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PARISAR: Patch-based estimation and regularized

inversion for multi-baseline SAR interferometry
Giampaolo Ferraioli, Charles-Alban Deledalle, Loic Denis, Florence Tupin

Abstract—Reconstruction of elevation maps from a collection
of SAR images obtained in interferometric configuration is a
challenging task. Reconstruction methods must overcome two ad-
verse effects: the strong interferometric noise that contaminates
the data, and the 2π phase ambiguities. Interferometric noise
requires some form of smoothing among pixels of identical height.
Phase ambiguities can be solved, up to a point, by combining
linkage to the neighbors and a global optimization strategy
to prevent from being trapped in local minima. This paper
introduces a reconstruction method, PARISAR, that achieves both
a resolution-preserving denoising and a robust phase unwrapping
by combining non-local denoising methods based on patch
similarities and total-variation regularization. The optimization
algorithm, based on graph-cuts, identifies the global optimum.
We compare PARISAR with several other reconstruction methods
both on numerical simulations and satellite images and show a
qualitative and quantitative improvement over state-of-the-art
reconstruction methods for multi-baseline SAR interferometry.

Index Terms—SAR interferometry, multi-channel InSAR, Non-
local means, TV regularization

I. INTRODUCTION

Phase unwrapping (PhU) operation is one of the most chal-

lenging tasks when dealing with three dimensional (3D) recon-

struction of earth surface based on Interferometric Synthetic

Aperture Radar imaging [1]. PhU consists of retrieving the

absolute value of the phase, starting from the 2π-wrapped data.

Thanks to the widely known relation between the measured

interferometric phase and the height of the observed scene

[2], it is possible, after the PhU operation has been correctly

performed, to recover the height of the observed area.

Several PhU algorithms have been developed in the last

twenty years, and they can be classified into two main fami-

lies: path-following methods and global optimization methods.

Path-following PhU algorithms follow a path in the wrapped

phase and unwrap each pixel locally. Algorithms from the

second family minimize some measure of misfit between

the unwrapped solution and wrapped one while promoting

unwrapped solutions with few discontinuities. A good review

of these algorithms can be found in [3] and [4].

Two difficulties make PhU a non-trivial operation: the first

is due to the perturbations of interferometric noise on the
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acquired data; the second is the presence of phase differences

larger than π between two neighboring pixels, violating the

so-called Itoh condition [5]. Such large phase differences arise

when neighboring pixels have very different height values (i.e.

in presence of discontinuities), or due to (strong) interferomet-

ric noise. Most existing algorithms account for the statistics of

interferometric noise. The violation of Itoh condition makes

the PhU problem ill-posed, thus challenging to solve. Com-

monly, to regularize the PhU problem and obtain a unique

solution, differences between neighboring absolute phases are

supposed to be less than π. This hypothesis is satisfied in the

case of height profiles without strong discontinuities and high

slopes, and for small baseline values [1].

PhU can be applied to more complex scenes with strong

discontinuities or steep slopes by increasing the number of

interferograms used during the inversion. By correctly combin-

ing different available interferograms, it is possible to restore

the solution uniqueness without imposing constraints on the

phase difference between neighboring pixels [6]. Multiple

interferograms, commonly known as multi-channel interfer-

ograms, can be obtained in two different ways: using sensors

working at different frequencies or using sensors acquiring

the scene with different baselines. The latter, multi-baseline

interferometry, is the case when the sensor observes the same

scene, repeatedly, from slightly different positions, and is

commonly the adopted one [7].

In the past years, multi-baseline PhU techniques have been

largely investigated [8], [9], [10], [11]. More recently, new

multi-baseline algorithms have been proposed. A technique

based on the extension of cluster analysis has been proposed

in [12]. The reduction of memory requirements when dealing

with multiple data is the main aim of [13]. The use of Kalman

Filter in case of multiple acquisitions has been investigated

in [14]. Finally, multi-baseline interferograms have also been

used together with other information to improve reconstruction

accuracy in urban areas: in [15] multi-baseline data have been

jointly exploited with multi-aspect data while in [16] multi-

baseline interferograms have been exploited together with

amplitude information.

