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Abstract. Photolithography allows large-scale fabrication of nanocomponents in the semiconductor industry.
This technique consists of manufacturing a desired pattern on a photoresist film transferred onto the substrate
during the etching process. Therefore, the mask quality is essential for reliable etching. For example, the pres-
ence of a residual layer of resist might be considered as a mask defect and can lead to the failure of the etching
process. We propose the use of a Kohonen self-organizing map for automatic detection of a residual layer from
an ellipsometric signature. The feasibility of the suggested inspection by the use of a classification technique is
discussed and simulations are carried out on a 750-nm period grating. © 2016 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.OE.55.5.054106]
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1 Introduction
In recent years, developments in microelectronic industries
have been completely guided by miniaturization, which
allows easy integration of components in embedded systems.
To keep track of this technological evolution, the large-scale
manufacture of nanocomponents needs appropriate, fast, and
reliable techniques of fabrication and characterization.
Photolithography is the most usual technique employed in
the manufacturing process. It consists of depositing a thin
photoresist film on a substrate. The expected pattern is
then transferred onto the resist film. The film is hence struc-
tured and acts as a mask for the substrate in the subsequent
etching process. Several techniques can then be used, such as
wet1 or dry etching (reactive ion beam etching, reactive ion
etching, or ion beam etching).2,3 The presence of a residual
layer in the region that should be etched can be considered as
a mask defect and must be inspected. Standard characteriza-
tion techniques mainly used for dimensional metrology, such
as atomic force microscopy and scanning electron micros-
copy, are not suitable for rapid, effective monitoring and
are destructive in most cases. Scatterometry is an alternative
method widely studied in scientific literature.4,5 This nonde-
structive technique is based on the analysis of an optical sig-
nature of the light scattered by a periodic patterned structure.
Furthermore, it is adapted for the in-line characterization
process.6,7 This technique involves an inverse problem res-
olution, which can be performed by a different approaches,
such as classic optimization,8 metaheuristcs9 methods,
regression, or library searching methods.10 Artificial neural
networks (ANNs) have also been introduced as multilayer
perceptrons (MLP).11 Since 2002, our laboratory has devel-
oped an expertise in using ANN by the use of an MLP in a
scatterometric process.12–14 The resolution of the inverse
scattering problem involves suitable hypotheses, such as

the geometrical shape of the sample. The identification of
the reliable geometrical profile is critical. In 2008, we dem-
onstrated the possibility of identifying profile geometry by
using a classical MLP from the ellipsometric signature15

used in the characterization process. Other works16 have
employed another classification method, such as support
vector machines, combined with the library search to
solve the inverse problem. In terms of results, this classifi-
cation method shows performances similar or complemen-
tary to the ANN method.17 Our aim is to set up a full
ANN characterization method to meet rapid in-line control
requirements. In this paper, we expose the potentiality of the
Kohonen self-organizing map (SOM)18–20 in a characteriza-
tion process devoted to classifying the optical signatures
used in classical scatterometry depending on their corre-
sponding geometrical structure. Indeed, this kind of ANN
has been particularly effective in various pattern recognition
tasks involving very noisy signals.21–23 In this work, we use
the SOM as a data analysis tool to analyze and image the
presence of different classes in the measurements featuring
the structure to be tested. Our priority is to validate the use of
the suitable optical signature in the inverse problem resolu-
tion to detect the reliable geometrical model. Our second aim
is to detect the optimal model operating with a reduced num-
ber of parameters in the next characterization process. To val-
idate the process, we propose in this work to study a very
simple case, the detection of residual layer in the specific
context of photolithography. We demonstrate the feasibility
of the classification discerning geometrical profiles including
or excluding a residual layer in the context of scatterometry.

2 Profile Definition and Direct Problem
The assumed shape of the geometrical grating is the symmet-
ric trapezoidal profile commonly used in the domain of scat-
terometry. The grating period is constant and fixed by the
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etching conditions. The classical profile P1 is defined by
three parameters: the sidewall projection b1, the line
width b2, and the groove depth h [Fig. 1(a)]. A fourth param-
eter hr is merely added in the second profile P2 to take into
account the thickness of the residual layer [Fig. 1(b)].

