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PARISAR: Patch-based estimation and regularized
inversion for multi-baseline SAR interferometry

Giampaolo Ferraioli, Charles-Alban Deledalle, Loic Denis, Florence Tupin

Abstract—Reconstruction of elevation maps from a collection
of SAR images obtained in interferometric configuration is a
challenging task. Reconstruction methods must overcome two
difficulties: the strong interferometric noise that contaminates
the data, and the 2π phase ambiguities. Interferometric noise
requires some form of smoothing among pixels of identical
height. Phase ambiguities can be solved, up to a point, by
combining linkage to the neighbors and a global optimiza-
tion strategy to prevent from being trapped in local minima.
This paper introduces a reconstruction method, PARISAR, that
achieves both a resolution-preserving denoising and a robust
phase unwrapping by combining non-local denoising methods
based on patch similarities and total-variation regularization. The
optimization algorithm, based on graph-cuts, identifies the global
optimum. Combining patch-based speckle reduction methods and
regularization-based phase unwrapping requires solving several
issues: (i) computational complexity, the inclusion of non-local
neighborhoods strongly increasing the number of terms involved
during the regularization, and (ii) adaptation to varying neigh-
borhoods, patch comparison leading to large neighborhoods in
homogeneous regions and much sparser neighborhoods in some
geometrical structures. PARISAR solves both issues. We compare
PARISAR with other reconstruction methods both on numerical
simulations and satellite images and show a qualitative and
quantitative improvement over state-of-the-art reconstruction
methods for multi-baseline SAR interferometry.

Index Terms—SAR interferometry, multi-channel InSAR, Non-
local means, TV regularization

I. INTRODUCTION

Phase unwrapping (PhU) operation is one of the most
challenging tasks when reconstructing the height of earth
surface based on Interferometric Synthetic Aperture Radar
imaging [1]. PhU consists of retrieving the absolute value of
the phase, starting from the 2π-wrapped data. Thanks to the
widely known relation between the measured interferometric
phase and the height of the observed scene [2], it is possible
after adequate calibration steps and a PhU operation to recover
the height of the observed area.

Several PhU algorithms have been developed in the last
twenty years, and they can be classified into two main fami-
lies: path-following methods and global optimization methods.
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Path-following PhU algorithms follow a path in the wrapped
phase and unwrap each pixel locally. Algorithms from the
second family minimize some measure of misfit between
the unwrapped solution and wrapped one while promoting
unwrapped solutions with few discontinuities. A good review
of these algorithms can be found in [3] and [4].

Two difficulties make PhU a non-trivial operation: the first
is due to the perturbations of interferometric noise on the
acquired data; the second is the presence of phase differences
larger than π between two neighboring pixels, violating the
so-called Itoh condition [5]. Such large phase differences arise
when neighboring pixels have very different height values (i.e.
in presence of discontinuities), or due to (strong) interferomet-
ric noise. Most existing algorithms account for the statistics of
interferometric noise. The violation of Itoh condition makes
the PhU problem ill-posed, thus challenging to solve. Com-
monly, to regularize the PhU problem and obtain a unique
solution, differences between neighboring absolute phases are
supposed to be less than π. This hypothesis is satisfied in the
case of height profiles without strong discontinuities and high
slopes, and for small baseline values [1].

PhU can be applied to more complex scenes with strong
discontinuities or steep slopes by increasing the number of
interferograms used during the inversion. By correctly combin-
ing different available interferograms, it is possible to restore
the solution uniqueness without imposing constraints on the
phase difference between neighboring pixels [6]. Multiple
interferograms, commonly known as multi-channel interfer-
ograms, can be obtained in two different ways: using sensors
working at different frequencies or using sensors acquiring
the scene with different baselines. The latter, multi-baseline
interferometry, is the case when the sensor observes the same
scene, repeatedly, from slightly different positions, and is
commonly the adopted one [7].

In the past years, multi-baseline PhU techniques have been
largely investigated for height reconstruction [8], [9], [10],
[11] and also for deformation retrieval applications (i.e. Dif-
ferential Interferometry) [12][13]. More recently, new multi-
baseline height reconstruction algorithms have been proposed.
A technique based on the extension of cluster analysis has
been proposed in [14]. The reduction of memory requirements
when dealing with multiple data is the main aim of [15].
The use of Kalman Filter in case of multiple acquisitions
has been investigated in [16]. Finally, multi-baseline interfero-
grams have also been used together with other information to
improve reconstruction accuracy in urban areas: in [17] multi-
baseline data have been jointly processed with multi-aspect
data while in [18] multi-baseline interferograms have been
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exploited together with amplitude information.
In order to obtain satisfying results using multi-baseline

data, the first step is to correctly combine the available
information. An effective way to combine the available multi-
channel (i.e., multi-baseline) interferometric data is to ex-
ploit statistical estimation methods. These methods propose
to exploit the statistical distribution of the acquired data and
to implement instruments provided by both classical [19],
[20] and Bayesian estimation theory. In particular, for the
latter when Markov Random Fields (MRF) theory is used for
modeling the unknown height profile the so-called Bayesian
Markovian estimation framework arises [21], providing very
effective results in the multi-channel case [22], [23]. Interest-
ing previous works proposed to apply the Bayesian Markovian
framework to single-channel interferograms [24], [3].

