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Abstract—Many image processing applications require to de-
tect a known pattern buried under noise. While maximum
correlation can be implemented efficiently using fast Fourier
transforms, detection criteria that are robust to the presence
of outliers are typically slower by several orders of magnitude.
We derive the general expression of a robust detection criterion
based on the theory of locally optimal detectors. The expression of
the criterion is attractive because it offers a fast implementation
based on correlations. Application of this criterion to Cauchy
likelihood gives good detection performance in the presence of
outliers, as shown in our numerical experiments. Special attention
is given to proper normalization of the criterion in order to
account for truncation at the image borders and noise with a
non-stationary dispersion.

Index Terms—robust detection, locally most powerful test
(LMP), Cauchy distribution

I. INTRODUCTION

We consider the problem of detecting a known pattern
from a noisy image. In its simplest formulation, this detection
problem amounts to a binary hypothesis choice:{

H0 : y = ε

H1 : y = αm(x) + ε , with α > 0
(1)

where under H0 the observation y ∈ Rn corresponds to the
realization ε of a random process accounting for noise. Under
hypothesis H1, the observation is the superimposition of noise
ε and the pattern m(x) ∈ Rn of (unknown) amplitude α > 0
and location x.

In many practical cases, there are several observations yi
that display strong deviations from the model αmi(x). These
deviations may be due to non-linearities of the sensor (e.g.,
saturation, dead/hot pixel) or mis-modeling (e.g., structured
background). The random vector ε should not then be mod-
eled by a white Gaussian distribution, but rather by a non-
stationary, non-Gaussian, and perhaps correlated distribution.
In this work, we keep the simplifying independence assump-
tion but consider non-Gaussian noise distributions with heavy
tails in order to derive a robust detection method.
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When the measurement and modeling errors ε are centered
and can be considered Gaussian, with a known covariance
matrix Γ, the generalized likelihood ratio test takes the form
of a matched filter [1]:

TCorr(x) = max

 m(x)tΓ−1y√
m(x)tΓ−1m(x)

, 0

 H1

≷
H0

γ , (2)

when taking into account the prior information that α ≥ 0.
Evaluating TCorr for different locations x gives a correlation
map. Correlation-based methods offer optimal performance
under Gaussian noise [1]. It is well known, however, that
the performance strongly deteriorates in the presence of large
deviations (outliers), see [2] and figure 1.

Robust image matching is a widely studied topic. A com-
mon approach starts by detecting feature points, then computes
local descriptors such as scale-invariant feature transforms
(SIFTs) [3] before matching pairs of descriptors. Robust
matching is achieved by restricting the matching to feature
points, and by using well-chosen (i.e., invariant) descriptors
[4].

In order to detect patterns even at low signal-to-noise (SNR)
regimes, a “pixel-based” approach is often better suited. The
fast correlation method proposed in [2] for image registration
replaces the quadratic penalty typical of maximum likelihood
under a Gaussian assumption by a bounded penalty of the
form ψ(∆) = 1− cos(∆). The reason for this specific choice
of penality is that it leads to a fast implementation based on
FFTs.

In a signal processing context, locally optimal detectors
(i.e., detectors statistically optimal for weak signals) have
been developed for several noise distributions, see the seminal
papers by Capon [5] and by Miller and Thomas [6]. These
detectors have been applied recently to the detection of marks
in image watermarking [7], [8]. In this paper, we derive the
general expression of locally optimal detectors for problem (1),
including the normalization of the test statistics required for
the calibration of the threshold. This normalization is crucial
to account for truncation at the image borders and prevent the
introduction of bias for objects centered close to or beyond
the image borders. It is also necessary when considering noise
with a non-stationary dispersion. We show that the expression
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Fig. 1. Detection of a pattern in the presence of strong outliers: correlation vs. robust correlation. (a) the reference pattern; (b) noiseless signal: measurements
are available only inside the white square, the center of the actual pattern is marked with a red circle; (c) noisy data (SNR=1 for 95% of the pixels, and
SNR=0.01 for the remaining 5%) shown using the same display range as image (b); (d) normalized correlation map TCorr (maximum marked with a star); (e)
proposed robust-correlation map.

of the criterion offers a fast implementation based on pixel-
wise operations and discrete correlations. We give its close-
form expression under Cauchy noise and prove its Gaussian
approximation in the asymptotic regime. Finally, we illustrate
its performance on a numerical experiment.