In ellipsometric scatterometry, the optical signature is
usually defined as measured intensities depending on the
well-known ellipsometric parameters Ψ and Δ of the struc-
ture under testing. In the case of the phase-modulated ellips-
ometer used in this work, it concerns the intensities Is and Ic
for each wavelength.

EQ-TARGET;temp:intralink-;e001;63;476Is ¼ sin 2ψ sin Δ; (1)

EQ-TARGET;temp:intralink-;e002;63;444Ic ¼ sin 2ψ cos Δ: (2)

Simulated signatures for a given profile can also be easily
calculated by the multilayer modal method by Fourier
expansion.24–26 In our work, a large set of simulated signa-
tures are supplied to an SOM during the training step to iden-
tify them with the corresponding classes given by the profiles
P1 and P2.

3 Self-Organizing Map
Introduced by Kohonen,27 SOM is one of the most popular
ANN that is suitable and efficient for performing unsuper-
vised clustering. Basically, the SOM can display a high-
dimensional input space onto a reduced one to ensure a
graphical visualization of classes. It is a technique similar
to the principal component analysis28 (PCA) method, which
performs dimensional reduction. The difference between the
two approaches is that the PCA is a linear mapping technique
while the SOM performs a nonlinear lower-dimensional
mapping. It has been successfully applied in engineering
applications, such as pattern recognition, process control,
or fault detection.

The SOM consists of S processing units (neurons), which
can be arranged linearly, on a two-dimensional (2-D) grid, or
in a three-dimensional (3-D) volume. Figure 2 shows a 2-D
SOM network structure that is used in this work.

For a given SOM, the input vector X has a fixed dimen-
sion n. The n elements of the vector X (i.e., x1; x2; : : : ; xn)
are connected to each neuron in the map and represent in our
case the optical signature. A synaptic weight wji is defined
for a connection from the i’th component of the input vector
to the j’th neuron. Thus, each neuron j is represented by an
n-dimensional weight vector wj ¼ ½wj1; : : : ;wjn�T in the
input space of the signatures. Neurons are also connected

to their neighbors. This particular connection is weighted
by a neighborhood function taking into account the neurons
topology during the calculation of the activation of each neu-
ron. The neighborhood of a neuron is set by all neurons
included in a circle, square, or hexagon focused on the con-
sidered neuron. Different orders of neighborhood can be
defined according to the distance from the neuron. Adjacent
neurons of a neuron j belong to the 1-neighborhood size.
Each neuron is located by its horizontal and vertical position
in the 2-D SOM. Figure 2 shows the concept of neighbor-
hood size concerning a particular neuron j in the case of
regular hexagon 2-D grid of neurons used in the work.

The number of neurons is defined before the training
process. It determines the granularity of the mapping that
affects the accuracy and generalization capacity of the
map. The SOM training algorithm is the process devoted
to preserving the topology of the high-dimensional input
space onto the reduced output mapped space. Hence, the rel-
ative distances between data points are preserved. During the
iterative training, the SOM determines the similarity of the
input vector X and neurons represented by the vector wj in
terms of Euclidian distance. The neuron whose weight vector
is closest to the considered input X is considered as winner
and called best matching unit (BMU). It is denoted by c in
the following expression:

EQ-TARGET;temp:intralink-;e003;326;237kx − wck ¼ min
j
kx − wjk: (3)

Once a BMU is found, its associated weight and those of
its neighbors are updated in accordance with the following
Kohonen rule in the next iteration:

EQ-TARGET;temp:intralink-;e004;326;167wjðtþ 1Þ ¼ wjðtÞ þ αðtÞ × hj;cðtÞ½xðtÞ − wjðtÞ�; (4)

where αðtÞ and hj;cðtÞ are, respectively, the learning rate and
the neighborhood function at iteration t. αðtÞ decreases from
α0 during the iteration t and is close within 0 and 1.

Fig. 1 Parametric description of two geometrical profiles: (a) P1 is
defined with three parameters: the sidewall projection b1, line width
b2, and height h, and (b) P2 presents an additional residual layer
(thickness hr).