In this paper we propose to exploit contextual information to
improve multi-baseline unwrapping. Patch-based approaches,
like NL-SAR [25], can effectively exploit local structural
information in the noisy signal to gather similar samples and
improve the estimation. To do so, they compare small pieces
of information (the patches) and combine the similar ones.
These estimators produce results with non-stationary residual
variance: in regions where many similar patches are found,
the estimate is accurate, while rare configurations are left
almost unchanged, i.e., with the strong original interferometric
variance. At these locations, an additional smoothing is to be
enforced. Moreover, ambiguities due to phase wrapping can
often be solved based on local smoothness priors. Markovian
prior models of the elevation can be defined in this regard:
total variation (TV) or truncated quadratic functions lead to
smooth elevation while allowing strong discontinuities [18].
These regularization models applied alone suffer some limits
like staircasing effects affecting low slope areas and leading
to piecewise constant reconstruction [26]. Following the ap-
proach proposed in [27] for image and video, we investigate
the combination of both a patch-based approach and TV
regularization for elevation estimation in a multi-baseline
interferometric framework, exploiting the whole statistical
distribution of the interferometric data.

Contributions: The paper describes a strategy to perform
this combination of non-local (i.e., patch-based) estimation
and non-convex optimization. There are several possible ways
to modify a regularization method in order to include non-
local similarities. We show that, by using the weighted log-
likelihood to account for these similarities, the complexity of
the regularization step is left unchanged, which is an important
aspect regarding the applicability of the method. Another key
element of the proposed method is to account for the spatially
variant standard deviation of the output of non-local speckle
reduction methods. Regularization thus applies more strongly
to regions with larger residual noise.

Section II describes the proposed model: the weighted log-
likelihood term including patch-based similarities is intro-
duced, then the TV regularization term and the global energy
to be minimized, as well as the adopted optimization scheme
are presented. In section III, an in-depth study of the proposed
model is performed through experiments on simulated data,
while results on real images are presented and discussed in

section IV.

II. THE MODEL

A multi-channel interferogram with D channels is formed
by the collection, for each pixel i, of the D-dimensional
complex-valued scattering vector gi. Under the classical hy-
pothesis of fully developed speckle (Goodman model [28]),
the scattering vector gi is distributed according to a circular
complex Gaussian:

p(gi|Σi) =
1

πDdet(Σi)
exp
(
−g†i Σ

−1
i gi

)
(1)

with g†i the Hermitian transpose of the column vector gi. This
distribution is parameterized by the D×D complex covariance
matrix Σi = E[gig

†
i ] (E denoting the expectation) at pixel i.

This covariance matrix can be decomposed as:

Σi = R
1/2
i · Γi ·R1/2

i , (2)

where Ri is a diagonal matrix with [Ri]a,a = ra =
E
{
| [gi]a |2

}
the reflectivity at pixel i in channel a, and Γi

is the coherence matrix given by

Γi =


1 s1,2 · · · s1,D
s∗1,2 1 s2,D

...
. . .

...
s∗1,D s∗2,D 1

 , (3)

with sa,b = E
{
[gi]a · [gi]

∗
b

}
/
√
ra rb = γa,b exp(j ψa,b) the

inter-channel complex coherence between channels a and b,
γa,b the coherence and ψa,b the interferometric phase.

Provided that the images have been properly pre-processed
in order to correct for flat earth and atmospheric phase distor-
tions, the interferometric phases ψa,b are related to the height
h through a function fa,b that accounts for the interferometric
baselines [1]:

ψa,b = fa,b(h) = αa,b · h =
4π B⊥(a, b)

λ ρ0 sin θ
h , (4)

where λ is the working wavelength, B⊥(a, b) is the orthogonal
baseline between channels a and b, ρ0 is the distance to the
scene, and θ is the view angle.

In multi-baseline interferometry, a first step generally con-
sists of estimating the covariance matrix Σi at pixel i by
spatial averaging over a square window Wi centered on i:

Σ̂
(box)
i =

1

N

∑
j∈Wi

gjg
†
j . (5)

N being the number of samples in Wi. The phases ψ̂a,b ex-
tracted from this empirical covariance matrix are then inverted,
in a second step, to produce an estimate ĥ of the height such
that ψ̂a,b ≈ fa,b(ĥ) for all channels a and b.

