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ABSTRACT
The segment of post-quantum cryptography rises its impor-
tance with increasing improvements in the quantum comput-
ing. Cryptographic post-quantum algorithms have been pro-
posed since 1970s. However, side-channel attack vulnerabili-
ties of these algorithms are still in focus of the recent research.
In this paper, we present a differential power analysis attack
on the McEliece public-key cryptosystem. We demonstrate
that a part of a private key, permutation matrix, can be recov-
ered using the power analysis. We attack a software imple-
mentation of a secure bit permutation that was proposed by
Strenzke et al. at PQCrypto 2008. The cryptosystem is im-
plemented on a 32-bit ARM based microcontroller. We pro-
vide details of the attack and results using power consumption
measurements of the device. In addition, we outline a novel
countermeasure against the introduced attack. The counter-
measure uses properties of the linear codes and does not re-
quire large amount of random bits which can be profitable for
low-cost embedded devices.

Index Terms— Differential power analysis, Goppa codes,
McEliece cryptosystem, secure bit permutation, side-channel
attack

1. INTRODUCTION

Code-based cryptography offers interesting properties - fast
computation, favorable theoretical complexity and robust-
ness of the underlying non-deterministic polynomial-time
hard problem (NP-hard problem) which can not be broken by
quantum algorithms in polynomial-time [1].

This work was performed in the framework of the COST Action IC1204
(Trustworthy Manufacturing and Utilization of Secure Devices). It was sup-
ported by the Slovak Research and Development Agency, project number
APVV-0586-11 and in part by NATO’s Public Diplomacy Division in the
framework of “Science for Peace”, SPS Project 984520.

The first public-key cryptosystem (PKC) based on error-
correcting codes was proposed by McEliece in 1978 [2]. In
his paper, McEliece proposed to use the family of Goppa
codes. Permuted Goppa codes can provide a couple of advan-
tages - they look like random codes and they can be decoded
efficiently. A Goppa decoder can be used as a trapdoor in
code-based cryptography. In this context, we are interested in
implementations of the McEliece PKC and associated leak-
ages in order to recover the private key.

Side-channel attacks (SCAs) exploit a physical phe-
nomenon of an implementation, e.g. running time in software
or power consumption in hardware. The first SCA against the
McEliece PKC was proposed in 2008 [3] and more papers
have followed during the last years. Most of those attacks
target the Patterson’s algorithm [4] and they are based on
timing attack [3], [5, 6, 7, 8]. However, we are interested only
in power consumption analysis attacks in this paper.

Attacks against the McEliece PKC with Goppa codes
using a simple power analysis (SPA) have been proposed
in [9, 10]. However, to the best of our knowledge, this is the
first differential power analysis (DPA) attack on the McEliece
PKC using Goppa codes (the DPA in [11] is against the
McEliece PKC using QC-MDPC codes).

There are four profiles used for the first steps of the
McEliece decryption [9, Section 3]. Profiles III and IV do
not require permutation algorithm and thus they are more
secure. However, the first step in profiles I and II permutes
input ciphertexts which is convenient for some applications,
e.g. for embedded and constraint devices. In this work, we
are focused on the profiles I and II where the permutation
algorithm must be implemented in a secure way.

The paper is organized as follows. We start by present-
ing theoretical background on Goppa codes and the McEliece
PKC in Section 2. In Section 3, we describe the DPA at-
tack against the ciphertext permutation given in [3, Algorithm



3]. Furthermore, we provide an outline of a countermeasure
against the proposed DPA attack in Section 4. Finally, we
conclude the paper in Section 5.

2. THEORETICAL BACKGROUND

2.1. Goppa Codes

Goppa proposed a large class of linear error-correcting codes
in 1970 [12, 13]. However, our interest is focused exclusively
on irreducible binary Goppa codes that are commonly used
for encryption. For the sake of simplicity, we will call them
Goppa codes.