In order to obtain satisfying results using multi-baseline

data, the first step is to correctly combine the available

information. An effective way to combine the available multi-

channel (i.e., multi-baseline) interferometric data is to exploit

statistical estimation methods. These methods propose to ex-

ploit the statistical distribution of the acquired data and to im-

plement instruments provided by both classical [17], [18] and

Bayesian estimation theory. In particular, for the latter when

Markov Random Fields (MRF) theory is used for modeling
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the unknown height profile the so-called Bayesian Markovian

estimation framework arises [19], providing very effective

results in the multi-channel case [20], [21]. An interesting

work based on Bayesian Markovian framework, developed in

the single channel case has been recently proposed in [3].

In this paper we propose to exploit contextual information to

improve multi-baseline unwrapping. Patch-based approaches,

like NL-SAR [22], can efficiently exploit local structural

information in the noisy signal to gather similar samples and

improve the estimation. To do so, they compare small pieces

of information (the patches) and combine the similar ones.

These estimators produce results with non-stationary residual

variance: in regions where many similar patches are found,

the estimate is accurate, while rare configurations are left

almost unchanged, i.e., with the strong original interferometric

variance. At these locations, an additional smoothing is to be

enforced. Moreover, ambiguities due to phase wrapping can

often be solved based on local smoothness priors. Markovian

prior models of the elevation can be defined in this regard: total

variation (TV) or truncated quadratic functions lead to smooth

elevation while allowing strong discontinuities [16]. These

regularization models applied alone suffer some limits like

staircasing effects affecting flat areas and leading to piecewise

constant reconstruction [23]. Following the approach proposed

in [24] for image and video, we investigate the combina-

tion of both a patch-based approach and TV regularization

for elevation estimation in a multi-baseline interferometric

framework, exploiting the whole statistical distribution of the

interferometric data.

The adopted strategy includes two steps: first a filtering

method like NL-SAR provides non-local (i.e., patch-based)

estimates of the covariance matrices at each pixel from the

multi-channel images available, while preserving at best the

resolution; second, height values are regularized using an

edge-preserving regularization such as TV. Following the

approach proposed in [24], the problem can be formulated

as a maximum a posteriori estimation with a modified like-

lihood term. Section II describes the proposed model: the

proposed likelihood term introducing patch-based similarity

is described, the prior TV term and the global energy to be

minimized, as well as the adopted optimization scheme. In

section III, an in depth study of the proposed model is provided

through experiments on simulated data, while results on real

images are presented and discussed in section IV.

II. THE MODEL

At a given pixel i of a multi-channel interferogram with

D channels, the D complex amplitudes can be collected in

a vector gi, called the scattering vector. Under the classical

hypothesis of fully developed speckle (Goodman model [25]),

the scattering vector gi is distributed according to a circular

complex Gaussian:

p(gi|Σi) =
1

πDdet(Σi)
exp

(
−g

†
i Σ

−1
i gi

)
(1)

with g
†
i the Hermitian transpose of the column vector gi. This

distribution is parameterized by the D×D complex covariance

matrix Σi = E[gig
†
i ] (E denoting the expectation) at pixel i.

Considering that all the channels have the same radiometry R,

and denoting by sa,b = E[gi(a)gi(b)
∗]/R = γa,b exp(j ψa,b)

the inter-channel correlation, with coherence γa,b and interfer-

ometric phase ψa,b, leads to:

Σ = R




1 s1,2 · · · s1,D
s∗1,2 1 s2,D

...
. . .

...

s∗1,D s∗2,D 1


 . (2)

The interferometric phases ψa,b are related to the height h
through a function fa,b that accounts for the interferometric

baseline, eventual atmospheric distortions and other calibration

parameters [1]:

ψa,b = fa,b(h) = αa,bh =
4π B⊥(a, b)

λR0 sin θ
h , (3)

where λ is the working wavelength, B⊥(a, b) is the orthogonal

baseline between channels a and b, c is the speed of light, R0

is the distance to the scene, and θ is the view angle.

In multi-baseline interferometry, a first step generally con-

sists of estimating the covariance matrix Σi at pixel i by

spatial averaging over a square window Wi centered on i:

Σ̂
(box)

i =
1

N

∑

j∈Wi

gjg
†
j . (4)

N being the number of samples in Wi. The interferometric

phases ψ̂a,b extracted from this empirical covariance matrix

are then inverted, in a second step, to produce an estimate ĥ
of the height such that ψ̂a,b ≈ fa,b(ĥ) for all channels a and

b.