Such an approach suffers from two drawbacks: (i) the
first step involves an averaging procedure that degrades the
spatial resolution by blurring thin structures, and (ii) the height
estimation does not consider estimated heights at neighboring
locations, thereby producing very noisy estimates in low
coherence regions.
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In order to address these drawbacks, we propose to follow
a Maximum a Posteriori (MAP) approach. In Bayesian esti-
mation theory, a MAP estimator is computed by minimizing
the a posteriori energy E , which is the sum of two terms:
the (neg)-log-likelihood term (aka “data term” D) and the a
priori term (aka “regularization”). The bias and variance of
the estimator are controlled by balancing the relative weight
of those two terms. Given the strong fluctuations of point
estimates of interferometric phase, we consider in paragraph
II-A a generalization of the log-likelihood term to include
a form of averaging over similar pixels within an extended
neighborhood. The smoothing enforced by the a priori term
to produce a satisfying estimate has then no need to be as
severe as for a point estimate. We discuss the definition of the
a priori term in paragraph II-B.

A. Weighted log-likelihood term

The statistical model defined by Eq.(1) leads to the follow-
ing log-likelihood term at pixel i (with const. a constant term):

− log p(gi|Σi) = log det(Σi) + g†i Σ
−1
i gi + const. (6)

The number of unknowns in Σi is larger than the number
D of observations in gi. Estimation of hi alongside of Ri

and γa,b values with a MAP estimator would thus rely on
the choice of regularization terms expressed on all these
unknowns. Designing such a regularization may be difficult
due to the different nature of the unknowns: radiometry,
coherence, and height, and their non-linear interaction in the
definition of Σi in Eq.(2). To circumvent these problems,
we choose to replace the log-likelihood term of covariance
matrix Σi with a more general expression: the weighted log-
likelihood [29], [30], [31]. This term considers not only the
scattering vector gi but all gj , for j spanning all pixel indices
of an extended1 neighborhood Ni centered on pixel i, as:

Di = −
∑
j∈Ni

ωi,j log p(gj |Σi) (7)

with ωi,j a weight given to gj in the estimation at pixel i. Such
weights are typically chosen in a data-driven way in order
to select only samples that are relevant for the subsequent
estimation. In words, the covariance Σi is not only required
to support the observation at pixel i but also observations at all
the pixels j for which the weights ωi,j are large. Minimizing
(7) while setting the weights ωi,j to be equal to each other
within the square window Wi centered on i and equal to 0
outside leads to Eq.(5), i.e., the boxcar covariance estimator.
Spatially extending the number of observations related to a
given covariance matrix Σi reduces the need for a regular-
ization since the number of unknowns becomes much smaller
than the number of observations. This however comes at a
price: by mixing observations from different spatial locations
j in the estimation of Σi, the spatial resolution is reduced. It
is therefore crucial that the weights ωi,j be carefully chosen so

1while the window used for boxcar filtering is typically smaller than 7× 7
or 9× 9, the extended neighborhood covers several tens of pixels and could
possibly be extended to the whole image, see e.g., [32]; we drop the inclusion
∈ Ni in the following sums.

as to include in Eq.(7) only pixels corresponding to the same
covariance Σi. Designing methods to adaptively compute
weights that preserve at best the resolution has been the
subject of numerous works, starting with Lee’s sigma filter
[33] and oriented windows [34] up to more recent patch-
based methods, see the review [35]. In the following, we
chose to compute the weights using the NL-SAR algorithm
[25] since it is very effective at preserving fine structures, and
its parameters are tuned in an unsupervised way to adapt to the
number of channels D, the sensor, the resolution and the image
content. The derivation of our method is however general
and independent from the choice of a specific algorithm for
computing the weights ωi,j .

We define first the weighted maximum likelihood estimator
Σ̂

(WML)
i as the covariance matrix Σi that minimizes Di.

Proposition 1. The weighted maximum likelihood estimator
is given by the following weighted average:

Σ̂
(WML)
i =

1

τi

∑
j

ωi,jgjg
†
j with τi =

∑
j

ωi,j . (8)

Proof. The definition of Di in Eq.(7) leads to

Σ̂
(WML)
i = argmin

Σi

−
∑
j

ωi,j log p(gj |Σi)

= argmin
Σi

∑
j

ωi,j

[
log det(Σi) + g†j Σ

−1
i gj

]
= argmin

Σi

τi log det(Σi) +
∑
j

ωi,j tr
[
Σ−1i gjg

†
j

]
= argmin

Σi

τi log det(Σi) + tr
[
Σ−1i

(∑
j

ωi,jgjg
†
j

)]
.