II. PROPOSED ROBUST DETECTOR

A. Motivation

Several tests have been developed in the framework of
detection theory. The three most well known are the (gen-
eralized) likelihood ratio, Wald’s statistic and Rao’s score,
see [9], [10]. Robust detection criteria can readily be derived
from these tests by modeling the distribution of errors p(ε)
with a heavy-tailed distribution. However, if the location x of
the pattern is not known (at least approximately) beforehand,
robust detection criteria are generally computationally very
demanding because they require estimating the amplitude α
during the exhaustive search for location x. Maximum likeli-
hood estimation of α under non-Gaussian distributions (an M-
estimator) typically requires resorting to an iterative procedure
[11]. Testing all pixel locations thus leads to prohibitive
computation times when the pattern m has a large spatial
extension.

A very interesting feature of Rao’s score is that it does not
require the estimation of the amplitude of the pattern. When
the (unknown) amplitude of the pattern to detect is always non-
negative, Rao’s score corresponds to the locally most powerful
(LMP) detector, i.e., it is asymptotically optimal for weak
signals (when α tends to zero). The LMP test is given by
[1]:

TLMP(y) =
∂ log p(y|α,H1)

∂α

∣∣∣∣
α=0

· I−1/20

H1

≷
H0

γ , (3)

where I0 denotes Fisher information on parameter α, evaluated
at α = 0:

I0 = E
[
−∂

2 log p(y|α,H1)

∂α2

]∣∣∣∣
α=0

. (4)

The LMP test does not require the estimation of the am-
plitude α, but only the evaluation of the slope of the log
likelihood at α = 0 (i.e., under H0) and the computation of the
expectation of the curvature of the log likelihood for the Fisher
information. In the case of Gaussian noise, the LMP detector

leads to the same expression (2) as the generalized likelihood
ratio. We investigate the use of this test with heavy-tailed
distributions as a detection criterion robust to the presence
of outliers.

The general expression of LMP detectors has been derived
by Miller and Thomas [6], without the normalization factor
I0. It is worth to note that, as already mentioned in the
introduction, the normalizing factor I0 plays a crucial part in
image processing. I0 is a function of m(x) which generally
depends on the position x. While the threshold γ can be
calibrated once and for all, using Monte-Carlo simulations or
asymptotic distribution of the test statistic, in the center of the
image, i.e. where m is constant, a different calibration of γ
will be required for each position of the pattern on the border
of the image. Moreover, if the noise displays a non-stationary
dispersion, the normalization I0 also varies spatially.

B. Derivation of the detector
We define the scaled residuals t(α,x) by

∀i, ti(α,x) =
yi − αmi(x)

si
(5)

where we assume that the scaling factors si > 0 can be chosen
such that under H0, random variables ti(0,x) are independent
and identically distributed (i.i.d.). We thus consider a slightly
more general case than that of i.i.d. noise. By considering non-
constant scaling factors si, one can account for noise with
non-stationary dispersion.

We further assume that the likelihood of the data can be
written under the form

p(y|α,m(x)) ∝
∏
i exp(−ϕ(ti)) , (6)

with ϕ twice differentiable.
To compute the first factor of the test (3), we begin by

computing the partial derivative of the log-likelihood with
respect to the amplitude α of the pattern:

∂ log p(y|α,H1)

∂α
=
∑
i

mi(x)

si
ϕ′(ti) , with ϕ′ =

∂ϕ

∂t

(7)

which gives:

∂ log p(y|α,H1)

∂α

∣∣∣∣
α=0

=
∑
i

mi(x)

si
ϕ′(yi/si) . (8)



The second part requires the computation of Fisher informa-
tion. We therefore compute the second order partial derivative:

∂2 log p(y|α,H1)