Definition 1 Let m and t be positive integers. Let L =
{α1, α2, . . . , αn} represent a subset of F2m such that the αi
are pairwise distinct elements, so n 6 2m. Given a monic
(irreducible) polynomial g(x) ∈ F2m [x] such that deg(g) = t
and g(αi) 6= 0 for i = 1, . . . , n, the (irreducible) Goppa code
Γ(L, g) is defined as:

Γ(L, g) =
{
C = (C1, C2, . . . , Cn) ∈ Fn2

∣∣∣ n∑
i=1

Ci

x⊕αi
≡ 0 mod g(x)

}
. (1)

We call the syndrome polynomial, a polynomial associated
to C ∈ Fn2 given by:

SC(x) =

n∑
i=1

Ci
x⊕ αi

. (2)

To decode a binary Goppa codeword containing errors,
one commonly adopted solution is to use the so-called Pat-
terson’s algorithm [4]. The input of a decoding algorithm
consists of a product of a Goppa code parity-check matrix
denoted H and the codeword C with at most t errors, i.e.
S = C · HT . The result of this operation is called the syn-
drome and it can be viewed as a polynomial as SC(x) =
[xt−1, . . . , x, 1] · S, i.e. (2).

2.2. The McEliece Cryptosystem

McEliece proposed the first public-key code-based encryption
scheme in 1978 [2]. The McEliece PKC, using Goppa codes
as in the original paper, is performed using the three following
algorithms - key generation, plaintext encryption and cipher-
text decryption.

2.2.1. Key Generation.

The key generation consists of the determination of the Goppa
code according to Definition 1 given in Section 2.1. Since
Goppa codes are linear, they can be generated by a so-called
k × n generator matrix denoted G. We randomly choose a
non-singular k × k matrix S and a n× n permutation matrix
P . Then we compute the public k×n generator matrix given
by G̃ = S · G · P . The key generation provides the secret

key sk = (Γ(L, g),S,P) and the public key pk = (m, t, G̃).
Notice that k and n are also public because G̃ is a k×nmatrix.

2.2.2. Plaintext Encryption.

During the plaintext encryption, the message M is encrypted
using the public generator matrix. This operation can be ex-
pressed by C = M · G̃. Then an error vector E of length n
and weight t is randomly selected and added to the codeword
C, giving the ciphertext C̃ = C ⊕ E.

2.2.3. Ciphertext Decryption.

At first, the product C̃p = C̃ · P−1 is computed during the
decryption of the ciphertext C̃. The attack described in Sec-
tion 3 targets this phase of the ciphertext decryption. This
step is leading to a codeword containing an error which can
be mathematically described as M · S · G︸ ︷︷ ︸

codeword

⊕E · P−1︸ ︷︷ ︸
error vector
of weight t

.

Next, a decoding algorithm (the Patterson’s algorithm in
our case) must be applied on the obtained secret code. Let
G−1r be the G right-side inverse, i.e. G · G−1r = Ik, where Ik
is the k×k identity matrix. Thereafter the obtained codeword
M · S · G is multiplied by G−1r on the right-side, in order to
find M̃ = M · S. Finally we compute M = M̃ · S−1 to
recover the plaintext.

3. DPA ATTACK ON THE SECURE BIT
PERMUTATION

3.1. Measurement Setup for the DPA Attack

We attack a software implementation of the McEliece PKC
decryption algorithm running on an STM32F103 microcon-
troller (MCU) [14]. The MCU features a 32-bit ARM Cortex-
M3 (clocked at 72 MHz). We acquire instantaneous power
consumption traces (traces) by measuring voltage drop on a
1Ω resistor placed in series between a grounding pin of the
MCU and the ground. We assume a constant voltage on the
MCU power supply thus the measured voltage drop is propor-
tional to power consumption. We do not take uncertainties,
precise calibrations and small deviations of the power supply
into an account since it has insignificant or no effect while
using DPA and CPA attacks.