The gradient of the objective function with respect to Σi is:

τiΣ
−†
i −Σ−†i

(∑
j

ωi,jgjg
†
j

)
Σ−†i .

After multiplying from the left and right by Σ†i , the first order
optimality condition (null gradient) leads to the desired result.

The expression of the data term Di can be significantly sim-
plified into a single term thanks to the following proposition:

Proposition 2. The weighted log-likelihood data term can be
written in terms of the weighted maximum likelihood estimate:

Di = τi

(
log det(Σi) + tr

[
Σ−1i Σ̂

(WML)
i

])
. (9)

Proof. The weighted log-likelihood is defined in Eq.(7) by:

Di = −
∑
j

ωi,j log p(gj |Σi)

=
∑
j

ωi,j

[
log det(Σi) + g†j Σ

−1
i gj

]
= τi log det(Σi) + tr

[
Σ−1i

(∑
j

ωi,jgjg
†
j

)]
= τi log det(Σi) + τi tr

[
Σ−1i Σ̂

(WML)
i

]
,
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were the irrelevant additive constant term has been dropped,
since Di will be involved in minimization problems.

Proposition 2 has important practical consequences. While
the original definition of the weighted log-likelihood data
term Di involved the sum of many terms (typically, several
hundreds in the context of non-local methods) for a single
pixel i, introduction of the weighted maximum likelihood
estimate drastically simplifies the expression of Di into a
single term. This paves the way to a maximum a posteriori
estimation based on data terms Di.

B. Prior term

In urban areas and at meter resolutions, the height is
typically constant from one pixel to a neighboring pixel, or
varies strongly when the two pixels belong to two different
structures, e.g., ground and roof. We therefore select a prior
term that favors piecewise constant images: the total variation
defined by ∑

(i,j)

|hi − hj | , (10)

where (i, j) indicates a pair of neighboring pixels.
Note that in other contexts (coarser resolutions, smooth

surfaces), other convex pairwise regularization terms may be
considered within the framework of our method.

C. A posteriori energy E

The a posteriori energy for a height map h, i.e., a vector of
heights for all pixels, includes both the data term introduced in
paragraph II-A, and the regularization proposed in paragraph
II-B. As the data term is separable in terms of heights hi, the
a posteriori energy reads as:

E(h) =
∑
i

Di(hi) + β
∑
(i,j)

|hi − hj | , (11)

where β is a hyper-parameter that balances the relative im-
portance of the fidelity to the observations (enforced by terms
Di) and the smoothness of the height map h (enforced by the
a priori). Beyond this global tuning through parameter β, it
is necessary to account for the variable number of neighbors
included in the weighted log-likelihood. Weights ωi,j indeed
vary from one pixel to another. In homogeneous regions, many
similar neighbors are identified, thus the weighted maximum
likelihood estimate Σ̂

(WML)
i is reliable. In contrast, in an

isolated structure, very few similar neighbors are identified
and most weights ωi,j are (close to) zero, leading to a very
noisy estimate Σ̂

(WML)
i . To account for this disparity between

estimates, we follow the idea of [27] and set the sum of
weights τi at pixel i (see Eq.(8)) to be inversely proportional
to the standard deviation of the estimator:

τi =

√
L̂i , (12)

with L̂i the equivalent number of looks corresponding to the
weighted neighborhood defined by the weights ωi,j [25]:

L̂i =
(
∑

j ωi,j)
2∑

j ω
2
i,j

. (13)

D. MAP estimation of the height distribution

The height map h can be estimated in the MAP sense by
solving the minimization problem:

ĥ
(MAP)

= argmin
h

E(h) , (14)

whose expression can be recast as follow.

Proposition 3. Let r̂a, γ̂a,b and ψ̂a,b be the estimated reflec-

tivities, coherences and phases extracted from Σ̂
(WML)
i using

Eq.(2) and (3). Consider reflectivity values and coherences to
be fixed, i.e., r̂a = ra and γ̂a,b = γa,b for all channels a
and b, and optimize only with respect to the height (no joint
optimization). The energy minimization problem (14) becomes:

ĥ
(MAP)

= argmin
h

∑
i

√
L̂i · tr

[
Γ−1i (hi) · Γ̂

(WML)
i

]
+ β

∑
(i,j)

|hi − hj | , (15)

with [Γi(hi)]a,b = γ̂a,b · exp
(
j · fa,b(hi)

)
and [Γ̂

(WML)
i ]a,b = γ̂a,b · exp

(
j · ψ̂a,b

)
,

where fa,b is defined in Eq.(4).

Proof. Since det(Σi) does not depend on hi, see [36], the
log det(Σi) terms in Eq.(9) can be dropped in the data terms
Di. The energy minimization problem becomes:

ĥ
(MAP)

= argmin
h

∑
i

√
L̂i · tr

[
Σ−1i (hi) · Σ̂

(WML)
i

]
+ β

∑
(i,j)

|hi − hj | .