Such an approach suffers from two drawbacks: (i) the

first step involves an averaging procedure that degrades the

spatial resolution by blurring thin structures, and (ii) the height

estimation does not consider estimated heights at neighboring

locations, thereby producing very noisy estimates in low

coherence regions.

In order to address these drawbacks, we propose to follow

a Maximum a Posteriori (MAP) approach. In Bayesian esti-

mation theory, a MAP estimator is computed by minimizing

the a posteriori energy E , which is the sum of two terms:

the likelihood term (aka “data term” D) and the a priori

term (aka “regularization” R). The bias and variance of

the estimator are controlled by balancing the relative weight

of those two terms. Given the strong fluctuations of point

estimates of interferometric phase, we consider in paragraph

II-A a generalization of the likelihood term to include a

form of averaging over similar pixels within an extended

neighborhood. The smoothing enforced by the a priori term

to produce a satisfying estimate has then no need to be as

severe as for a point estimate. We discuss the definition of the

a priori term in paragraph II-B.
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A. Weighted likelihood term

The statistical model defined by Eq.(1) leads to the follow-

ing likelihood term at pixel i (with const. a constant term):

− log p(gi|Σi) = log det(Σi) + g
†
i Σ

−1
i gi + const. (5)

The number of unknowns in Σi is larger than the number D
of observations in gi. Estimation of h alongside of R and γa,b
values with a MAP estimator would thus rely on the choice

of regularization terms expressed on all these unknowns.

Designing such a regularization may be difficult due to the

different nature of the unknowns: radiometry, coherence, and

height, and their non-linear interaction in the definition of

Σi in Eq.(2). To circumvent these problems, we choose to

replace the likelihood term of covariance matrix Σi with a

more general expression: the weighted likelihood [26], [27],

[28]:

Di = −
∑

j

ωi,j log p(gj |Σi) (6)

with ωi,j the weight given to scattering vector gj in the

estimation at pixel i. In words, the covariance Σi is not

only required to support the observation at pixel i but also

observations at all the pixels j for which the weights ωi,j

are large. Setting the weights ωi,j to be equal to each other

within the square window Wi centered on i and equal to 0

outside leads to Eq.(4), i.e., the boxcar covariance estimator.

Spatially extending the number of observations related to a

given covariance matrix Σi reduces the need for a regulariza-

tion since the number of unknows becomes much fewer than

the number of observations. This however comes at a price:

by mixing observations from different spatial locations j in

the estimation of Σi, the spatial resolution is reduced. It is

therefore crucial that the weights ωi,j be carefully chosen so

as to include in Eq.(6) only pixels corresponding to the same

covariance Σi. Designing methods to adaptively compute

weights that preserve at best the resolution has been the

subject of numerous works, starting with Lee’s sigma filter

[29] and oriented windows [30] up to more recent patch-

based methods, see the review [31]. In the following, we

chose to compute the weights using the NL-SAR algorithm

[22] since it is very effective at preserving fine structures, and

its parameters are tuned in an unsupervised way to adapt to the

number of channels D, the sensor, the resolution and the image

content. The derivation of our method is however general

and independent from the choice of a specific algorithm for

computing the weights ωi,j .

We define first the weighted maximum likelihood estimator

Σ̂
(WML)

i as the covariance matrix Σi that minimizes Di.

Proposition 1. The weighted maximum likelihood estimator

is given by the following weighted averaging:

Σ̂
(WML)

i =
1

λi

∑

j

ωi,jgjg
†
j , (7)

with λi =
∑

j ωi,j .

Proof. The weighted maximum likelihood estimator is defined

by:

Σ̂
(WML)

i = arg min
Σi

−
∑

j

ωi,j log p(gj |Σi)

= arg min
Σi

∑

j

ωi,j

[
log det(Σi) + g

†
j Σ

−1
i gj

]

= arg min
Σi

λi log det(Σi) +
∑

j

ωi,j tr
[
Σ

−1
i gjg

†
j

]

= arg min
Σi

λi log det(Σi) + tr


Σ−1

i

(∑

j

ωi,jgjg
†
j

)


The gradient of the objective function with respect to Σi is:

λiΣ
−†
i −Σ

−†
i

(∑

j

ωi,jgjg
†
j

)
Σ

−†
i .