Traces are acquired using the Agilent Technologies os-
cilloscope DSO9404A [15] (using 2 of 4 analog channels @
1 MΩ). A workflow of the measurement process is depicted
in Fig. 1. All traces needed for attacking protected device are
acquired at sample rate 250 × 106 samples per second (250
MS/s), vertical resolution 12-bit averaged, filtered DC signal
component and with a range +/- 30 mV. Two 500 MHz pas-
sive probes were connected directly to SubMiniature version
A (SMA) connectors available on the testing board with the
MCU.
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Fig. 1. Workflow of the measurement process. The acquisi-
tion of traces is controlled by the PC embedded in the oscil-
loscope.
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Fig. 2. An example of the power consumption trace.

Data acquisition is controlled by the software running on
the oscilloscope’s internal PC. The software sets up the oscil-
loscope, sends the ciphertext to the MCU – design under test
(DUT) via UART and waits for the acknowledgment. The
DUT rises a trigger and starts the ciphertext decryption. The
oscilloscope measures power consumption during the first
step of the decryption. Once the acquisition is finished, the
PC stores the measured trace to the hard disk. The measure-
ment process is repeated depending on the desired number of
traces. An average speed for a measurement of one trace with
9×105 samples is 1.5 s. In traces (Fig. 2), we can distinguish
four patterns of rising amplitude (especially in negative half
waves). These patterns are caused by implementation which
stores 64-bit ciphertexts in four 16-bit words. It allows us
to distinguish and attack (or protect) each word separately.
Later, we can use this fact to generalize our statement for any
length of the ciphertexts.

3.2. Attacked Secure Bit Permutation Algorithm

We attack the secure bit permutation algorithm proposed by
Strenzke et al. [3, Algorithm 3] (recalled in this paper in Algo-
rithm 1). We found a flaw in the algorithm which leaks infor-
mation about the private permutation matrix in the McEliece
PKC. Using a DPA attack, we are able to reconstruct the
whole matrix. We chose to attack the permutation algorithm
with n = 64. We store values n = 64 as four 16-bit words

as we can see in Fig. 2 (LSW, two middle words and MSW).
Since we cover all types of words (LSW, middle words and
MSW), the proposed attack can be enhanced to any value
of n > 3 in order to attack more practical implementations
(n = 1024, n = 2048, . . .) assuming straightforward imple-
mentation.

Algorithm 1. Secure bit permutation C̃p = C̃ ·P−1 (from [3])
Require: Private n × n permutation matrix P represented by

lookup-table tP and ciphertext vector C̃
Ensure: Permuted ciphertext C̃p (of length n)

1: for i = 0 to n− 1 do
2: j = tPi
3: C̃pi = 0
4: for h = 0 to n− 1 do
5: l = C̃pi

6: µ = C̃h

7: s = j ⊕ h
8: s |= s� 1
9: s |= s� 2

10: s |= s� 4
11: s |= s� 8
12: s |= s� 16
13: s & = 1
14: s = ∼ (s− 1)
15: C̃pi = (s & l) | ((∼ s) & µ)
16: end for
17: end for
18: return C̃p

With notations used in Algorithm 1, the vulnerable oper-
ation is 15. Indeed, for 0 6 h < j, C̃pi will be zero and from
h = j to h = n − 1, C̃pi will be µ = C̃h. It means that the
i-th bit of C̃p will become the h-th bit of C̃ only when j = h
(i.e. when s = 0) and otherwise it will not change (i.e. when
s 6= 0). These properties allow us to deploy the DPA attack
(Fig. 3). During the vulnerable operation (Step 15), we can
observe the instant when µ is assigned to C̃pi (j = h). With
the DPA we are able to detect time of this assignment and thus
reveal one row of the permutation matrix.