As r̂a = ra, we have Σ̂
(WML)
i = R

1/2
i Γ̂

(WML)
i R

1/2
i and

Σ−1i (hi) = R
−1/2
i Γ−1i (hi)R

−1/2
i . Injecting these two equal-

ities in the above equation, and using that γa,b = γ̂a,b and
ψa,b = fa,b(hi) conclude the proof.

This minimization problem is highly non-convex because
of the dependence on h in the data term through a phase
term. Global minimization can still be performed since the data
term is separable (a sum of independent terms over all pixels)
and the regularization is a sum of convex pairwise terms (i.e.,
involving only pairs of pixels). We use the graph construct of
Ishikawa [37] to map the original non-convex problem into
a maximum-flow / minimum-cut problem. We discretize the
range of height values into H heights, then build a graph with
H layers, each layer containing a node for each pixel in the
image. Each node is connected to nodes corresponding to the
spatial neighbors within each layer, and to the corresponding
nodes in the layer immediately above and below. Capacities
of the edges are set according to values of the terms in the
optimization problem (15).
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The size of the graph is thus proportional to the number of
pixels times the number of heights. Memory constraints there-
fore limit the method to regions of size below a million pixels.
Larger regions can be processed either by considering sliding
windows, as in [38], or by using multilabel partition moves
[39]. If a different convex and pairwise regularization term was
preferred (see paragraph II-B), a similar graph construct would
still be possible but it would involve many supplementary arcs.
The convex optimization approach described in [40] would
then be preferable in terms of computational and memory
costs. The choice of a non-convex regularization term (e.g., a
truncated quadratic function of the height differences) would
make the optimization much harder and only approximate
solutions could be sought, at the risk of falling in a local
minimum due to the multi-modal nature of the data term Di.

The height reconstruction algorithm, called PARISAR
(PAtch-based estimation and Regularized Inversion for SAR
interferometry), is summarized in the following box.

Algorithm: PARISAR Height Reconstruction Algorithm
1 Collect the D single-look complex images g1 to gD

2 Estimate Σ̂
(WML)
i and L̂i for all pixels i (e.g., with NL-SAR)

3 for all h in the discretized range of heights
4 for all pixels i
5 Compute the data term

√
L̂i tr

[
Γ−1

i (h) · Γ̂
(WML)
i

]
6 Add a node in the graph for pixel i

with an edge capacity equal to the data term
7 Add edges between neighboring nodes
8 end for
9 end for

10 Compute the minimum cut on the graph
11 Derive the optimal height map ĥ

(MAP)
from the minimum cut

III. VALIDATION ON NUMERICAL SIMULATIONS

The quantitative and qualitative assessment of the method
has been conducted on different test cases. First a quantitative
validation is performed using three different simulated test
cases: an urban-like scenario, a pattern of squares and a
natural scenario, named Ghiglia. The first test case aims at
validating the ability of the proposed approach to unwrap
and regularize areas characterized by height discontinuities,
to correctly handle very low coherence areas (for example
shadow areas), and to retrieve small scale structures. The
second simulation is designed to analyze the performance of
the method for a wide range of configurations (i.e., different
coherence and building height values). The last simulation,
Ghiglia, is a classical numerical simulation used to assess the
behavior of algorithms in a case close to natural height maps.

The datasets are made of three complex images correspond-
ing to different baselines. The adopted system parameters are
summarized in Table I. In particular, the table contains the αa,b

parameters of Eq.(4), the corresponding ambiguity height and
the size of the considered scene. In the following, parameter
β has been manually set. The adopted values are reported for
the different datasets.

In order to compare the results provided by the proposed
algorithm PARISAR, different multi-channel methods have

been considered: MLNL (Maximum Likelihood with Non
Local), MAPNL (Maximum a Posteriori with Non Local) and
MCPU (Multi-Channel Phase Unwrapping). The first one is
a weighted maximum likelihood estimator that exploits the
weighted log-likelihood terms Di, without any regularization;
the second one is a Maximum a Posteriori that implements
the estimator of Eq.(15) with a sub-optimal minimization
procedure based on Iterated Conditional Modes (ICM)); fi-
nally the MCPU proposed in [23] implements a Maximum
a Posteriori estimator based on the statistical independence
between interferograms and on the use of a graph-cut-based
optimal minimization procedure.

The processing is performed by a high-level code written
in Matlab language and based on C/C++ code for NL-SAR
filtering and minimum cut computations, on an Intel Core i7
workstation with Linux Debian as operative system.

