding the optimal alignment of two
strings considering merge and substitution operations. Unfortunately, the dynamic pro-
gramming algorithm can not be used because symbols are modified each time a merge
operation is applied. However, a recursive definition can be derived noticing:

• successive merge operations in the first or the second string can be done in any
order leading to identical merged symbols and costs,

• after a substitution, the two remaining substrings are identical to the original sub-
strings.

Let us denote mED(X,Y) the merge-based edit distance between two strings X and
Y . Then, the minimum cost cscript(i, j) of all scripts starting with i merging operations
in string X and j merging operations in string Y is given by:

cscript(i, j) =cmerge(x1 → xi) + cmerge(y1 → yj) (8)

+ csub(x̄1→i, ȳ1→j)

+ mED({xi+1, . . . xM}, {yj+1, . . . yN})

Thus, the final distance is obtained by minimizing the cost over all scripts starting
with merge operations in one of the two strings:

mED(X,Y) = min
i=1→M,j=1→N

(cmerge(x1 → xi) (9)

+ cmerge(y1 → yj)

+ csub(x̄1→i, ȳ1→j)

+ mED({xi+1, . . . xM}, {yj+1, . . . yN}))
12

(a)

(b)

Figure 5: Comparison of sED and mED variants of edit distances. (a) Method sED proposed in [17]
(b) the proposed merge-based edit distance, mED. Both methods find an alignment to better compare
the visual content of the two images than direct rigid matching. However, method (a) removes some
regions that are similar to the neighbouring ones, while the second one keeps all the information by
merging their feature vectors.

13

This definition can be directly converted into a recursive algorithm. The computa-
tional complexity of this algorithm in terms of number of inter-symbol distance compu-
tations is O(N2M2). Indeed, for each evaluation of equation 9, NM distances between
merged symbols must be computed. Although these distances can be precomputed to
prevent re-computation during nested recursions, the total number of distances to eval-
uate is proportional to N2M2. The complexity can be reduced to O(NM), if merged
symbols x̄1→k are approximated by pooling at most the last kmax+ 1 symbols such that:

x̄i→i+k = pool(xi+k−kmax
, xi+k−kmax+1, . . . , xi+k) (10)

We experimentally verified that a value kmax = 4 gives a good approximation of the final
distance.

4.4. String edit kernel

For classification purpose, the use of a SVM kernel is required. In our case, an image
is represented as a set of P strings corresponding to vertical scans of the image. Thus,
to compare two images I and J , we propose to perform first a pairwise edit distance
between string-pairs (Xi, Yi) from the two images. Then, after summation, the results is
plugged into a radial basis kernel such that:

KED(I,J) = e−γ
∑P

i=1 ED(Xi,Yi) (11)

where ED stands for any edit distance, cED, sED or mED. Although this kernel is not
positive definite, as shown in [30], it can still be used for SVM classification provided the
parameter γ is adjusted so as the kernel matrix is positive for the current training data.
Practically, this is achieved by optimizing the classification results by cross validation
[30].

5. Experiments

In this section, the goal is to study the performance of structured matching on CNN
features for various datasets. We aim at confirming that structured matching surpasses
the performance of traditional rigid matching approaches. For this purpose, we con-
sider two different baselines: 1) the rigid matching automatically learned by CNN using
features from the first fully connected layer and 2) the rigid matching provided with a
spatial pyramid pooling using features from the last convolutional layer. The results of
our proposed structured matching are analyzed and compared to these baselines. In most
state-of-the-art methods, several image crops sometimes at different resolutions are used
to get improved results. To provide fair comparison, we also give refined results for our
method by using either stride or scale reduction in the feature extraction process (see
section 3.1).

In all experiments, we used Overfeat, the CNN features’ extractor pretrained on
ImageNet proposed by Sermanet et al. [26] team. Only the SVM classifier was learned
from the target dataset.

14

5.1. Compared methods

Four different configurations are compared.

Baseline 1. OverFeat: We evaluate the performance of the OverFeat features gener-
ated after the first fully connected layer (layer 7), before the ReLU normalization. These
features of size 4096 result from the combination of neurons from the last feature map.
They are used to train SVM with a linear kernel, as often done in the literature. This
baseline method is examined to compare such global image representation after a fully
connected layer with our representations built on spatial pyramid pooling of the last
convolutional feature map, as explained in section 3.2.