3.3. Principle and Results of the DPA Attack

We deploy the DPA attack based on the Pearson’s correlation
coefficient [16] with known input ciphertext. The workflow of
the DPA is depicted in Fig. 3. We apply a Hamming weight
of individual bits leakage model. (Hi ∈ {0, 1}). We use (3)
for correlation analyses:

rH,X(η) =

N∑
i=1

[(Xi(η)− X̄(η))(Hi − H̄)]√√√√ N∑
i=1

[Xi(η)− X̄(η)]2
N∑
i=1

(Hi − H̄)2

(3)
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Fig. 3. Main steps of the DPA attack on the secure bit permu-
tation.

where rH,X(η) is the Pearson’s correlation coefficient for η-th
sample (measured during execution of the cryptographic algo-
rithm), N is a number of measured traces, Xi(η) is a value of
η-th sample measured during i-th measurement (i-th trace),
X̄(η) is a mean value of corresponding η-th samples (from
all traces), Hi is a hypothesis of power consumption for one
bit of input data corresponding with i-th measurement (i-th
trace) and H̄ is a mean value of all hypotheses Hi.

We need to perform the correlation analysis n times for
each input bit (in our case 64 times). We obtain positions of
permuted bits by searching for correlation peaks during anal-
yses as depicted in Fig. 4. We can clearly distinguish the mo-
ment (marked with arrows) when a bit from input ciphertexts
is handled for the first time during the permutation algorithm.
Since we know the position of bits in input ciphertexts and the
position of the same bits in permuted ciphertexts (from cor-
relation analyses), we can reconstruct the permutation matrix
P−1. The attack with 500 traces takes several minutes on a
2.4 GHz Core i7 CPU.

4. COUNTERMEASURE OUTLINE AGAINST THE
DPA ATTACK

One of the most common countermeasure against DPA at-
tacks is masking [17]. Two main disadvantages of the mask-
ing technique are requirement of random bits and increased
computational complexity. In our novel method of counter-
measure (Algorithm 2), we are able to use the masking with
decreased effects of mentioned disadvantages. We benefit
from properties of the McEliece PKC decryption:

• syndrome computation is scheduled right after bit per-
mutation,

• every Goppa codeword has a zero syndrome,
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Fig. 4. Four selected correlation analyses using 500 traces.

• rows in generator matrix G are codewords.

Since the syndrome computation is a linear operation and
the syndrome equals zero for all codewords, the main idea for
our countermeasure is to add a codeword to the permuted ci-
phertext and compute the syndrome with this new word C̃ ′p =

C̃p⊕B, where B ∈ Γ(L, g) (for example one row in G). The
syndrome is the same since S = C̃ ′p ·HT = (C̃p⊕B) ·HT =

C̃p · HT ⊕B · HT︸ ︷︷ ︸
=0

= C̃p · HT .

Hence we need to add the mask to the input ciphertext C̃
before the permutation algorithm, we add a permuted code-
word pB such that pB · P−1 = B. After the permutation, we
get C̃ ′p = (C̃⊕pB)·P−1 = (C̃ ·P−1)⊕(pB ·P−1) = C̃p⊕B
which is input for the syndrome computation in the previous
paragraph.

In regular masking method, we need to generate random
masks with width at least equal to the width of masked data.
After, we perform calculations with mask and masked data.
In the end, we merge mask and masked data into resulting
data of the desired operation. In our case, we have to obtain a
permuted Goppa codeword pB. There are several possibilities
to do so. It can be done either by choosing a random Goppa
codeword or we can use a row in the generator matrix G (and
linear combinations) and modify them using the permutation
matrix. Another possibility is to use linear combinations of
rows from public matrix G̃ (this option is potentially vulnera-
ble to an attack since an adversary knows the G̃ matrix). For
constraint devices we can pre-compute sufficient amount of



modified codewords pB and use their linear combinations for
each decryption. After we add pB to the ciphertext, we get
correct result from the McEliece PKC decryption with no ad-
ditional steps.