∂α2
= −

∑
i

m2
i (x)

s2i
ϕ′′(ti) . (9)

Fisher information on parameter α, for α = 0, is given by:

I0(x) =
∑
i

m2
i (x)

s2i
E[ϕ′′(yi/si)] . (10)

Since under our initial hypothesis ti(0) = yi/si are i.i.d., the
expectation is constant:

∀i, E[ϕ′′(yi/si)] =

∫ ∞
−∞

ϕ′′(t) exp(−ϕ(t)) dt︸ ︷︷ ︸
β

, (11)

which gives the final expression of the LMP test:

TLMP(x) = τ(x)

n∑
i=1

mi(x)

si
ϕ′(yi/si) , (12)

with τ(x) =

(
β

n∑
i=1

m2
i (x)

s2i

)−1/2
. (13)

We have written explicitly the dependency on the location x
of the model in order to emphasize that the normalization
coefficient τ(x) varies in the field of view, either because the
model is shifted with respect to non-constant scaling factors si,
or because truncation and/or deformation of the model occur.
We further discuss the practical implication of the spatial
variation of τ(x) in paragraph II-E.

C. Asymptotic normality under H0

The model under consideration is not i.i.d. and consequently
asymptotic normality of the LMP test statistic under H0 cannot
be assumed. The expression of the test obtained in equation
(12) can be re-written under the form:

TLMP(x) =
1√∑n

i=1 c
2
i (x)

n∑
i=1

ci(x)ui , (14)

with ci(x) =
mi(x)

si
and ui = ϕ′(yi/si)/

√
β . (15)

The expectation of random variables ui under H0 is 0, while
their variance is equal to 1. By application of lemma 11.3.3
from [10], a sufficient condition for the test statistic TLMP(x)
to converge to a standard normal distribution under H0 is that:

lim
n→∞

∑n
i=1 c

2
i (x)

maxi=1..n c2i (x)
=∞ (16)

which amounts to requiring that additional observations in-
crease Fisher information so that it is unbounded.

A threshold can thus be set to reach a prescribed false
alarm rate based on a normal approximation of the sample
distribution of TLMP(x).

Fig. 2. Asymptotic normality of the test under Cauchy noise: probability
distribution of TLMP for different values of n, under H0, with si = 1 and
mi = 1 for all i, and α = 1.

D. Derivation under Cauchy noise

Cauchy distribution has heavy tails that can account for
the presence of strong outliers in the data. The negative log-
likelihood for a standard Cauchy distribution is given by:

ϕ(t) = log(t2 + 1) + log(π) , (17)

and its derivative is

ϕ′(t) =
2t

t2 + 1
. (18)

By application of equation (12), we obtain the expression of
the robust detection test:

TLMP(x) = 2τ(x)

n∑
i=1

mi(x)

si

yi/si
(yi/si)2 + 1

, (19)

where the constant β in the normalization factor τ(x) can be
computed in closed form [8]: β = 1/2.

Note that since the derivative of the log-likelihood of
Cauchy distribution is bounded by ±1, the random variables
ui = ϕ′(yi/si)/

√
β are uniformly bounded (both under H0

and H1). Moreover, the following expressions for the mean
and the variance of ui can be derived:

E[ui] =
2
√

2αsimi(x)

4s2i + α2m2
i (x)

, Var[ui] =
4s2i

4s2i + α2m2
i (x)

(20)

and the probability density function of ui is:

p(ui) =


√
2

2π

[
1− 4

(
ui

2
√
2
− αmi(x)

si

)2]− 1
2

if ui ∈]−
√

2,
√

2[

0 otherwise. (21)

Based on (21), we can represent the distribution of the test
statistic TLMP for several values of n. Figure 2 illustrates the
convergence to the standard normal distribution under H0.

Asymptotic normality of TLMP under H0 can also be
proved in the Cauchy noise case as a direct consequence
of Lindeberg’s theorem: every uniformly bounded sequence
of mutually independent random variables obeys the central
limit theorem, provided that the variance of the sum be
unbounded (see [12]). Application of this result to the variables
mi(x)ui/si in (19) proves asymptotic normality of (19) when∑n
i=1 c

2
i (x) =∞.