Fig. 2 Structure of a 2-D SOM defined by 10 × 10 neurons with n
inputs and neighborhood size [blue first order and red (with'*') second
order] of considered neuron j .
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EQ-TARGET;temp:intralink-;e005;63;752αðtÞ ¼ α0
1þ t

: (5)

The neighborhood function hicðtÞ depends on the
distance between each neuron j and the BMU. We use
the particular Gaussian kernel function defined by the param-
eter σ by

EQ-TARGET;temp:intralink-;e006;63;683hj;c ¼ exp

 
−
r2j;c
2σ2t

!
; (6)

where rj;c ¼ krj − rck is the distance from the position rc of
the BMU c to the position rj of the neighborhood neuron j
on the map. σt represents the neighborhood radius at iteration
t. As with the learning rate, σt is reduced during the training
and converges to the BMU (Fig. 2). The initial value depends
on the map size and the final value is close to 1. Initial
weights are randomly chosen from the range [0, 1] and
neighborhood initial value is fixed at half the size of the map.

After a fixed number of iterations, the learning procedure
leads to ordered mapping of the input data. Hence, similar
patterns are supposed to be mapped in the same region on
the map, while dissimilar ones are more dispersed.

4 Theoretical Results
The diffracting structure used for the test has a period of
750 nm. The grating is an NEB22 resist deposited on a sil-
icon substrate. As previously mentioned, two types of pro-
files (P1 and P2) are considered. Geometrical parameters for
6000 theoretical samples (3000 for each profile) are ran-
domly generated from the following ranges:

EQ-TARGET;temp:intralink-;sec4;63;4110 ≤ b1 ≤ 70 nm; 100 ≤ b2 ≤ 350 nm;

170 ≤ h ≤ 250 nm ðprofileP1Þ

EQ-TARGET;temp:intralink-;sec4;63;3590 ≤ b1 ≤ 70 nm; 100 ≤ b2 ≤ 350 nm;

170 ≤ h ≤ 250 nm; 1 ≤ hr ≤ 100 nmðprofileP2Þ

Ellipsometric signatures fIs; Icg are calculated for wave-
lengths between 1.5 and 6.5 eV with a step of 0.2 eV (52
values, i.e., 26 for each intensity) in the experimental con-
dition (incidence angle of 70 deg). Gaussian noise with zero
mean and 3% standard deviation is considered in order to
take experimental conditions into account. Simulated signa-
tures are linearly normalized and then supplied to an SOM
composed of 400 neurons arranged in a 2-D grid.

The ANN is trained with the whole simulated database.
At the end of the process, the clustering of the P1 and P2

profiles is observable. The SOM can hence respond to
new request by a vector of 400 elements corresponding to
each activation of neurons and can be plotted in a 2-D
space (20 × 20). Figure 3 shows the distribution on the
map of all P1 profile (3000) after training. Each cell repre-
sents a neuron and the integrated number defines the number
of similar profiles that activate the considered neuron. We
notice that the P1 profile stimulates specific neurons (blue
in the figure) and they are distributed in a very distinctive
area in the SOM space.

The same kind of consideration can be made with the pro-
file P2 (Fig. 4). Most P2 profiles (2607 samples from 3000)
also stimulate specific neurons (in green), but a small

proportion of them (393 samples, i.e., 13.1% of P2 profiles)
stimulates neurons that have already been activated mostly
by the P1 profile (blue with '*'). The latter profiles are char-
acterized by a small residual layer thickness hr under
15 nm.

To complete this study, we proceed to a labeling of the
map neurons. We define the probability of a specific neuron
j to be sensitive to a fixed profile Pi (i ¼ 1, 2) by

EQ-TARGET;temp:intralink-;e007;326;407pjðP2Þ ¼
k
m
; (7)

where m is the number of samples activating the specific
neuron j and k is the number of Pi profiles.

Fig. 3 Results of SOM (20 × 20 neurons) concerning the distribution
of profiles P1 from ellipsometric signatures (3000 samples composing
the training data).