Baseline 2. SPP-Lin: We extract features from the last convolutional layer (layer 6).
This produces a spatial 15×15 matrix of 1024 dimensional local feature vectors per input
window position. These vectors are pooled (with max pooling) in a spatial pyramid and
concatenated to get the final image representation vector, which is used to evaluate
the classification through a linear SVM classifier. This baseline approach is examined to
investigate the performance of spatial pyramid pooling with rigid matching in comparison
with our string spatial pyramid pooling with approximate matching on the same feature
maps.

SPP-ED: As in the previous approach, we extract features from the last convolutional
layer (layer 6) and we pool them in the same spatial pyramid. Then we build the
vertical strings and we use an edit kernel based SVM classifier as proposed in this article.
We denote SPP-sED, SPP-cED and SPP-mED the methods associated to sED, cED
or mED edit distances respectively. These distances rely all on the χ2 distance for
cost computation. Feature vectors are normalized in `1. In mED, the merge operation
corresponds to a sum of successive symbols. In cED, ins/del costs are fixed to 0.5 which
corresponds to the χ2 distance between `1 normalized symbols and the nul symbol.

Refined SPP-ED: In this configuration, the purpose is to evaluate the full potential
of our edit based distances. The best performing version according to the dataset is
refined either by using resolution, scale augmentation or specific improvements which
were already used in concurrent state-of-the-art methods.

5.2. Evaluation

The evaluation was conducted using four datasets: two scene datasets, 15Scenes and
MIT indoor, and two object datasets, Pascal VOC 2007 and Caltech 101.

The 15Scenes dataset, introduced by [31] contains 4485 images in 15 classes from
both outdoor and indoor scenes. Following the setting of [31], a 10-fold cross validation
is used on random train/test subsets. 100 per class images are used for training and the
rest for testing. The mean accuracy and the standard deviation over the 10-folds are
reported for evaluation.

The MIT indoor dataset is a larger scene dataset, which contains 15, 620 images in 67
classes. The images represent cluttered indoor scenes with complex spatial layout. For
experiments, we follow the original protocol of [32], which consists of 80 training images
and 20 testing images per class. Performance is reported in terms of average classification
accuracy across all categories.

15

The Pascal VOC 2007 dataset consists of 9963 images from 20 different object classes.
Objects can have different scales, viewpoints and illuminations and several objects from
different classes may appear in a single image. The evaluation follows the setup of VOC
challenge by computing the mean average precision (MAP) over the given test set. The
training is made using the concatenated training and validation sets.

The Caltech101 dataset [33] contains 9144 images in 102 object classes. In this
dataset, a 10-fold cross validation is used on random train/test subsets. We randomly
choose 15 or 30 images for training and up to 50 images per category for testing. The
mean accuracy and the standard deviation over the 10-folds are reported for evaluation.

5.3. Results

5.3.1. Structural vs classical rigid representations

In this section, we first evaluate the potential of our structural representation over
a classical static representation on the four datasets. For this purpose, we propose to
compare the results obtained with the Overfeat and SPP-Lin baselines and our SPP-
xED variants. First sections of Tables 1, 2, 3 and 4 report the accuracies and MAP values
of the different methods. For SPP-based methods, W = 3 and H = 15 were used for for
15Scenes, MIT indoor and Pascal VOC 2007 while W = 4 and H = 15 were applied for
Caltech101.

Method
CNN
Layer

Details Accuracy

Overfeat 7/9 1 resize 86.99± 0.57
SPP-Lin 6/9 SPP pooling,

15× 3,
7× 1,
1× 1

89.34± 0.38
SPP-sED 6/9 90.82± 0.39
SPP-cED 6/9 90.77± 0.25
SPP-mED 6/9 91.06± 0.43

Refined SPP-mED 6/9
SPP pooling

micro features
91.57± 0.37

Koskela and Laaksonen [8] 7/8 1 crop 88.70± 0.30
Koskela and Laaksonen [8] 7/8 Multiscale (10) 91.50± 0.30

Koskela and Laaksonen [8] 7/8
Multiscale (10)
fusion of 4 CNN

92.01∗ ± 0.40

Table 1: Classification accuracy for 15Scenes dataset. For multiscale methods, the number of patches
used is indicated in parentheses. The last value indicated with ∗ is not directly comparable because it
combines four different CNN trained with two different versions of ImageNet.

