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ABSTRACT

We investigate femtosecond laser irradiation of dielectric materials containing randomly-arranged nanoparticles.
For this, numerical modeling is performed based on three different methods: Mie theory, static solution of
linear Maxwell’s equations and a solution of nonlinear Maxwell’s equations together with kinetic equations
for free electron excitation/relaxation processes. First two approaches are used to define the static intensity
distribution and to analyze the electromagnetic interaction between the nanoparticles. The third method allows
us to investigate the complex dynamics of the laser-matter interaction. Multiphoton absorption is shown to
be responsible for electron plasma generation in the regions of strong intensity enhancements in the vicinity of
nanoparticles. The irradiation of the dielectric material leads to the elongation of nanoplasmas by the near-
field enhancement perpendicular to the laser polarization and to their strong interaction resulting in periodic
arrangement. Numerical results shed light on such effects as femtosecond laser-induced nanograting formation.

Keywords: Multiphoton absorption, femtosecond-laser interaction, transparent materials, nonlinear Maxwell’s
equations, Mie theory

1. INTRODUCTION

Femtosecond laser interactions have attracted increasing interest due to new possibilities for the efficient nanos-
tructuring of different materials.'® Nanoprocessing of transparent dielectrics is particularly promising since
it enables writing optical waveguides, nanovoid arrays, polarization-dependent periodic surface structures and
volume nanogratings.*® Recently, nanocomposites comprising metallic nanoparticles in a dielectric matrix have
been shown to exhibit more pronounced nonlinear characteristics than the homogeneous transparent materials.
These composites have already found a wide range of applications for solar cells, sensors and high-tech optical
devices.5 10 In addition, periodic organization of nanostructures in transparent dielectrics containing metallic
nanoparticles by ultrashort high-intensity laser irradiation has been evidenced in several recent works.'' 4 Fur-
thermore, the doping elements in glasses were found to significantly improve the quality and the smoothness of
the nanostructures and to facilitate the accumulation processes responsible for the self-organization.'4 17

The optical response of metallic nanoparticles embedded in a dielectric matrix was studied in many works.'822

The dipole-dipole interaction between polarized nanoparticles was found to be among possible sources of the
composite optical nonlinearity. Particularly, it was shown that the impact of the dipole-dipole interaction
increased with rise of nanoparticle concentration in the composite.?? Until now, the effect of the dipole-dipole
interactions on the optical characteristics of the nanocomposites was mostly studied by the discrete dipole
approximation for simulating clusters of spheres. It is worth noting that the coupled dipole method, being a
linear approximation, is suitable only for weak optical fields. Moreover, the method disregards the transient
properties of laser-irradiated glass.

When a high-intensity laser beam is tightly focused inside transparent dielectric, the properties of the material
change considerably due to photoionization and avalanche effects.?326 Furthermore, metallic nanoparticles
embedded in glass matrix were shown to enhance nonlinear absorption during the laser structuring process.'?
The scenario of nanoplasmas growth due to localized inhomogeneous nonlinear ionization was discussed in several
pioneer works.2” 2 In particular, the nanoplasmonics model based on the near-field enhancement at the tip of the
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nanoplasmas was proposed as the mechanism of the nanogratings formation in glass.?? The generated electron
plasma kinetics has been investigated in dielectrics in a few recent articles.?03°

Herein, we discuss the dynamics of high-intensity ultrafast laser interaction with nanocomposites. We start
by considering the optical response and the nonlinear interaction with one nanoparticle. Then, we investigate
the collective response of a periodically-arranged nanoparticle array. Finally, we show the results for randomly
distributed inclusions embedded in glass matrix.

2. NUMERICAL MODEL

In this paper, we use different methods to analyze the optical response of nanoparticles in glass. Method A
and Method B provide static intensity distribution. Method C describes the complex dynamics of laser-matter
interaction with nanoparticles in glass.

The first method (Method A) is an analytical static solution and is based on an approximation of the Mie
solution.?%37 The scattered electric fields are calculated analytically for the case of a small ¢ < 1 sphere in the
near-field kr < 1 and in the far-field kr > 1 (see appendix). The total scattered field is the superposition of the
fields scattered by each nanoparticle. The intensity corresponds to the square of the sum of the scattered and the
incident fields. The approach describes the interference between the incident plane wave and the scattered field
by homogeneous sub-wavelength spheres. The main advantage of this method is that we can separate dipole-
dipole interaction from other types of more complex interactions as well as the response of each individual dipole
from the interparticle dipole coupling. Unfortunately, the approach is applicable only for the inhomogeneities of
special shape and limited size.