Note that when α > 0, if ci(x) is upper bounded, the
variance (20) is lower bounded. Hence when

∑n
i=1 c

2
i (x) =∞

the sum of variances of the variables mi(x)ui/si in (19)



noisy data
robust correlation maps:

no normalization with normalization

Fig. 3. Importance of proper normalization of the detection criterion: detection
of a Gaussian pattern centered on the red circle, without normalization (second
column) or with (last column) normalization.

is also unbounded under H1. This proves that the sum of
the mi(x)ui/si, properly normalized, is also asymptotically
normal under H1. This justifies a Gaussian approximation of
the TLMP distribution under H1 in the finite samples case. The
asymptotic probability of detection and probability of false
alarm can thus be computed based on the Gaussian cumulative
distribution function.

E. Map of the robust-detection criterion

The expression obtained in equations (12) and (13) follows
the general form of locally optimal (LO) detectors [5], [6]:

TLMP(x) = τ(x) ·m(x)t g(y) , (22)

with g a non-linear but separable transformation applied on
the vector of observed amplitudes y before correlating with
the model m:

∀i, [g(y)]i =
1

si
ϕ′(yi/si) . (23)

and in the special case of Cauchy noise, [g(y)]i = 2 yi/(y
2
i +

s2i ). Input values yi that are small with respect to si are left
unchanged (up to a constant scaling factor), while larger values
of yi are attenuated in order to reduce the influence of outliers.

An attractive feature of the locally optimal tests for image
processing is that they offer fast implementations based on
pixel-wise operations and discrete correlations that can be
computed using FFTs:

TLMP(x) =
m~ (g(y)�w)
√
β
√

(m2) ~ (w/s2)
(24)

where w is a binary mask indicating the region where pixels
are measured, s is a vector containing the scale factors
si, � denotes the element-wise product, ~ denotes the bi-
dimensional correlation, and the divisions as well as the square
root and squares are applied element-wise. Note that the non-
linear transform g is fast to compute since it is separable.

Figure 3 illustrates the importance of the normalization (i.e.,
denominator in equation (24)) when computing maps of the

robust-detection criterion. Without proper normalization, the
maximum of the criterion is always reached inside the field of
view, which biases the detection.

F. Estimation of the s parameter in the case of Cauchy noise

The application of the robust criterion derived for Cauchy
distribution requires the estimation of scaling factors si. We
consider in this paragraph the estimation of a constant param-
eter s. When the scaling factors si are chosen constant and
equal to s, the expression of the robust detector under Cauchy
noise simplifies into:

TLMP(x) =
2
√

2

‖m(x)‖2

∑
i

mi(x)
yi/s

(yi/s)2 + 1
. (25)

In the context of the detection of weak signals, we suggest esti-
mating s from the data by considering that noise is dominating,
or that data where the pattern is not present are available.
Maximum likelihood estimation of s is done by finding the
unique root of the derivative of the log-likelihood, i.e., by
solving the non-linear equation [13]:∑

i

2 s2

s2 + y2i
= n (26)

where n is the dimension of the observation vector y. Equation
(26) can be solved efficiently by bisection, starting from the
initial value for s:

∑
i |yi|/n, or by using Brent’s method [14].

This estimation algorithm is preferred to algorithms relying on
order statistics, such as [15], for its computational efficiency.

III. COMPUTER SIMULATIONS

We illustrate the detection performance of the proposed
criterion on a numerical simulation. The reference pattern
is Gaussian (fig. 1(a)). The observations y are corrupted by
Gaussian mixture noise: 95% of the pixels noise is Gaussian
with an SNR of 1 and the remaining 5% is Gaussian with an
SNR of 0.01 (outliers). We illustrate in figure 1(e) that the
map of the detection criterion values defined in equation (24)
reaches a maximum close to the true location of the pattern,
while standard correlation, i.e., the detector defined in equation
(2), gives a maximum at an incorrect location. As illustrated in
figure 3, proper normalization is crucial to account for possible
truncation of the pattern. If the normalization is missing, a bias
in the localization appears.