The comparison of the two baselines Overfeat and SPP-Lin already leads to a first
interesting result. We indeed remark that Overfeat baseline is systematically below
SPP-Lin. The improvement provided by SPP-Lin is greater than 3% for the first three
datasets and reaches 5.5% for Caltech101. This demonstrates that using the spatial
pyramid pooling from the last convolutional layer is a better strategy than using combined
features from the fully connected layers. This first intermediate result is of interest and
has not been reported in the literature before.

Moreover, from the four tables, it is clear that the three structural SPP-ED methods
clearly outperform the SPP-Lin baseline, and consequently, the Overfeat one. The im-

16

Method
CNN
Layer

Details Accuracy

Overfeat 7/9 1 resize 60.41

SPP-Lin 6/9 SPP pooling
15× 3,
7× 1,
1× 1

64.24
SPP-sED 6/9 68.93
SPP-cED 6/9 68.58
SPP-mED 6/9 68.61

Refined SPP-sED 6/9
SPP pooling

dense features
69.44

Razavian et al. [34] 7/9 1 resize 58.4

Razavian et al. [34] 7/9 C+R Augm 69.0

Gong et al. [5] 7/8 1 resize 53.73

Gong et al. [5] 7/8 Multiscale (21) 68.88

Jie and Yan [7] 8/8
fine tune
1 resize

60.23

Jie and Yan [7] 8/8
fine tune

Multiscale (55)
68.96

Table 2: Classification accuracy for MIT indoor dataset. For multiscale methods, the number of patches
used is indicated in parentheses. C+R Augm. means that cropped and rotated samples are added for
SVM training.

Method
CNN
Layer

Details MAP

Overfeat 7/9 1 resize 75.66

SPP-Lin 6/9 SPP pooling
15× 3,
7× 1,
1× 1

78.87
SPP-sED 6/9 80.36
SPP-cED 6/9 79.95
SPP-mED 6/9 80.35

Refined SPP-sED 6/9
SPP pooling

micro features
F Augm

82.47

Razavian et al. [34] 7/9 1 resize 73.9

Razavian et al. [34] 7/9 C+R Augm 77.2

Chatfield et al. [3] 7/8
C+F Augm

10 crops
79.74

Chatfield et al. [3] 8/8
fine tune

C+F Augm
10 crops

82.42

He et al. [6] 7/8 SPP net 80.10∗

Table 3: Classification accuracy for Pascal VOC 2007 dataset. C+R Augm. means that cropped and
rotated samples are added for training, C+F Augm and F Augm means that either cropped and flipped
or flipped samples are added for fine tunning or SVM training. The last value indicated with ∗ is not
directly comparable because it uses a specific SPP pooling in the CNN.

17

Method
CNN
Layer

Details Accuracy
15 tr

Accuracy
30 tr

Overfeat 7/9 1 resize 80.03± 0.62 83.64± 0.58

SPP-Lin 6/9 SPP pooling
15× 4,
7× 2,

3× 1, 1× 1

85.26± 0.51 89.10± 0.44
SPP-sED 6/9 85.58± 0.68 89.48± 0.33
SPP-cED 6/9 86.47± 0.57 90.25± 0.36
SPP-mED 6/9 86.14± 0.58 90.07± 0.31

Refined SPP-cED 6/9
SPP pool.

W=6
dense feat.

87.49± 0.43 91.07± 0.42

Zeiler and Fergus [2] 7/8 1 crop 83.8± 0.5 86.50± 0.5

Chatfield et al. [3] 7/8
C+F Augm

10 crops
- 87.76± 0.66

Chatfield et al. [3] 8/8
fine tune

C+F Augm
10 crops

- 88.35± 0.66

He et al. [6] 6/8 SPP net
6×3×2×1

- 89.50∗

He et al. [6] 5/8 - 91.44∗ ± 0.7

Table 4: Classification accuracy for Caltech101 dataset. C+F Augm means that either cropped and
flipped samples are added for SVM training. The two last results indicated with ∗ are not directly
comparable because they use a specific SPP pooling in the CNN.

provement is always greater than 1% and reaches about 5% for the MIT indoor dataset.
This highlights the key result of this paper: using string representations and edit dis-
tances for image comparison significantly improves classification results in comparison
with classical static representations and rigid matching approaches.