The second method (Method B) solves the linear Maxwell’s equations using finite-difference time-domain
(FDTD) method.>® The method describes the intensity distribution at a fixed time of propagation and with a
fixed density profile ne(z,2,t) = neg(x, z). This approach still allows us to separate the contribution of each
electric field and, therefore, the incident field and the scattered field from the total field. The method solves only
static problems. Additionally, even at the fixed time, it is not precise because of the difficulty to define exactly
the density profiles evolving in the study.

Finally, the third method (Method C) is based on the nonlinear Maxwell’s equations coupled with electron
density equation. The kinetics of the electron plasma in the transparent material is described, as follows
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where E is the electric field, H is the magnetic field, Jo is the nonlinear current consisting of two parts, the first
term derived from the Drude model for the dispersive media with time-dependent electron density n. and the
second photoionization term considering a complete Keldysh photoionization rate w,;.>? Free carrier number
density changes due to photoionization wy; and recombination effect with 74, = 150 fs.*° The electromagnetic
response of the metallic nanoparticles is calculated from the linear Maxwell’s equations with the current term
derived from the Drude-Lorentz model for gold.*! In this method, we consider initial Gaussian electric field
profile and Gaussian temporal envelope. The details of the numerical model and modeling parameters for glass
can be found in Ref. [35]. This method is able to follow the kinetics of electron plasma generated in the near
field of the embedded nanoparticles. However, the method does not allow us to separate linear and nonlinear
processes and to elucidate which interaction is responsible for the nanoplasmas growth and interaction.

We note, that all the resulting snapshots of the electric fields, intensity and electron density are in the plane
2Oz, where the light is polarized along z direction and z is the propagation direction.
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Figure 1. (a) Electron density distribution is calculated by 2D-Maxwell’s equations coupled with electron density equation
(Method C) at the peak of 80 fs laser pulse irradiating a single nanoparticle; (b) Static analytical Mie theory intensity
distribution (Method A) for a small nanoparticle of radius @ = 5 nm localized in (0,0) (interference between the incident
plane wave and the scattered spherical wave). Here, laser irradiation conditions: pulse duration § = 80 fs (FWHM),
irradiation wavelength in air A = 800 nm, pulse energy £ = 300 nJ. Electron density is normalized to its critical value at
800 nm ner = 1.7 x 10*°*m 2 and k is the incident laser wave vector.

3. RESULTS AND DISCUSSION

First, we consider the optical response of one nanoparticle embedded in glass. The intensity in the near-field
of the gold nanoparticle is strongly enhanced in the polarization direction and leads to the organization of
electron plasma (non visible in Fig. 1(a)).??3%42 The interference between the incident and the scattered far-
field spherical wave leads to the organization of periodical minima and maxima in the direction of the light
propagation (Fig. 1(a,b)). This phenomenon can be explained by considering the dipole approximation method
(Method A). The scattered electric field EY Eés) x Bf% interferes with the incident polarization field

EY exp(—ikz) (see appendix). Fig. 1(b) shows that the interference results in the organization of the standing

wave with the intensity distribution I %ZEZ) having maxima and minima separated by Az = A\/2n. The

dynamics of the interaction of the laser light with plasma is defined by this strong enhancement in the direction
backward to the laser propagation.

Second, we study the interaction of the organized nanoplasmas from several nanoparticles embedded in
glass (Fig. 2). The mutual enhancement induced by the plasma interaction strongly depends on the distance
between the initial nanoparticles. The optical response of the ensemble is the sum of the individual nanoplasma
contributions modified by interparticle coupling that depends on specific geometry and, therefore, on the initial
particle localization. Fig. 2(a) shows that for widely separated nanoparticles, the behavior is independent.
Hence, the interference between the incident and the scattered field dominates over plasmonic modes.*> At
closer distance, the interparticle coupling starts playing a role. We can see periodically organized patterns
between the nanoplasmas corresponding to the mutual enhancements in Fig. 2(b,c). The closer the nanoplasmas
are, the stronger their collective response.?? It is worth noting that the approximation method A cannot be
applied in the case of closely separated nanoparticles with kr ~ 1. Thus, it is inapplicable for nanoparticles with
interparticle separation significantly less than the irradiation wavelength in medium. The method B solving the
complete system of Maxwell’s equations should be used to understand the interaction of nanoplasmas in close
proximity.