After multiplication from the left and from the right by Σ
†
i ,

the first order optimality condition (gradient is null) leads to

the desired result.

The expression of the data term Di can be significantly sim-

plified into a single term thanks to the following proposition:

Proposition 2. The weighted likelihood data term can be

written in terms of the weighted likelihood estimate:

Di = λi

(
log det(Σi) + tr

[
Σ

−1
i Σ̂

(WML)

i

])
.

Proof. The weighted likelihood data term has been defined in

equation (6) by:

Di = −
∑

j

ωi,j log p(gj |Σi)

=
∑

j

ωi,j

[
log det(Σi) + g

†
j Σ

−1
i gj

]

= λi log det(Σi) + tr


Σ−1

i

(∑

j

ωi,jgjg
†
j

)


= λi log det(Σi) + λi tr
[
Σ

−1
i Σ̂

(WML)

i

]

Since the data term Di will be involved in minimization prob-

lems, we dropped the irrelevant additive constant term.

Proposition 2 has important pratical consequences. While

the original definition of the weighted likelihood data term Di

involved the sum of many terms (typically, several hundred

in the context of non-local methods) for a single pixel i,
introduction of the weighted maximum likelihood estimate

drastically simplifies the expression of Di into a single term.

This paves the way to a maximum a posteriori estimation

based on data terms Di.

B. Prior term

In urban areas and at meter resolutions, the height is

typically constant from one pixel to a neighboring pixel, or

varies strongly when the two pixels belong to two different

structures, e.g., ground and roof. We therefore select a prior
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term that favors piecewise constant images: the total variation

defined by
∑

(i,j)

|hi − hj | , (8)

where (i, j) indicates a pair of neighboring pixels.

C. A posteriori energy E

The a posteriori energy includes both the data term intro-

duced in paragraph II-A and the regularisation proposed in

paragraph II-B:

E(h) =
∑

i

Di + β
∑

(i,j)

|hi − hj | , (9)

where β is a hyper-parameter that balances the relative im-

portance of the fidelity to the observations (enforced by terms

Di) and the smoothness of the height map h (enforced by the

a priori). Beyond this global tuning through parameter β, it

is necessary to account for the variable number of neighbors

included in the weighted likelihood. Weights ωi,j indeed vary

from one pixel to another. In homogeneous regions, many

similar neighbors are identified, thus the weighted maximum

likelihood estimate Σ̂
(WML)

i is reliable. In contrast, in an

isolated structure, very few similar neighbors are identified

and most weights ωi,j are (close to) zero, leading to a very

noisy estimate Σ̂
(WML)

i . To account for this disparity between

estimates, we follow the idea of [24] and set the sum of

weights λi at pixel i (see eq.(7)) to be inversely proportional

to the standard deviation of the estimator:

λi =

√
L̂i , (10)

with L̂i the equivalent number of looks corresponding to the

weighted neighborhood defined by the weights ωi,j [22]:

L̂i =
(
∑

j ωi,j)
2

∑
j ω

2
i,j

. (11)

D. MAP estimation of the height distribution

The height map h, i.e., the vector of heights for all pixels,

can be estimated in the MAP sense by solving the minimiza-

tion problem:

ĥ
(MAP)

= arg min
h

E(h) . (12)

Since det(Σi) does not depend on hi, see [32], the log det(Σi)
terms can be dropped in the data terms Di. The energy

minimization problem becomes:

ĥ
(MAP)

= arg min
h

∑

i

√
L̂i · tr

[
Σ

−1
i Σ̂

(WML)

i

]

+ β
∑

(i,j)

|hi − hj | . (13)

This minimization problem is highly non-convex because of

the dependence on h in the data term through a phase term.

However, global minimization can still be performed since the

data term is separable (a sum of independent terms over all

pixels) and the regularization is a sum of convex pairwise

terms (i.e., involving only pairs of pixels). We use the graph

construct of Ishikawa [33] to map the original non-convex

problem into a maximum-flow / minimum-cut problem. We

discretize the range of height values into H heights, then

build a graph with H layers, each layer containing a node

for each pixel in the image. Each node is connected to nodes

corresponding to the spatial neighbors within each layer, and

to the corresponding nodes in the layer immediately above and

below. Capacities of the edges are set according to values of

the terms in the optimization problem (13).