5.3.2. Comparison of SPP-based approaches

In this section, we propose to study more in details the behavior of the SPP-based
methods varying the representation parameters and the type of dataset. Figure 6 reports
the accuracies or MAP values in function of H for the different SPP based methods on
each dataset. We recall that H is the maximum number of divisions along the vertical
axis. Three values are studied: H = 4, H = 8 and H = 15. The number of divisions
along the horizontal axis is fixed to W = 3 for 15Scenes, MIT indoor and Pascal VOC
2007 and to W = 4 for Caltech101 to better take into account the particular symmetry
of images of this dataset.

Comparing SPP-based methods in figure 6, we again observe that structural repre-
sentations and edit distances clearly outperform the SPP − Lin baseline whatever the
parameter H is. The improvement is always greater than 1% and reaches about 5% for
MIT indoor dataset. Moreover, for all datasets, the rigid matching result is maximal for
H = 8 and then decreases or remains constant for H = 15. Conversely, edit distances
are less penalized by bad matches and the best results are obtained for H = 15. More
precisely, we can notice that for 15Scenes and Caltech101 datasets where subjects are
scaled and centred, the improvement is lower. Conversely, for MIT indoor or Pascal
VOC datasets, edit distances are able to compensate objects variations in position or

18

4 6 8 10 12 14 16
88

88.5

89

89.5

90

90.5

91

91.5

92

H

A
cc
u
ra
cy

-
1
5
S
ce
n
es

SPP-mED
SPP-cED
SPP-sED
SPP-Lin

4 6 8 10 12 14 16
63

64

65

66

67

68

69

70

H

A
cc
u
ra
cy

-
M
IT

in
d
o
o
r
6
7

SPP-mED
SPP-cED
SPP-sED
SPP-Lin

(a) (b)

4 6 8 10 12 14 16
78

78.5

79

79.5

80

80.5

81

H

M
A
P
-
P
a
s
c
a
l
V
O
C

2
0
0
7

SPP-mED

SPP-sED

SPP-cED

SPP-Lin

4 6 8 10 12 14 16
88.5

89

89.5

90

90.5

H

A
cc
u
ra
cy

-
C
a
lt
ec
h
1
0
1
-
3
0
tr

SPP-mED
SPP-cED
SPP-sED
SPP-Lin

(c) (d)

Figure 6: Comparison of structured and non-structured representations for different numbers of divisions
H of the spatial pyramid pooling. The maximum number of divisions along horizontal axis is equal to
W = 3 for 15Scenes (a), MIT indoor (b) and Pascal VOC 2007 (c) and W = 4 for Caltech101 (d).

19

scale thus provide higher improvement. Another important parameter for edit distances
is the vertical organization of the scene. As shown by table 5, the best performing object
classes of Pascal VOC 2007 have a significant vertical organization as ”sofa”, ”chair” and
”bus”.

Class SPP-Lin SPP-sED SPP-cED SPP-mED
aeroplane 92.4 94.3 93.5 94.0
bicycle 87.8 89.2 88.7 89.0
bird 88.4 87.9 88.5 88.1
boat 84.4 85.5 85.4 85.6
bottle 48.1 48.7 49.2 49.2
bus 75.8 78.6 77.6 78.5
car 89.0 90.6 90.3 90.7
cat 87.4 88.2 87.3 88.0
chair 62.8 66.0 65.1 65.5
cow 67.7 70.2 70.8 70.8
diningtable 73.0 74.1 74.3 74.3
dog 82.7 83.7 83.9 83.8
horse 89.8 90.8 90.6 91.1
motorbike 82.1 83.9 83.1 83.8
person 94.6 95.0 95.0 95.1
pottedplant 59.8 61.4 60.5 60.6
sheep 77.0 78.6 77.5 77.9
sofa 65.5 70.5 69.6 71.0
train 92.3 92.9 92.5 93.1
tvmonitor 76.7 77.2 75.5 77.0
Total 78.87 80.36 79.95 80.35

Table 5: By-class results for Pascal VOC 2007 dataset.