A. Urban-like profile
The complex data have been simulated starting from the

height profile and the coherence map, reported in Figures
1(f) and 1(a). The starting height profile is a typical scenario
used to assess the capability of multi-channel algorithms,
made of structures of different heights, characterized by height
discontinuities. The characteristics of the profile and of the
scene are reported in Table I. The height of the buildings
are such that the related phases are ambiguous even for
the smallest considered baseline, making the unwrapping of
the profile a difficult task, even in the absence of noise.
Concerning the coherence of the scene, three areas have
been considered: ground and buildings area, top left building,
shadowing areas (see Figure 1(a)). For the generation of the
data, the following values were adopted for the different
combination of the three images: γ = {0.7, 0.65, 0.6} for
the ground and buildings area, γ = {0.45, 0.35, 25} for
the top left building, γ = {0.1, 0.1, 0.1} for the shadowing
areas. Note that for the considered profile and the adopted
coherence the Itoh condition is not satisfied, thus a single-
channel unwrapping algorithm can not be adopted.

The generated D = 3 interferograms are shown in Figures
1(c), 1(d), 1(e). The mean estimated coherence map, using a
simple box-car filter, is shown in Figure 1(b).

PARISAR and the other previously reported multi-channel
algorithms have been tested on the dataset. From the visual
inspection of the results, the good performances of the pro-
posed algorithm are evident. While all the other considered
techniques either fail in estimating the height of some build-
ings (MCPU), or fail in removing the noise (MLNL) or fail in
retrieving the details of the image, such as borders, the small
structures or shadowing areas (MAPNL), PARISAR is able to
correctly solve all the previously reported issues. The image is
well regularized, all the structures, with the correct heights, are
retrieved. Shadow areas are well reconstructed and the small
structure is not flattened or confused with the surrounding
ground area. A strong reduction of the variance of height
estimation while preserving edges (no blurring phenomenon)
is achieved.

The visual analysis is confirmed by the quantitative analysis
based on the evaluation of the Normalized Reconstruction
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TABLE I
NUMERICAL SIMULATIONS PARAMETERS (SIZES GIVEN IN PIXELS).

Dataset αa,b hamb size

Urban [-0.55 -1 -0.45] [5.7 3.1 6.9]m 70× 70
Squares [-0.55 -1 -0.45] [5.7 3.1 6.9]m 240× 240
Ghiglia [-0.55 -1.2 -0.65] [5.7 2.6 4.8]m 458× 157

TABLE II
NORMALIZED RECONSTRUCTION SQUARE ERROR

Dataset MLNL MAPNL MCPU PUMA PARISAR

Urban 1.16 0.32 0.29 – 0.03
Squares 3.88 1.07 1.12 – 0.52
Ghiglia 0.29 0.13 – 0.01 0.001

Square Error, defined as the quadratic norm of the difference
between the true height values and the estimated ones, nor-
malized by the the true ones (see [22]) of Table II and on
the Root Mean Square Error, reported in Table III. For both
parameters, PARISAR outperforms the other algorithms.

B. Pattern of squares

This second test aims at analyzing the proposed method
for different configurations, in terms of height and coherence
values. The starting true profile is made of structures of
different heights (Figure 2(f)), while the coherence spans
different values from 0 to 1 (Figure 2(a)). By combining
the true profile and the coherence map with the different
available baselines (system parameters are reported in Table
I), three complex images are generated. The effect of this
combination is an interferogram characterized by different
behaviors: the top left part contains low height structures with
weak noise (high coherence value), while the bottom right
corner is characterized by high heights with strong noise. The
other two quadrants contain low height structures under strong
noise and high height structures under a weak noise.

The dataset is used to test all previously mentioned algo-
rithms. The results are shown in the second row of Figure 2.
MLNL and MCPU provide unsatisfying results: the former
provides a noisy solution, while the latter over-regularizes
the solution creating artifacts. The best results are achieved
in case of MAPNL and PARISAR. Exploiting the non-local
estimation both techniques are able to provide effective results
in almost all the areas. PARISAR outperforms MAPNL, in
terms of noise regularization and correct height retrieval.
This is evident from both visual inspection and quantitative
analysis, reported in Tables II and III (see the corresponding
lines for the Square dataset). As expected, the errors that
appear in PARISAR reconstruction are mainly in the bottom
line, where the interferometric noise is strong.

C. Ghiglia profile

In order to assess the performances of the algorithm on
a natural scenario, a realistic profile generated on the basis

TABLE III
ROOT MEAN SQUARE ERROR

Dataset MLNL MAPNL MCPU PUMA PARISAR

Urban 3.11 1.63 1.56 – 0.52
Squares 5.3 2.78 2.84 – 1.94
Ghiglia 17.41 11.47 – 3.96 1.22

of a real digital elevation model of mountainous terrain
around Isolation Peak, Colorado, is considered [41]. In the
following we will refer to it as Ghiglia profile. The system
parameters are reported in Table I. Three different coherence
values, {0.7, 0.65, 0.6}, are adopted, for the three considered
combinations of images. Three interferograms are generated.
The true profile, the data and the results are reported in Figure
3. The considered profile is not ambiguous: there are no height
discontinuities. In this case, the unwrapping task difficulty
comes from the fringes that tend to overlap, creating a sort of
aliasing. Since the profile is not ambiguous, a single-channel
phase unwrapping can be used to unwrap the profile. The
PUMA algorithm proposed in [42] is considered.