In the cases of one nanoparticle and widely separated nanoparticles embedded in glass, the resulting intensity

distribution was defined mostly by the EY Eés) x Bf% electric field component, where BY is the first
electric dipole moment (see appendix). The contribution of EY o BT%
very fast in the radial direction. However, for metallic nanoparticles, the magnetic moment is of the same order as

is roughly negligible as it decreases
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Figure 2. Static analytical Mie theory intensity distribution (Method A) for small nanoparticles of radius a = 50 nm
with interparticle separations a) d = 2um b) d = 1um ¢) d = 750nm (interference between the incident plane wave and
the scattered spherical wave). Laser irradiation wavelength is A = 800 nm in air.

the dipole moment order (see appendix).?”*44 The orthogonal scattered field in the first approximation is defined

as B o Eés) o B{"%, where BT is the first magnetic dipole moment. The contribution of this field
influences strongly the resulting intensity distribution. In the next paragraph we investigate the contribution of
the orthogonal field.
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Figure 3. Multiple scattering intensity distributions for a periodic array of nanoparticles of radius ¢ = 100 nm with
different interparticle separations: (a) d = 200 nm, (b) d = 300 nm, (c¢) d = 500 nm are calculated by linear Maxwell’s
equations (Method B). Laser irradiation wavelength is A = 800 nm in air.

In what follows, we analyze the character of multiple scattering induced by the orthogonal field from closely
arranged nanoparticles (Fig. 3). An array of periodic high density spherical nanoparticles with radius a =
100 nm is illuminated simultaneously by a plane wave. We vary the interparticle separation distance d and
study the resulting intensity distribution calculated by linear Maxwell’s equations (Method B). For particle
dimensions much smaller than the wavelength, interference effect is negligible but interparticle coupling becomes
significant. For nearly touching nanoparticles, plasmons exhibit multipolar behavior,*® including a very high
local concentration of electromagnetic energy in the vicinity of their conductive contact Fig. 3(a). In this



case, the scattering patterns depend strongly on the particle size and, correspondingly, on the interparticle
separation. Therefore, the period of the interference patterns due to multiple scattering is directly proportional
to the interparticle separation. However, the near-field enhancement might have nontrivial distribution when
the interparticle coupling effects take place.*%47 Fig. 3(b) demonstrates that as d grows, the periodicity of
enhancements also changes. For distances longer than the nanoparticle size, the character of scattering is
qualitatively different and the periodicity is about half the interparticle separation in Fig. 3(c). It is worth noting
that the intensity enhancement induced in the near-field of the closely spaced nanoparticles by the orthogonal
field might considerably change the electron density distribution and the direction in which the nanoplasmas
grow.

We have investigated the role of both components of the electric field in the case of periodically arranged
nanoparticles without taking into account the transient properties of the dielectric material. We note, that such
a physical interpretation can be considered only as a very rough approximation of the complex studying problem
where the size and the density of nanoplasmas change in time. Hence, we perform FDTD calculations based
on solution of the system of coupled equations (Method C) with initially periodically arranged nanoparticles
(Fig. 4). Interestingly, the electron density snapshots taken before the pulse peak already show two regimes
with different scattering behavior for different initial interparticle separations. In both cases, the nanoplasmas
elongate from the nanoparticles in the backward propagation direction. For the nanoparticles in close proximity,
the nanoplasmas merge together organizing the nanoplanes with exact periodicity of the initial interparticle
separation in Fig. 4(a). At larger separation distances, each nanoplasma is divided into two and the final
periodicity is half the interparticle separation in Fig. 4(b). In fact, such behavior can be explained by the
intensity enhancements induced by the orthogonal field and calculated by linear Maxwell’s equations in Fig.
3(c). The nanoplasmas always grow into the direction where the intensity is strongly enhanced.

d =300 nm d =500 nm n‘v’/n""

'y
K
e
5
K
X
¥

0 tstetstviaietete
WREEE S up

A -y

Z [um] Z [um]

Figure 4. Electron density snapshots calculated by 2D-Maxwell’s equations coupled with electron density equation (Method
C) 40 fs before the pulse peak. Laser irradiation conditions: pulse duration 8 = 240 fs (FWHM), irradiation wavelength in
air A = 800 nm, pulse energy E = 500 nJ. Electron density is normalized to its critical value at 800 nm ne, = 1.7x10*7m 3.
The interparticle separation is (a) d = 300 nm, (b) d = 500 nm.