Finally, if we focus on the three versions of edit distance, we note different behaviors
depending on both the edit distance version and the dataset. Considering all datasets,
we can notice that mED is always the best or the second best performing method. Thus,
the merge operation introduced in this distance is better than del/ins operations used
either in cED or in the original sED proposed by Nguyen et al. [17]. We can also notice
that cED performs better for highly structured images with a fixed spatial layout as in
Caltech 101 dataset. Conversely, sED and mED better handle a variable spatial layout
as in 15Scenes, MIT Indoor or Pascal VOC 2007 datasets. Considering by class results
from Pascal VOC 2007 (table 5), we can confirm and refine these comments. Globally,
cED performs poorly because of the variable spatial layout. However, it performs slightly
better for ”bird” and ”dog” classes for which the subject is more often centered in the
image. In average mED and sED perform almost equally but we notice that again, mED
is always the best or second best performing method. Lastly, we notice that mED seems
to perform better for natural low structured scenes as ”boat”, ”horse” or ”cow” whereas
sED seems to perform better for more structured scenes as ”aeroplane”, ”bicycle”, ”chair”
or ”pottedplant”.

5.3.3. Comparison to the state-of-the-art

Most state-of-the-art results are obtained using specific refinements either in the CNN
pre-training or in the classification step. To illustrate the full potential of SPP-ED and
provide a fair comparison, we have also computed the best SP-ED result using denser
features obtained either by reducing the stride alone (indicated by ”dense features” in the
tables) or by reducing the stride and the scale of features (indicated by ”micro features”).

20

The choice of using dense or micro features depends on the dataset. Indeed, CNN features
are trained using ImageNet where images contain a single roughly centered object filling
most of the image. Then, for datasets containing images having such roughly centered
objects, as MIT indoor or Caltech 101, it is better to use the stride reduction alone to
keep the size of features unchanged. Conversely, when objects are much smaller and can
appear at various locations as in 15Scenes and Pascal VOC 2007, the scale reduction is
a better strategy. For Pascal VOC 2007, we have also augmented the training set by
adding flipped images (indicated by ”F Augm”). The corresponding refined results are
given in the last SPP-ED line of tables 1, 2, 3 and 4.

In the last part of tables, we have reported state-of-the-art results obtained with
CNN-based methods for each dataset. All methods are based on the training of a CNN
on ImageNet. Most of them use a SVM classifier to learn the classes of the target
dataset. Some methods use data augmentation (adding either cropped (C), rotated (R)
or flipped (F) samples) to learn the target dataset (indicated by ”Augm” in the tables).
Additionally the authors of [7, 3] use a fine tuning of the CNN combined with a softmax
classifier instead of the SVM classifier (indicated by ”fine tune”). Lastly, the authors of
[8, 6] use a different CNN architecture or dataset for training, Koskela and Laaksonen
[8] also combine four different CNNs to achieve their best result.

15Scenes (table 1): This dataset enables the comparison of our results with those
presented in [8]. As seen in section 2.2, the latter method uses a multiscale approach
similar to [5] which requires to decompose an image into 10 multiscale crops, each of them
being further processed by the CNN and combined in the final feature vector. We note
that our improved SPP-ED method outperforms the single crop and multiscale cases with
91.57% of accuracy. The last result provided by Koskela and Laaksonen [8] (indicated
with ∗) is a little higher than ours (0.4%). But note that this result is not directly
comparable to ours. Indeed, the CNN features they used are different, they are obtained
from four different CNN outputs computed through two different CNN architectures,
each of them being trained with two different versions of ImageNet datasets (2010 and
2012 versions). Note that our approach is still competitive with this approach and could
certainly be further improved by applying comparable multi-CNN strategies.

MIT indoor (table 2): For this dataset, our method outperforms all state-of-the-art
methods. Even our standard results outperform single and multiscale approaches pro-
posed in [5, 7]. Our improved SPP-ED result outperforms the result reported in [34]
where the SVM training set was augmented by adding rotated image crops.

Pascal VOC 2007 (table 3): Again, our method outperforms all concurrent methods.
Our standard SPP-sED and SPP-mED outperform all methods combining pre-trained
CNN and SVM. In particular, they outperform the SPP-Net of He et al. [6] which is
specifically designed for spatial pyramid pooling and requires the design and the training
of a specific CNN architecture. Note that our refined SPP-ED outperforms the outstand-
ing result obtained by Chatfield et al. [3] which requires a CNN fine tuning training with
a specific ranking hinge loss, flip images for data augmentation and 10 passes through
the CNN to deal with geometric variations. In comparison, our refined method uses
standard CNN features computed in one single pass (with double scale input image) and
an edit kernel SVM for training (with additional flipped images for training).