Fig. 4 Results of SOM (20 × 20 neurons) concerning the distribution
of profiles P2 from ellipsometric signatures (3000 samples composing
the training data). Green neurons are entirely activated by P2 profile
and blue neurons (with'*') are those activated by both P2 and P1 pro-
files (Fig. 3).
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The probability pjðP2Þ of all neurons shaded in blue in
Fig. 3 is very low or close to zero. A limit level is defined in
order to make a decision regarding class by fixing a proba-
bility pjðP2Þ. A simple choice can be made with a value of
0.5. Hence, a signature activating a neuron j with a pjðP2Þ
probability >0.5 will be considered as P2 profile and other-
wise P1 profile. Figure 5 shows the corresponding labelled
SOM. Green units match neurons sensitive to P2 profile,
blue units match neurons sensitive to P1, and white units
have not been activated by any type of profile considered
in the training set.

In order to estimate the quality of the inspection, a limit of
detection between the two types of profile in the SOM space
can be determined for a fixed sample. First, we consider three
profiles with a significant thickness hr.

Sample 1: b1 ¼ 0.5 nm, b2 ¼ 131.4 nm, h ¼ 182.6 nm,
hr ¼ 31.6 nm

Sample 2: b1 ¼ 3.9 nm, b2 ¼ 103.3 nm, h ¼ 238.1 nm,
hr ¼ 65.6 nm

Sample 3: b1 ¼ 58.1 nm, b2 ¼ 176.2 nm, h ¼ 220.2 nm,
hr ¼ 23.3 nm

For each case, a set of samples is then simulated by reduc-
ing the hr by a step of 2 nm until 0. All the corresponding
signatures are generated. The signatures are supplied to the
previous trained and labeled SOM. The probability
pBMUðP2Þ of BMU is shown in Fig. 6 for each set of sam-
ples. As regards Fig. 6, the limit of detection is estimated
between 8 and 17 nm. This depends on the considered sam-
ple and, by extension, on the neuron sensitivity.

In order to improve this limit, we construct an SOM with
an additional layer of neurons (3-D grid of neurons). The
SOM is made up of 12 layers of 12 × 12 neurons (1728 neu-
rons). Only 7.2% of P2 profiles (216 samples instead of 393
in Fig. 4) stimulate neurons preferentially activated by P1.
The previous study is then performed in the same conditions.
Signatures of the three sets of samples defined above are
then supplied to the 3-D SOM. The results are shown in

Fig. 7. In this case, the limit of detection is now between 4
and 11.5 nm.

3-D SOM significantly improves the results and displays
better performances. The maximum detection limit of the
residual thickness is reduced to around 11.5 nm instead of
17 nm for the 2-D SOM. We note that some neurons showed
result neurons down to 4 nm (sample 1). The value of the
detection limit depends on the samples under testing and
on the architecture of the SOM.

5 Conclusion
In this paper, we have presented the potentiality of the ANN
to classify grating shape from a classical optical signature
used in scatterometry. An SOM has been developed to
extract qualitative information on the geometrical profile
shape. An estimation of the presence of a mask defect in
lithography can also be calculated to assist in decision mak-
ing. Simulated results have been carried out. The limit of the
detection has been simply estimated in three specific cases. It
is also important to notice that the analysis proposed does not
supply a binary decision, such as with a classical method, but
estimates a probability for each model, which can be consid-
ered as a confidence index. This is more reliable for making
the best decision.

In the work, we emphasize the importance in verifying
that optical measurements used in the characterization proc-
ess include qualitative information on the geometrical model.
We have theoretically demonstrated that the SOM is a prac-
tical tool to get a rapid visualization of the capacity of the

Fig. 5 SOM labeled for the classification. Green neurons are sensible
to P2, blue neurons (with'*') are sensible to P1, and white neurons are
never activated.

Fig. 6 pBMUðP2Þ probability of the activated neuron from the 2-D SOM
(20 × 20 neurons) versus the corresponding theoretical hr for the
three specific samples.