Finally, the calculation results using nonlinear Maxwell’s equations coupled with free electron density equation
(Method C) for glass with initial randomly distributed nanoparticles are shown in Fig. 5. The first snapshot in
Fig. 5(a) taken far before the peak pulse shows that each nanoparticle exhibits dipole behavior in the near-field
and in the far-field. The interference of the incident and the scattered spherical waves from nanoparticles induces
periodic strong enhancements backwards to the laser propagation. As a result, the nanoplasmas are elongated



perpendicular to the laser propagation in Fig. 5(b). They strongly interact with each other. The nanoplasmas
in close proximity merge together, slightly changing their direction. Fig. 5(c) shows that the mutual interaction
leads to organization of quasi-periodic nanoplasma planes perpendicular to the laser polarization. Previously,
it was reported that femtosecond laser irradiation of fused silica bulk might lead to the self-organization of
nanogratings consisting of high density plasma.'3 29424849 Qmall inhomogeneities are required to initiate the
process.>> Here, we show that the nanoparticles can also play the same role of seeds for the nanoplasmas.
Moreover, we underline that the self-organization of final structures can be explained by the electromagnetic
approach coupled with the electron density equation to describe the dynamics of femtosecond laser interaction
with dielectric materials.
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Figure 5. Electron density snapshots are calculated by 2D-Maxwell’s equations coupled with electron density equation
(Method C) revealing the evolution of nanogratings (a) 80 fs before the pulse peak, (b) at the pulse peak, (c) 80 fs after
the pulse peak. Laser irradiation conditions: pulse duration § = 240 fs (FWHM), irradiation wavelength in air A = 800
nm, pulse energy E = 500 nJ. Electron density is normalized to its critical value at 800 nm ne, = 1.7 x 10*”m~2. The
average initial interparticle distance is d =400 nm. In Fig. 5(a) the scale is different than in Fig. 5(b) and in Fig. 5(c).

4. CONCLUSION

We have investigated ultrashort laser interaction with dielectric materials containing randomly-arranged nanopar-
ticles. Three methods have been applied to explain the optical response of the quasi-metallic nanoplasma orga-
nized due to enhanced nonlinear absorption in the vicinity of the embedded nanoparticles: analytical solution
from Mie theory (Method A), linear Maxwell’s equations (Method B) and nonlinear Maxwell’s equations coupled
with electron density equation (Method C).

1) It is shown that the dipole approximation method can explain the near-field enhancement at the tip of
nanoplasma resulting in nanoplasma growth.

2) The distance between the randomly elongated nanoplasmas should be at least less than the irradiation
wavelength in glass, otherwise, the mutual enhancement is negligible. This distance allows us to estimate the
initial concentration of the embedded nanoparticles which is required for significant near-field enhancement.

3) At closer nanoplasma separation, the mutual interaction exhibits complex behavior. Particularly, the
contribution of the orthogonal field for the closely arranged metallic nanoparticles is not negligible. The intensity
enhancement induced by the orthogonal field might considerably change the electron density distribution and
the direction in which the nanoplasmas grow.

4) The results of calculations show that the nanoparticles act like reservoirs of available electrons,'? inducing
the formation of long nanoplasmas. The nanoplasmas mutually interact and are arranged in quasi-periodic planes
perpendicular to the laser polarization.



4.1

The electric fields scattered by homogeneous sphere in spherical coordinates (r, 6, ¢) can be written as follows

Appendix
36,37

s oS¢ .
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where By and B/ are electric and magnetic dipole moments, k is the wave vector in the medium, <l(1)(kr)

are

the spherical Henkel functions of the first kind, and Pl(l)(cosﬁ) are Legendre polynomials of the first kind.

Additionally, the fields have a time dependence factor exp(—iwt) that has been suppressed in the above equations.

The asymptotes for Henkel functions are as follows

i) Near-field (kr < 1): gl(l)(kr) = —7 and §1 (kT) (k})2

T

ii) Far-field (kr > 1): gfl)(kr) —exp(ikr) and c( y (kr)=—i- 6:cp(ik7")
Small size approximations (¢ < 1,ng < 1,1 =1): B{ = ig3™ n2+2, B =ig°2 5t Bf 0, B" = 0,1> 1.

For small metallic nanoparticle (¢ < 1,ng > 1,1 =1): B =iq®, B* = i%, Bf -0, B" —0,1> 1.

cosf
sind *

Legendre polynomials for [ = 1: Pl(l)(cosﬁ) = sinf and Pl(l)/(cosé) =—

The scattered electric fields in Cartesian coordinate system:

EQ(CS) = Eﬁs)sinGCOS(b + EéS)COSQCOS(b — Eéf)sinqb
E;S) = E®sinfsing + Eés)cosﬂsingi) + Eés)cos¢) (3)
E®) = E®cosf) — Eés)sme.
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