21

Caltech 101 (table 4): To take into account the strong spatial structure of this dataset,
in our refined results, we increased the number of bands to W = 6 together with dense
features. In table 4, we notice that our standard and refined SPP-ED outperform all
methods that use the output of full connected layers as features. In particular, they
outperform results from Chatfield et al. [3] with data augmentation (flip images in the
training) and fine tuning. They also outperform the SPP-Net of He et al. [6] when the
features are extracted at the output of the first fully connected layer (layer 6/8). How-
ever, if features are extracted at the output of the last convolution layer and pooled in a
spatial pyramid, He et al. [6] method is slightly better than our structural approach (for
30 train images per class). Note that this strategy is exactly what we propose. The only
difference is that their CNN is specifically trained with a spatial pyramid pooling step
whereas ours is trained with a normal pooling. Therefore, it is not directly comparable
to ours and it is very likely that we can achieve better by using SPP-Net features with
our edit distance. Finally, we note that even with Overfeat features, our result for 30
train images remains competitive (only less than 0.4% lower) and, to the best of our
knowledge, our result for 15 training images per class (87.48%), is the best reported until
now.

In conclusion, these results show that our approach outperforms all state-of-the-art
methods which use a comparable CNN as feature extractor either combined with a SVM
classifier or fine tuned on the target dataset. Even recent improvements using multi-
scale approaches are less successful. The SPP-Net from He et al. [6] performs slightly
better on Caltech101 but really worse on Pascal VOC 2007. Moreover, this method is
not directly comparable to ours because it uses a CNN specifically trained with spatial
pyramid pooling.

5.3.4. Computational considerations

To quantify more precisely the computational benefit of our approach, we have re-
ported in table 6 its execution time compared with some concurrent methods. Our
reference computer is a standard PC with a 16 cores 3.7 Ghz CPU (no GPU used) and
we consider a classification problem with nt = 1500 train images. Processing times are
estimated from the time tf of one forward pass through the CNN, the number of crops nc
used for feature extraction, and times ttrain and ttest taken respectively for training the
classifier or testing an image. The total training time Ttrain and the per image testing
time Ttest are given by:

Ttrain = nt nc tf + ttrain
Ttest = nc tf + ttest

(12)

For all methods, we took the value tf = 2.5s measured with our Overfeat implemen-
tation. For our structural methods, times ttrain and ttest times are depending on edit
kernel processing times. They are measured using our standard parameters with our raw
C++ implementation. For other SVM based methods, they are neglected. For methods
using a fine tuned CNN we have reported GPU in the training column to indicate that
a GPU architecture is needed. Note that the initial CNN training time is not taken into
account in the purpose of using a pre-trained CNN.

It is clear from table 6 that our method has one of the shortest processing time
thanks to the single pass through the CNN. Both training and testing can be processed
efficiently with a standard PC without using any GPU. It is a little slower than SPP-Net

22

Method nc
Training (min) Testing (s/im)
ttrain Total ttest Total

SPP-sED and SPP-cED 1 6.4 68.9 0.5 3
SPP-mED 1 132 194.5 11 13.5

Koskela et al.[8], Multiscale 10 - 625 - 25
Koskela et al.[8], 4 CNN 40 - 2500 - 100

Razavian et al. [34], C+R Augm 10 - 625 - 25
Gong et al. [5], Multiscale 21 - 1312.5 - 52.5

Chatfield et al. [3], C+F Augm 10 - 625 - 25
Chatfield et al. [3], fine tune 10 GPU GPU - 25

He et al. [6], SPP-Net 1 - 62.5 - 2.5

Table 6: Estimated processing time on a standard PC with a 16 cores 3.7 Ghz CPU (no GPU used).

because of the time taken to compute the edit kernel. However, let’s note that using
SPP-Net as a pre-trained CNN is not as flexible as using Overfeat because in SPP-Net,
the parameters of SPP pooling are fixed into the network, and may not be optimal for
all datasets. In particular, we have previously noticed that SPP-Net performs bad for
Pascal VOC 2007.