Fig. 7 pBMUðP2Þmembership probability of the activated neuron from
a 3-D SOM (12 × 12 × 12 neurons) versus the corresponding theoreti-
cal hr for the three specific samples.
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optical signature to classify different geometrical models.
The technique has the advantage of being easily applied
to identification of various kinds of defects with reduced
prior knowledge of the scatterometric profile. Next, a com-
plete experimental study must be undertaken for accurate
validation of the technique. An effective classification
method must be applied. A supervised classifier, such as
learning vector quantization, may be used to take advantage
of the SOM analysis. We will concentrate our future efforts
on these points in order to improve the detectable limit by
optimizing the ANN. Looking further ahead, this promising
path can lead us to ignore very restrictive structural hypoth-
eses in a scatterometry process.

Acknowledgments
The authors are grateful to P. Donnelly for stimulating dis-
cussions leading to a more comprehensive presentation of
this work.

References

1. J. W. Kim et al., “Fabrication of inverse micro/nano pyramid structures
using soft UV-NIL and wet chemical methods for residual layer
removal and Si-etching,” Microelectron. Eng. 110, 403–407 (2013).

2. J. M. E. Harper, “Ion beam etching,” in Plasma Etching-An
Introduction, D. M. Manos and D. L. Flamm, Eds., pp. 391–423,
Academic Press, San Diego (1989).

3. J. W. Coburn, H. F. Winters, and T. J. Chuang, “Surface processes in
plasma-assisted etching environments,” J. Vac. Sci. Technol. B 1, 496
(1983).

4. I. Gereige et al., “Dimensional characterization of biperiodic imprinted
structures using optical scatterometry,” Microelectron. Eng. 112, 27–
30 (2013).

5. C. J. Raymond et al., “Multiparameter grating metrology using optical
scatterometry,” J. Vac. Sci. Technol. B 15, 361 (1997).

6. M. El kodadi et al., “Resist trimming etch process control using
dynamic scatterometry,” Microelectron. Eng. 86, 1040–1042 (2009).

7. S. Soulan et al., “In line etching process control using dynamic
scatterometry,” Proc. SPIE 6617, 661713 (2007).

8. C. J. Raymond et al., “Comparison of solutions to the scatterometry
inverse problem,” Proc. SPIE 5375, 564–575 (2004).

9. G. Cormier and R. Boudreau, “Genetic algorithm for ellipsometric data
inversion of absorbing layers,” J. Opt. Soc. Am. A 17, 129–134 (2000).

10. X. Chena et al., “Improved measurement accuracy in optical scatter-
ometry using fitting error interpolation based library search,”
Measurement 46(8), 2638–2646 (2013).

11. I. J. Kallioniemi and J. Saarinen, “Optical scatterometry with
neural network model for nondestructive measurement of submicron
features,” Proc. SPIE 3743, 33–40 (1999).

12. S. Robert, A. Mure-Ravaud, and D. Lacour, “Characterization of
optical diffraction grating by use of a neural method,” J. Opt. Soc.
Am. A 19(1), 24–32 (2002).

13. I. Gereige et al., “Rapid control of submicrometer periodic structures
by a neural inversion from ellipsometric measurement,”Opt. Commun.
278, 270–273 (2007).

14. S. Robert and A. Mure-Ravaud, “Control of the homogeneity of an
optical grating by a neural characterization,” Opt. Eng. 44(3),
033601 (2005).

15. I. Gereige, S. Robert, and J. Eid, “Automatic detection of photoresist
residual layer in lithography using a neural classification approach,”
Microelectron. Eng. 97, 29–32 (2012).

16. J. Zhu et al., “Identification and reconstruction of diffraction structures
in optical scatterometry using support vector machine method,”
J. Micro/Nanolithogr. MEMS MOEMS 12(1), 013004 (2013).

17. J. Ren, “ANN vs. SVM: which one performs better in classification of
MCCs in mammogram imaging,” Knowl. Based Syst. 26, 144–153
(2012).

18. T. Kohonen, “The self organising map,” Neurocomputing 21(1–3), 1–6
(1998).

19. A. Mekler and D. Schwarz, “Quality assessment of data discrimination
using self-organizing maps,” J. Biomed. Inf. 51, 210–218 (2014).

20. F. Coleca et al., “Self-organizing maps for hand and full body
tracking,” Neurocomputing 147, 174–184 (2015).

21. A. Majumder, L. Behera, and V. K. Subramanian, “Emotion recogni-
tion from geometric facial features using self-organizing map,” Pattern
Recognit. 47(3), 1282–1293 (2014).