Compared to masking scheme, this method is more effec-
tive in terms of computational time and resources (memory
space, random bits). Using these properties, we avoid stor-
ing multiple values (masks and masked data) and we com-
pute operations of permutation and parity-check matrix mul-
tiplication only once. Relations between intermediate values
and input data are broken and thus the overall first-order DPA
leakage is reduced. Indeed, a higher order DPA attack [18] is
still possible if an adversary attacks multiple vulnerable data.
Mutual information of pB and 15 in Algorithm 2 can lead
to a successful second order DPA attack. On the other hand,
higher order DPA attacks are more complex than the first or-
der DPA.

In the best of our knowledge, this is the first time that these
properties are used as a countermeasure against an SCA in the
McEliece PKC. The proposed DPA attack resistant bit permu-
tation is sketched in Algorithm 2 (with underlined changes
compared to Algorithm 1).

Algorithm 2. Secure bit permutation C̃ ′p = (C̃ ⊕ pB) · P−1
with assumed DPA resistance
Require: Private permutation matrixP represented by lookup-table

tP , ciphertext vector C̃ and the private code Γ(L, g)
Ensure: Permuted ciphertext with added Goppa codeword

(C̃′
p = C̃p ⊕B)

1: Choose pB

2: C̃′ = C̃ ⊕ pB
3: for i = 0 to n− 1 do
4: j = tPi
5: C̃′

pi = 0
6: for h = 0 to n− 1 do
7: l = C̃′

pi

8: µ = C̃′
h

9: s = j ⊕ h
10: s |= s� 1
11: s |= s� 2
12: s |= s� 4
13: s |= s� 8
14: s |= s� 16
15: s & = 1
16: s = ∼ (s− 1)
17: C̃′

pi = (s & l) | ((∼ s) & µ)
18: end for
19: end for
20: return C̃′

p

We add permuted Goppa codes pB to input ciphertext in
Algorithm 2. From the point of view of an adversary, we
summate input ciphertexts with random values. In Step 17,
the adversary can not survey which of the variables l and µ is
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Fig. 5. Secure bit permutation with the proposed countermea-
sure. Modified Goppa codes are added to ciphertexts as masks
before the permutation. During and after the permutation, an
adversary is unable to find patterns (gray and dashed elipses)
in permuted ciphertexts with added Goppa codewords.

assigned to C̃ ′pi as it is in Step 15 of Algorithm 1. The reason
is that the hypotheses which the adversary would create are
completely distorted by the addition of the mask pB as shown
in Fig 5.

5. CONCLUSION

In this paper, we successfully deployed the DPA attack target-
ing the McEliece PKC decryption. We attack the bit permuta-
tion including the countermeasure proposed by Strenzke et al.
The permutation was implemented and attacked on the ARM
Cortex-M3 based MCU. We showed that without a counter-
measure, we were able to recover the whole 64×64 permuta-
tion matrix as a toy example. The DPA attack can be extended
to usual McEliece PKC parameters, e.g. n = 2048.

Secondly, we proposed an outline of a countermeasure
against this DPA attack. We developed a method which is
based on a masking technique. We add Goppa codewords
(random or rows of G) to ciphertexts during the permutation
algorithm as masks. By using properties of the McEliece
PKC, we reduced the number of random bits that are needed
for the masking. After the codeword addition, there is no
change in the decryption algorithm. With these properties, we
decreased a computational complexity as well (compared to
the regular masking technique). In theory, the masking coun-
termeasure significantly reduce the overall leakage - this fact
has yet to be evaluated.

In the future, we will expand the DPA attack and the
countermeasure for usual McEliece PKC parameters. Fur-
thermore, we will implement the outlined countermeasure
and we well test its robustness. Next, we will apply the DPA
attack on other implementations of the McEliece PKC where
we expect DPA vulnerabilities. We will also focus on other
parts of the McEliece decryption algorithm such as syndrome
computation.
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