In conclusion, considering all the datasets, our method is the best performing one
with the shortest execution time. One great advantage is that both training and testing
can be achieved quickly without requiring a specific GPU architecture.

6. Conclusion

Approximate matching is an important area of pattern recognition research. In this
paper, we demonstrate that the powerful edit distance can be very effective for image
classification if we carefully choose the edit operations and their associated costs. We
have formulated two edit distance variants, cED and mED. Combined with the recent
dominant CNN features and the spatial pyramid pooling, it is clear that using our struc-
tural approaches perform better than standard static approaches. Not only they take into
account the statistical properties of regions, but also their spatial dependencies. It makes
them more robust to image transformations, and therefore, improves image classification.
The gain is particularly significant in datasets such as Pascal VOC 2007 (around 2%)
where objects are particularly misaligned or MIT indoor (around 5%) where contents
are very complex and vary in scale and position. Moreover, our method is shown to be
competitive with all state-of-the-art approaches of the literature, with one of the shortest
execution time. Additionally, thanks to the use of a pre-trained CNN and a single feature
extraction step, both training and testing can be achieved quickly in a standard CPU
without the need of handling the complex training of the whole network.

There are different ways to extend this work. First of all, mED only works with
the merge and substitution operations. Obviously, it could be interesting to combine
them with insertion, deletion operations that are not used anymore. Second, ideas used
for image similarity appear adequate to other application tasks, especially near duplicate
image detection, where it is required to measure, close but slightly different visual content.
Third, it would seem pertinent to integrate our edit operations into graph representations

23

to better take into account relationships between neighboring strings. These issues are
left for future research.

References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural
networks, in: Advances in Neural Information Processing Systems, pp. 1097–1105.

[2] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: Computer
Vision–ECCV 2014, Springer International Publishing, 2014, pp. 818–833.

[3] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: Delving
deep into convolutional nets, arXiv preprint arXiv:1405.3531 (2014).

[4] M. Cimpoi, S. Maji, A. Vedaldi, Deep convolutional filter banks for texture recognition and seg-
mentation, arXiv preprint arXiv:1411.6836 (2014).

[5] Y. Gong, L. Wang, R. Guo, S. Lazebnik, Multi-scale orderless pooling of deep convolutional
activation features, arXiv preprint arXiv:1403.1840 (2014).

[6] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for
visual recognition, in: Computer Vision–ECCV 2014, Springer International Publishing, 2014, pp.
346–361.

[7] Z. Jie, S. Yan, Robust scene classification with crosslevel LLC coding on CNN features, in: Asian
Conference on Computer Vision (ACCV), 2014.

[8] M. Koskela, J. Laaksonen, Convolutional network features for scene recognition, in: Proceedings
of the ACM International Conference on Multimedia, ACM, New-York, pp. 1169–1172.

[9] G. Seni, V. Kripasundar, R. K. Srihari, Generalizing edit distance to incorporate domain informa-
tion: Handwritten text recognition as a case study, Pattern Recognition 29 (1996) 405–414.

[10] M. Christodoulakis, G. Brey, Edit distance with combinations and splits and its applications in OCR
name matching, International Journal of Foundations of Computer Science 20 (2009) 1047–1068.

[11] K. Khurshid, C. Faure, N. Vincent, A novel approach for word spotting using merge-split edit
distance, in: 13th International Conference on Computer Analysis of Images and Patterns, CAIP
2009, Germany, volume 1, pp. 213–220.

[12] P. N. Klein, T. B. Sebastian, B. B. Kimia, Shape matching using edit-distance: an implementation,
in: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, pp. 781–790.

[13] A. Muzameel, Rashmi, M. Shravya, N. Sindhu, S. Supritha, Shape classification using shape context
and dynamic programming, International Journal of Scientific & Engineering Research 4 (2013).

[14] J. Ros, C. Laurent, J.-M. Jolion, I. Simand, Comparing string representations and distances in
a natural images classification task, in: GbR’05, 5th IAPR-TC-15 Workshop on Graph-Based
Representations, pp. 72–81.