The height reconstruction algorithm, called PARISAR

(PAtch-based estimation and Regularized Inversion for SAR

interferometry), is summarized in the following box.

Algorithm: PARISAR Height Reconstruction Algorithm

1 Collect the D SLC images g

2 Estimate Σ̂
(WML)

i and L̂i for all pixels i (e.g., with NL-SAR)
3 for all h in the discretized range of heights
4 for all pixels i

5 Compute the data term
√

L̂i tr
[
Σ

−1
i

Σ̂
(WML)

i

]

6 Add a node in the graph for pixel i
with an edge capacity equal to the data term

7 Add edges between neighboring nodes
8 end for
9 end for

10 Compute the minimum cut on the graph

11 Derive the optimal height map ĥ
(MAP)

from the minimum cut

III. VALIDATION ON NUMERICAL SIMULATIONS

The quantitative and qualitative assessment of the method

has been conducted on different test cases. First a quantitative

validation is performed using three different simulated test

cases: an urban-like scenario, a pattern of squares and a

natural scenario, named Ghiglia. The first test case aims at

validating the ability of the proposed approach to unwrap

and regularize areas characterized by height discontinuities,

to correctly handle very low coherence areas (for example

shadow areas), and to retrieve small scale structures. The

second simulation is designed to analyze the performance of

the method for a wide range of configurations (i.e., different

coherence and building height values). The last simulation,

Ghiglia, is a classical numerical simulation used to assess the

behavior of algorithms in a case close to natural height maps.

The datasets are made of three complex images correspond-

ing to different baselines. The adopted system parameters are

summarized in Table I. The processing is performed by a high-

level code written in Matlab language and based on C/C++

code for NL-SAR filtering and minimum cut computations, on

an Intel Core i7 workstation with Linux Debian as operative

system.

A. Urban-like profile

The complex data have been simulated starting from the

height profile and the coherence map, reported in Figures

1(f) and 1(a). The starting height profile is a typical scenario
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TABLE I
NUMERICAL SIMULATIONS PARAMETERS (SIZES GIVEN IN PIXELS).

Dataset αa,b hamb size

Urban [-0.55 -1 -0.45] [5.7 3.1 6.9]m 64× 64
Squares [-0.55 -1 -0.45] [5.7 3.1 6.9]m 240× 240
Ghiglia [-0.55 -1.2 -0.65] [5.7 2.6 4.8]m 458× 157

TABLE II
NORMALIZED RECONSTRUCTION SQUARE ERROR

Dataset MLNL MAPNL MCPU PUMA PARISAR

Urban 2.79 0.61 0.76 – 0.01

Squares 3.75 1.00 3.86 – 0.48

Ghiglia 0.30 0.14 – 0.01 0.002

used to asses the capability of multi-channel algorithms,

made of structures of different height, characterized by height

discontinuities. The height of the buildings are such that the

related phases are ambiguous even for the smallest considered

baseline (see Table I), making the unwrapping of the profile

a difficult task, even in absence of noise. Concerning the

coherence map, three different values have been adopted (see

the corresponding cells in Table I). The smaller values have

been considered in order to simulate a low coherence area and

a shadowing-like area. Note that for the considered profile and

the adopted coherence the Itoh condition is not satisfied, thus

a single-channel unwrapping algorithm can not be adopted.

The generated D = 3 interferograms are shown in Figures

1(c), 1(d), 1(e). The mean estimated coherence map, using a

simple box-car filter, is shown in Figure 1(b).

In order to compare the results provided by the proposed al-

gorithm PARISAR, different multi-channel methods have been

considered: the MLNL approach (using only the likelihood

terms Di), the MAPNL approach (using Eq.(13) and a sub-

optimal minimization procedure based on Iterated Conditional

Modes (ICM)), the MCPU proposed in [21].

From the visual inspection of the results, the good perfor-

mances of the proposed algorithm are evident. While all the

other considered techniques fail in estimating the height of

some buildings (MCPU), fail in removing the noise (MLNL)

or fail in retrieving the details of the image, such as borders,

the small structures or shadowing areas (MAPNL), PARISAR

is able to correctly solve all the previously reported issues. The

image is well regularized, all the structures, with the correct

heights, are retrieved. Shadow areas are well reconstructed

and the small structure is not flatten or confused with the

surrounding ground area. A strong reduction of the variance

of height estimation while preserving edges (no blurring

phenomenon) is achieved.