The results obtained using MAPNL, PUMA and PARISAR
are shown in Figures 3(f), 3(g) and 3(h), respectively. The
first and the last are tested using the whole dataset, PUMA
is tested using only the smallest baseline interferogram. It is
evident that, even if not ambiguous, a single-channel algorithm
as PUMA is penalized by using a single interferogram and
therefore fails to correctly retrieve the height, due to the
aliasing of fringes. This problem is solved by PARISAR by
using all the available channels. Note that exploiting the whole
dataset may not be sufficient for correctly retrieving the profile:
the difference between results obtained by MAPCorrNL and
PARISAR show that the regularization role is important. The
quantitative analysis reported in in Tables II and III (see the
corresponding lines for the Ghiglia dataset) confirms the visual
inspection.

IV. APPLICATION TO SATELLITE SAR IMAGES

To qualitatively evaluate algorithm PARISAR on real satellite
SAR images, we considered two datasets: an urban test site
(Napoli) and a natural test site (Serre-Ponçon). The two scenes
have been acquired using two different sensors, COSMO-
SkyMed and ERS, to test the capabilities of the method to
work with different radar frequencies (X-band and C-band)
and sensors. The systems parameters, previously defined in
Eq.(4), are summarized in table IV. For both datasets, the
hypothesis of stationary observed scene is considered. This
hypothesis is met when the temporal baseline span is limited.
For the considered data sets, the maximum temporal baseline
span is of 4 months for Napoli test case and 5 months for
Serre-Ponçon one, which are compatible with the stationary
hypothesis.
A pre-processing procedure is mandatory for all multi-channel
based algorithms: it is needed to correctly combine the differ-
ent available images. The pre-processing consists of two steps:
the first one aims at removing possible phase artifacts (due for
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. (a) Starting coherence map, (b) empirical coherence map, (c) first interferogram, (d) second interferogram, (e) third interferogram, (f) original height
profile, (g) estimated solution using MLNL approach, (h) estimated solution using MAPNL approach, (i) estimated solution using MCPU approach, (j)
estimated solution using the proposed PARISAR approach, for β = 0.25.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. (a) Starting coherence map, (b) empirical coherence map, (c) first interferogram, (d) second interferogram, (e) third interferogram, (f) original height
profile, (g) estimated solution using MLNL approach, (h) estimated solution using MAPNL approach, (i) estimated solution using MCPU approach, (j)
estimated solution using the proposed PARISAR approach, for β = 0.05.

example to the atmosphere), while the second one consists
in the calibration of the phases. Concerning the first step,
different techniques can be applied according to the extension
and to the topography of the observed scene. The algorithm
proposed in [43] has been adopted for Napoli test case, while
the algorithm proposed in [44] has been considered for Serre-
Ponçon test case. Concerning the second step, commonly a
relative phase calibration is applied based on the identification
of high coherence areas or permanent scatters. After the
reconstruction a constant offset is applied to the final image
(e.g. commonly the value of the offset is such that the ground
is set to zero meters).

A. Urban area: Napoli test case

The first dataset is composed of three 250 × 250 pixels
COSMO-SkyMed Stripmap images acquired close to Naples

TABLE IV
INTERFEROMETRIC CONFIGURATIONS OF THE SATELLITE IMAGES

Dataset Sensor ρ0 λ θ B⊥

Naples CSK 755.190 0.03 0.62 [0 517 251]m
Serre-P. ERS2 825.669 0.05 0.40 [0 36 96]m

train station, in Italy. One of the three available interferograms
is shown in the first row of Figure 4 together with the mean
amplitude (in log scale) and the mean coherence map. The
scene is very complex: different structures, with different
heights, shapes and reflectivities are present. The phase un-
wrapping results are shown in the second row. Independent
estimation of the height at each pixel leads to a very noisy
result (i.e., strong variance of the heights). This is evident from
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a) Empirical coherence map, (b) first interferogram, (c) second interferogram, (d) third interferogram, (e) original height profile, (f) estimated solution
using MAPNL approach, (g) estimated solution using PUMA approach, (h) estimated solution using the proposed PARISAR approach, for β = 0.1.