[15] C. Barat, C. Ducottet, E. Fromont, A.-C. Legrand, M. Sebban, Weighted symbols-based edit
distance for string-structured image classification, in: Machine Learning and Knowledge Discovery
in Databases, Springer Berlin Heidelberg, 2010, pp. 72–86.

[16] M.-C. Yeh, K.-T. Cheng, Fast visual retrieval using accelerated sequence matching, Multimedia,
IEEE Transactions on 13 (2011) 320–329.

[17] H.-T. Nguyen, C. Barat, C. Ducottet, Approximate image matching using strings of bag-of-visual
words representation, in: International Conference on Computer Vision Theory and Applications
(VISAPP 2014), Lisbon, Portugal, pp. 345–353.

[18] L. Ballan, M. Bertini, A. Del Bimbo, G. Serra, Video event classification using string kernels,
Multimedia Tools and Applications 48 (2010) 69–87.

[19] K. Chatfield, V. Lempitsky, A. Vedaldi, A. Zisserman, The devil is in the details: an evaluation
of recent feature encoding methods, in: Proceedings of the British Machine Vision Conference
(BMVC), pp. 76.1–76.12.

[20] C. Iovan, D. Picard, N. Thome, M. Cord, Classification of urban scenes from geo-referenced im-
ages in urban street-view context, in: 11th International Conference on Machine Learning and
Applications (ICMLA), volume 2, pp. 339–344.

[21] H. E. Tasli, R. Sicre, T. Gevers, Geometry-constrained spatial pyramid adaptation for image
classification, in: International Conference on Image Processing (ICIP), pp. 1051–1055.

[22] G. Sharma, F. Jurie, Learning discriminative spatial representation for image classification, in:
BMVC 2011 - British Machine Vision Conference, BMVA Press, Dundee, United Kingdom, 2011,
pp. 1–11.

24

[23] X. Li, Y. Song, Y. Lu, Q. Tian, Spatial pooling for transformation invariant image representation,
in: Proceedings of the 19th ACM international conference on Multimedia, ACM, New-York, 2011,
pp. 1509–1512.

[24] Y. Cao, C. Wang, Z. Li, L. Zhang, L. Zhang, Spatial-bag-of-features, in: 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3352–3359.

[25] Y. Jiang, J. Yuan, G. Yu, Randomized spatial partition for scene recognition, in: Computer
Vision–ECCV 2012, volume 7573, Springer Berlin Heidelberg, 2012, pp. 730–743.

[26] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: Integrated recog-
nition, localization and detection using convolutional networks, arXiv preprint arXiv:1312.6229
(2013).

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Dar-
rell, Caffe: Convolutional architecture for fast feature embedding, arXiv preprint arXiv:1408.5093
(2014).

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge, arXiv
preprint arXiv:1409.0575 (2014).

[29] M. Christodoulakis, G. Brey, Edit distance with single-symbol combinations and splits, in: J. Holub,
J. Žďárek (Eds.), Proceedings of the Prague Stringology Conference 2008, Czech Technical Univer-
sity in Prague, Czech Republic, pp. 208–217.

[30] H. Li, T. Jiang, A class of edit kernels for svms to predict translation initiation sites in eukaryotic
mrnas, Journal of Computational Biology 12 (2005) 702–718.

[31] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spatial pyramid matching for recog-
nizing natural scene categories, in: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, pp. 2169–2178.

[32] A. Quattoni, A. Torralba, Recognizing indoor scenes, 2013 IEEE Conference on Computer Vision
and Pattern Recognition (2009) 413–420.

[33] L. Fei-Fei, R. Fergus, P. Perona, Learning generative visual models from few training examples:
an incremental Bayesian approach tested on 101 object categories, in: IEEE CVPR Workshop of
Generative Model Based Vision (WGMBV).

[34] A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features off-the-shelf: an astounding
baseline for recognition, arXiv preprint arXiv:1403.6382 (2014).

25

	Introduction
	Related work
	SPR based models
	CNN based models

	Image representation
	CNN feature extractor
	Spatial pyramid pooling and string representation

	An edit distance for strings of visual features
	The standard edit distance
	Edit distance for image classification
	cED and mED definitions
	String edit kernel

	Experiments
	Compared methods
	Evaluation
	Results
	Structural vs classical rigid representations
	Comparison of SPP-based approaches
	Comparison to the state-of-the-art
	Computational considerations

	Conclusion