The visual analysis is confirmed by the quantitative analysis

of the Urban-like profile based on the evaluation of the

Normalized Reconstruction Square Error (defined as in [20])

of Table II. and on the Root Mean Square Error, reported in

Table III. For both parameters, PARISAR outperforms the other

algorithms.

TABLE III
ROOT MEAN SQUARE ERROR

Dataset MLNL MAPNL MCPU PUMA PARISAR

Urban 5.27 2.46 2.76 – 0.35

Squares 5.20 2.69 5.28 – 1.87

Ghiglia 17.88 12.11 – 3.96 1.44

B. Pattern of squares

This second test aims at analyzing the proposed method

for different configurations, in terms of height and coherence

values. The starting true profile is made of structures of differ-

ent heights (Figure 2(f)), while the coherence spans different

values from 0 to 1 (Figure 2(a)). By combining the true profile

and the coherence map with the different available baselines

(system parameters are reported in Table I), three complex

images are generated. The effect of this combination is an

interferogram characterized by different behaviors: the top left

part contains small structures with small noise (high coherence

value), while the bottom right corner is characterized by high

structures with large noise. The other two quadrants contain

small structures with large noise and high structures with small

noise.

The dataset is used to test all previously mentioned algo-

rithms. The results are shown in the second row of Figure

2. MLNL and MCPU provide unsatisfying results: the former

provides a noisy solution, while the latter over regularize the

solution creating artifacts. The best results are achieved in case

of MAPNL and PARISAR. Exploiting the non-local estimation

both techniques are able to provide effective results in almost

all the areas. PARISAR outperforms MAPNL, in terms of noise

regularization and correct height retrieval. This is evident from

both visual inspection and quantitative analysis, reported in

Tables II and III (see the corresponding lines for the Square

dataset). The errors that appear in PARISAR reconstruction

are mainly in the bottom right corner, as could be expected

since this area is characterized by high structures and strong

interferometric noise.

C. Ghiglia profile

In order to assess the performances of the algorithm on a

natural scenario, a realistic profile generated on the basis of

a real digital elevation model of mountainous terrain around

Long’s, and isolation Peak Colorado, is considered [34]. In

the following we will refer to it as Ghiglia profile. The system

parameters are reported in Table I. Three different coherence

values, [0.70.650.6], are adopted, for the three considered

combination of images. Three interferograms are generated.

The true profile, the data and the results are reported in Figure

3. The considered profile is not ambiguous: there are no height

discontinuities. In this case, the unwrapping task difficulty

comes from the fringes that tend to overlap, creating a sort of

aliasing. Since the profile is not ambiguous, a single-channel

phase unwrapping can be used to unwrap the profile. The

PUMA algorithm proposed in [35] is considered.
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Fig. 1. (a) Starting coherence map, (b) empirical coherence map, (c) first interferogram, (d) second interferogram, (e) third interferogram, (f) original height
profile, (g) estimated solution using MLNL approach, (h) estimated solution using MAPNL approach, (i) estimated solution using MCPU approach, (j)
estimated solution using the proposed PARISAR approach.
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Fig. 2. (a) Starting coherence map, (b) empirical coherence map, (c) first interferogram, (d) second interferogram, (e) third interferogram, (f) original height
profile, (g) estimated solution using MLNL approach, (h) estimated solution using MAPNL approach, (i) estimated solution using MCPU approach, (j)
estimated solution using the proposed PARISAR approach.

The results obtained using MAPNL, PUMA and PARISAR

are shown in Figures 3(f), 3(g) and 3(h), respectively. The

first and the last are tested using the whole dataset, PUMA

is tested using only the smallest baseline interferogram. It is

evident that, even if not ambiguous, a single-channel algorithm

as PUMA is penalized by using a single interferogram and

therefore fails to correctly retrieve the height, due to the

aliasing of fringes. This problem is solved by PARISAR by

using all the available channels. Note that exploiting the whole

dataset may not be sufficient for correctly retrieving the profile:

the difference between results obtained by MAPCorrNL and

PARISAR show that the regularization role is important. The

quantitative analysis reported in in Tables II and III (see the

corresponding lines for the Ghiglia dataset) confirms the visual

inspection.