the results of MLNL of Figure 4(e). Considering MAPNL and
PARISAR, the regularization reduces these fluctuations without
noticeable resolution loss. This reduction is more evident in
case of PARISAR (Figure 4(g)): the building structures are
retrieved, both in terms of shapes and heights. It is interesting
to note the capability of PARISAR in retrieving the low-height
circular structures on the left of the scene, while strongly
reducing noise: these structures are almost invisible both in the
interferogram and in the coherence image (very noisy area). A
quantitative validation of the result for Napoli test case can be
performed using Google Earth height data. The height of the
large building on the left of the scene, provided by Google
Earth, is of about 23m (highest area) and 18m, while the
height of the ground is of 8m. All Google Earth data refer to
the sea level. The relative height of the building is compatible
with the reconstruction of PARISAR. The height of the circular
building on the right of the scene, provided by Google Earth,
is of about 14m, while the height of the ground is of 7m,
on the sea level. The relative height of the building is also
compatible with the reconstruction of PARISAR. A qualitative
evaluation of the reconstruction can be performed based on the
optical images (2D and 3D) of the considered scene provided
by Google (Figures 4(d) and 4(h)), taken at the same time
period: from the radar-optical comparison it appears that the
structures are correctly retrieved, both in terms of shapes and
of relative building heights.

B. Mountainous area: Serre-Ponçon test case
The last 250×250 pixel dataset corresponds to a mountain-

ous area acquired by ERS sensor over Serre-Ponçon (France).
One of the three available interferograms is shown in the first
row of Figure 5 together with the mean amplitude (in log
scale) and the mean coherence map. This area is challenging

due to the presence of very low coherence areas and not
regular phase fringes. Phase unwrapping results are shown in
the second row. Both MLNL and MAPNL fail at correctly
unwrapping the profile. The latter provides a more reliable
result although there are several areas that are not correctly
unwrapped. Using PARISAR, it is possible to largely improve
the results. Wrapping problems are solved and noise is better
suppressed.

V. CONCLUSION

A new methodology to improve multi-baseline phase un-
wrapping has been proposed. Starting from the complete
statistical distribution of the interferometric data, the joint
exploitation of patch-based approaches and TV regularization
for elevation estimation has been discussed. The developed
algorithm, named PARISAR, implements a maximum a pos-
teriori estimator with a properly modified likelihood term,
by means of a two steps strategy: the first step consists of
estimating a covariance matrix at each pixel from the multi-
channel images available using a non-local filtering method
like NL-SAR; the second step introduces a TV penalty for
edge-preserving regularization. PARISAR has been tested on
several datasets and compared to other multi-channel algo-
rithms. The quantitative and qualitative analysis has been
carried out on three different simulated datasets, in order
to validate the effectiveness of the approach in different
configurations (various image structures and coherences). A
qualitative evaluation has been performed on two satellite
image datasets from two different sensors working at different
radar frequencies, displaying different spatial resolutions, on
an urban and a mountainous area. The results in both cases
are promising. PARISAR provides sensible elevation profiles,
seemingly outperforming other methods. Structural details are
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a) Mean amplitude image, (b) empirical coherence map, (c) one of the available interferograms, (d) optical image of the considered scene provided
by Google, (e) estimated solution using MLNL approach, (f) estimated solution using MAPNL approach, (g) estimated solution using the proposed method
PARISAR for β = 0.05, (h) 3D optical image of the considered scene provided by Google Earth.

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) One of the available amplitude, (b) empirical coherence map, (c) one of the available interferogram, (d) estimated solution using MLNL approach,
(e) estimated solution using MAPNL approach, (f) estimated solution using the proposed method PARISAR, for β = 0.5.
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preserved while most of the noise is suppressed. All the
considered datasets were composed of only three images,
to show the potentiality of the technique in working with
a very limited number of images (avoiding problems with
large temporal baselines such as de-correlations, deformations,
etc.). Clearly a larger number of images, if available, can
be used by PARISAR. If the pre-processing of the images is
correctly performed the reconstruction would improve, since
the log-likelihood energy would benefit of additional data.
At the present stage, the method is able to handle shadows
but it does not accounts for the layover phenomenon. Only
tomographic approaches are able to provide a solution in
the case where different echoes, from structures at different
heights (i.e. roof, facade and ground), are integrated within
the same resolution cell. Interferometric approaches could be
used in such layover areas only in the case where one of
the contributions is dominant compared to the others. This
sometimes happens with the facades of the buildings that
are characterized by stronger reflections compared to the
roof and the ground. In this situation, the known layover
ramp appears in the interferograms (see [45], [46]) and the
proposed PARISAR algorithm would correctly manage and
reconstruct the ramp. On the contrary, if there is no dominant
contribution, such distortions can be addressed only using a
tomographic approach. The investigation of a tomographic-
based approach within the proposed framework is the subject
of future research.
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