22. M. S. Prieto and A. R. Allen, “Using self-organising maps in the
detection and recognition of road signs,” Image Vis. Comput. 27(6),
673–683 (2009).

23. E. Alhoniemi et al., “Process monitoring and modeling using the self
organising map,” Integr. Comput. Aided Eng. 6(1), 3–14 (1999).

24. R. Anderwartha, G. H. Derrick, and R. C. McPhedran, “A general
model theory for reflection gratings,”Opt. Acta 28, 1501–1516 (1981).

25. P. Schiavone, G. Granet, and J. Y. Robic, “Rigorous electromagnetic
simulation of EUV masks: influence of the absorber properties,”
Microelectron. Eng. 57–58, 497–503 (2001).

26. L. Li, “New formulation of the Fourier modal method for crossed
surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).

27. T. Kohonen, “The self organising map,” Proc. IEEE 78(9), 1464–1480
(1990).

28. I. T. Jollife, Principal Component Analysis, Springer-Verlag,
New York (1986).

Zaki Sabit Fawzi Philippe received his master’s degree in electrical
engineering from the Institute University of Science and Technology
of Abeché, Chad, in 2011. Currently, he is a PhD candidate under the
guidance of Bernard Bayard and Stéphane Robert in the Laboratory
Hubert Curien of the University of Saint-Etienne, France. His research
interests include recognition and neural classification of patterned
optical structures including modelling in noncontact characterization
methods (scatterometry and ellipsometry).

Stéphane Robert received his PhD in the field of optoelectronics from
the University of Saint-Etienne in 2003. Currently, he is working in the
Laboratory Hubert Curien, especially on polarized light and magneto-
optic properties of materials. His research interests include noncon-
tact characterization methods (scatterometry and ellipsometry) of
optical structures and the development of the associated optimization
process (neural network and genetic algorithm).

Bernard Bayard received his master’s degree and PhD in electronics
from the University of Saint-Etienne, France, in 1997 and 2000,
respectively. Currently, he is an assistant professor at the University
of Saint-Etienne, France. His research activities concern the integra-
tion of magnetic microwave components and the microwave charac-
terization of materials.

Optical Engineering 054106-5 May 2016 • Vol. 55(5)

Philippe, Robert, and Bayard: Automatic inspection of a residual resist layer. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 10/21/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

http://dx.doi.org/10.1016/j.mee.2013.02.098
http://dx.doi.org/10.1116/1.582629
http://dx.doi.org/10.1016/j.mee.2013.05.022
http://dx.doi.org/10.1116/1.589320
http://dx.doi.org/10.1016/j.mee.2008.12.036
http://dx.doi.org/10.1117/12.726197
http://dx.doi.org/10.1117/12.538662
http://dx.doi.org/10.1364/JOSAA.17.000129
http://dx.doi.org/10.1016/j.measurement.2013.04.080
http://dx.doi.org/10.1117/12.346934
http://dx.doi.org/10.1364/JOSAA.19.000024
http://dx.doi.org/10.1364/JOSAA.19.000024
http://dx.doi.org/10.1016/j.optcom.2007.06.008
http://dx.doi.org/10.1117/1.1873332
http://dx.doi.org/10.1016/j.mee.2012.02.032
http://dx.doi.org/10.1117/1.JMM.12.1.013004
http://dx.doi.org/10.1016/j.knosys.2011.07.016
http://dx.doi.org/10.1016/S0925-2312(98)00030-7
http://dx.doi.org/10.1016/j.jbi.2014.06.001
http://dx.doi.org/10.1016/j.neucom.2013.10.041
http://dx.doi.org/10.1016/j.patcog.2013.10.010
http://dx.doi.org/10.1016/j.patcog.2013.10.010
http://dx.doi.org/10.1016/j.imavis.2008.07.006
http://dx.doi.org/10.1080/713820488
http://dx.doi.org/10.1016/S0167-9317(01)00472-5
http://dx.doi.org/10.1364/JOSAA.14.002758
http://dx.doi.org/10.1109/5.58325