IV. APPLICATION TO SATELLITE SAR IMAGES

To qualitatively evaluate algorithm PARISAR on real satellite

SAR images, we considered two datasets: an urban test site

(Napoli) and a natural test site (Serre-Ponçon). The two scenes

have been acquired using two different sensors, COSMO-

SkyMed and ERS, to test the capabilities of the method to

work with different radar frequencies (X-band and C-band)

and sensors. The systems parameters are summarized in table

IV.

A. Urban area: Napoli test case

The first dataset is composed of three 250 × 250 pixel

COSMO-SkyMed Stripmap images acquired close to Naples

(Italy) train station. One of the three available interferograms

is shown in the first row of Figure 4 together with the mean

amplitude (in log scale) and the mean coherence map. The
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Fig. 3. (a) Empirical coherence map, (b) first interferogram, (c) second interferogram, (d) third interferogram, (e) original height profile, (f) estimated solution
using MAPNL approach, (g) estimated solution using PUMA approach, (h) estimated solution using the proposed PARISAR approach.

TABLE IV
INTERFEROMETRIC CONFIGURATIONS OF THE SATELLITE IMAGES

Dataset Sensor R0 λ θ B⊥

Naples CSK 755.190 0.03 0.62 [0 517 251]m

Serre-P. ERS2 825.669 0.05 0.40 [0 36 96]m

scene is very complex: different structures, with different

heights, shapes and reflectivities are present. The phase un-

wrapping results are shown in the second row. Independent

estimation of the height at each pixel leads to a very noisy

result (i.e., strong variance of the heights). This is evident from

the results of MLNL of Figure 4(e). Considering MAPNL and

PARISAR, the regularization reduces these fluctuations without

noticeable resolution loss. This reduction is more evident in

case of PARISAR (Figure 4(g)): the building structures are

retrieved, both in terms of shapes and heights. It is interesting

to note the capability of PARISAR in retrieving the low-height

circular structures on the left of the scene, while strongly

reducing noise: these structures are almost invisible both in

the interferogram and in the coherence image (very noisy

area). A qualitative evaluation of the reconstruction results

can be performed based on the optical images (2D and 3D)

of the considered scene provided by Google (Figures 4(d)

and 4(h)) and taken at the same time period: from the radar-

optical comparison it appears that the structures are correctly

retrieved, both in terms of shapes and of relative building

heights.

B. Mountainous area: Serre-Ponçon test case

The last 250×250 pixel dataset corresponds to a mountain-

ous area acquired by ERS sensor over Serre-Ponçon (France).

One of the three available interferograms is shown in the first

row of Figure 5 together with the mean amplitude (in log

scale) and the mean coherence map. This area is challenging

due to the presence of very low coherence areas and not

regular phase fringes. Phase unwrapping results are shown in

the second row. Both MLNL and MAPNL fail at correctly

unwrapping the profile. The latter provides a more reliable

result although there are several areas that are not correctly

unwrapped. Using PARISAR, it is possible to largely improve

the results. Wrapping problems are solved and noise is better

suppressed.

V. CONCLUSION

A new methodology to improve multi-baseline phase un-

wrapping has been proposed. Starting from the complete

statistical distribution of the interferometric data, the joint

exploitation of patch-based approaches and TV regularization

for elevation estimation has been discussed. The developed al-

gorithm, named PARISAR, implements a maximum a posteriori

estimator with a properly modified likelihood term, by means

of a two steps strategy: the first step consists of estimating

a covariance matrice at each pixel from the multi-channel

images available using a non-local filtering method like NL-

SAR; the second step introduces a TV penalty for edge-

preserving regularization. PARISAR has been tested on several

datasets and compared to other multi-channel algorithms. The

quantitative and qualitative analysis has been carried out on

three different simulated datasets, in order to validate the ef-

fectiveness of the approach in different configurations (various

image structures and coherences). A qualitative evaluation

has been performed on two satellite image datasets from

two different sensors working at different radar frequencies,

displaying different spatial resolutions, on a urban and a
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mountainous area. The results in both cases are promissing.

PARISAR provides sensible elevation profiles, seemingly out-

performing other methods. Structural details are preserved

while most of the noise is suppressed. At the present stage, the

method is able to handle shadows but it does not accounts for

the layover phenomenon: such distortions can be addressed

only using a tomographic approach. The investigation of a

tomographic-based approach with the proposed framework is

the subject of future research.
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