The detection performance is further compared by com-
puting the receiver operating characteristic (ROC) curve from
100000 random realizations in the same setting, figure 4. We
compare the performance of several detectors: (i) the Neyman-
Pearson idealized detector that uses the true distribution of
noise (a mixture of two Gaussians) and the knowledge of
the exact value of the amplitude α; (ii) the Generalized
Likelihood Ratio (GLR) for a Cauchy distribution (parameter s
is estimated from the data, even when α 6= 0, using the method
described in paragraph II-F); (iii) the proposed robust detector,
using the same estimation of Cauchy distribution parameter s;
(iv) the proposed robust detector with the best possible tuning



Fig. 4. ROC curves for several detectors. The curves of the GLR and the
proposed LMP test are almost perfectly superimposed.

TABLE I
LOCALIZATION ACCURACY OF SEVERAL CRITERIA

Criterion Localization accuracy
(standard deviation in pixels)

Neyman-Pearson 2.2
Correlation 64.5
Generalized Likelihood Ratio (Cauchy) 2.8
Proposed criterion (Cauchy) 2.9

of s (i.e., which maximizes the area under the ROC curve);
and (v) the usual correlation criterion given in equation (2).

From the ROC curves, it can be observed that correlation
performs poorly because of the presence of outliers. Robust
criteria behave much better. The GLR and the proposed LMP
criteria offer very similar performance, the latter being much
easier to implement since it does not require to estimate α.
Note that the distribution of noise in the numerical experiment
(Gaussian mixture) differs from the hypothesized distribution
in the derivation of the test, without significantly impacting
the performance: with the best possible choice of s, the
performance of our criterion almost reaches that of Neyman-
Pearson’s detector.

Beyond correct detection, it is generally necessary in ap-
plications to both detect and locate the pattern. The same
noise model as in figure 4 is considered, only with a stronger
SNR (95% of the pixels with an SNR of 8 and the remaining
5% with an SNR of 0.08). The pattern corresponds to the
truncated Gaussian with a standard deviation equal to 40 pixels
that is depicted in figure 4. The location of the pattern along
the y-axis is estimated by finding (by exhaustive search) the
location that maximizes each test statistic. The x-axis location
is kept constant and equal to the correct location. The standard
deviation of the location, computed over 1000 random trials,
is reported in table I for each criterion. In all cases, we found
the bias to be negligible compared to the standard deviation.
The Neyman-Pearson criterion, based on the knowledge of
the exact distribution of noise and of the true amplitude α of
the pattern gives the best accuracy. Maximizing this criterion
amounts to estimating the y location with the maximum
likelihood estimator using the exact likelihood and knowledge
of the amplitude α. Maximizing the normalized correlation,
i.e., maximum likelihood estimation under the hypothesis of

a stationary Gaussian noise, gives a very strong localization
error (the error is multiplied by 29). Such a non-robust
criterion is not adapted to detection and estimation problems
in the presence of strong outliers. Maximizing the GLR under
the hypothesis of a Cauchy distribution, with the parameter
s of Cauchy distribution estimated from the data, slightly
degrades the accuracy compared to the (idealized) Neyman-
Pearson criterion. This estimation method corresponds to the
joint maximum likelihood estimation of the location y and
amplitude α under an hypothesized Cauchy distribution, i.e.,
an M-estimator. Finally, maximizing the proposed criterion
(the LMP) gives a comparable degradation of the accuracy.
The huge difference in practice is that maximization of the
LMP statistic does not require to jointly estimate α. It can
thus be performed very efficiently on a pixel grid by FFTs.

IV. CONCLUSION

We derived the general expression of a robust detection
criterion based on the theory of locally optimal detectors.
We have shown the importance of the normalization term for
image processing applications and have given a fast algorithm
to compute detection maps. Application of the criterion to
Cauchy distribution leads to a simple expression. The scale
parameter of Cauchy distribution can be estimated directly
from the data and the obtained detector offers a significant
improvement compared to classical correlation while retaining
its computational efficiency.
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