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Logic modification-based IP protection methods:
an overview and a proposal

Brice Colombier, Lilian Bossuet and David Hély

Abstract Intellectual property protection is a major concern for fabless IC design-
ers. Among the proposed protection means, the active ones are preventing counter-
feiting and over-usage to occur in the first place. One of the solution to implement
an active design data protection scheme is to modify the combinational logic. Sev-
eral methods are available, called logic encryption, logic obfuscation, logic masking
or logic locking. A formal framework is first provided for these notions. We clearly
define those four types of logic modification, and give didactic examples. Then, a
new method to achieve logic locking is presented. This method, based on graph
analysis, allows to select the insertion sites for the extra gates orders of magni-
tudes faster than existing techniques. We give experimental results following from
a practical implementation and discuss design considerations about integration in
an overall, more robust, protection scheme. We also consider existing attacks and
propose some countermeasures.

1 Introduction and context

Design data protection schemes can be classified into two categories. Passive ones
detect that counterfeiting of over-usage took place, but do not stop it. Conversely, ac-
tive protection schemes actually prevent the infringement to occur in the first place.
They do so by modifying the design in order to make it resilient to such threats.
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Chapter 2 gives an overview of the available features in most electronics design that
can be turned into powerful locks. The current chapter focuses on protection means
that require a modification of the combinational logic.

The first feature which can be achieved by logic modification is to controllably
disturb the outputs. This allows the designer to make the circuit unusable. In order to
return to normal operation, a “key” must be provided to the circuit. We use the word
“key” here as a generic term, not as a cryptographically strong sequence of digits.
This key is provided by the designer, who can therefore record how many times the
key has been delivered, and how many instances of the circuit are activated. Such
“count of the produced ICs” is called hardware metering [1]. It can be achieved by
different means, which are presented in the next section.

The second feature which can justify logic modification is to slow down reverse-
engineering. By adding extra logic gates, recovering the circuit functionality from a
high-resolution picture [2] of the layout or a netlist can become extremly difficult.
Logic obfuscation is one of the ways to do this, and is also presented.

One of the key features of all logic modification-based protection schemes is the
selection of the sites to modify. Those sites are the ones on which extra gates will be
inserted. Different techniques can be used to this end, such as random selection [3],
fault-analysis [4], etc... A trade-off between efficiency and computation time must
be done by the designer. For example, finding the best place to insert a masking gate
can be very time consuming, as shown in [4]. A novel technique which uses graph-
analysis methods is presented. It selects the sites to modify orders of magnitude
faster than fault analysis-based techniques, yet achieving better outputs disturbance
than simple random selection.

Finally, all the schemes mentioned above need to be integrated in a complete
design protection module. Indeed, even though many previous works try to exhibit
security features in their protection schemes, such security can only be reached by
using a dedicated cryptographic function. This is discussed in more details in the
final section.

This chapter is organized as follows. In Section 2, we provide a formal frame-
work for logic modification-based protection schemes by defining logic encryption,
logic obfuscation, logic masking and logic locking and give examples for each. In
Section 3, we present a new graph-based algorithm that selects the optimal nodes
to be modified to achieve logic locking of a combinational netlist. In Section 4, we
present the results of implementation, specifically the logic resources overhead and
analysis time. In Section 5, we evaluate the proposed method and develop associated
metrics. In Section 6 we describe a threat model and perform a security analysis of
the protection schemes considered. In Section 7, we discuss design considerations.
In particular, we emphasize the need to introduce a cryptographic primitive to ensure
security, and to not rely on the logic/masking module to fulfill this objective.
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2 A formal foundation for logic protection schemes

An increasing number of works are trying to find a way to protect the intellectual
property of IP designers and fabless IC designers by acting on combinational logic.
Unfortunately, most of these works make incorrect use of the terminology, i.e., logic
encryption, logic obfuscation, logic masking and logic locking are used without a
formal definition. This chapter takes the opportunity to propose a formal founda-
tion for logic protection schemes. In this section, we provide formal descriptions
and definitions of the logic protection schemes in order to strictly evaluate their dif-
ferent contributions to the literature. In all the following sub-sections, the original
(not protected) n-input, l-output logic function is formalized by a Boolean function
f{0,1}n→{0,1}l .

2.1 Logic encryption

The term “logic encryption” is used when a specific symmetric encryption function
ξ f over GF(2l) is applied to f . Formally, it’s not logic encryption. The term is not
specific. Encryption of the Boolean function f is the correct expression. The result
of this encryption is the Boolean function f ′{0,1}n → {0,1}l . f ′ is given by the
following expression, where k is the secret key:

f ′ = ξ f ( f ,k)

ξ f is a symmetric encryption function if and only if an inverse function ψ f exists
that uses the same secret key k for decryption, and is defined as follows:

ψ f ( f ′) = ψ f (ξ f ( f ,k),k) = f (1)

Functions ξ f and ψ f must meet the following requirements:

∀(ki,k j) ∈ ({0,1}m,{0,1}m),ki 6= k j

ξ f ( f ,ki) 6= ξ f ( f ,k j) (2)

ψ f (ξ f ( f ,ki),ki) 6= ψ f (ξ f ( f ,ki),k j) (3)

Functions ξ f and ψ f also have to satisfy the following requirements, where Corr
is the function that computes Pearson’s correlation coefficient.

∀k ∈ {0,1}m : Corr(ξ f ( f ,k), f )' 0 (4)

∀k ∈ {0,1}m : Corr(ψ f (ξ f ( f ,k),k),ξ f ( f ,k))' 0 (5)

One of the consequences of the last expression is that the mean of the Hamming
distance between the input and the output of the encryption/decryption functions is
close to 50% (ideally exactly 50%) as described by the following expressions when
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the mean of the Hamming distance is computed for all the inputs of the Boolean
function f :

∀k ∈ {0,1}m :
∑HD(ξ f ( f{0,1}n,k), f{0,1}n)

2n−1
' 50% (6)

∀k ∈ {0,1}m :
∑HD(ψ f (ξ f ( f{0,1}n,k)),ξ f ( f{0,1}n))

2n−1
' 50% (7)

Some works [4, 5, 6] consider this last property as proof of security. This is a
mistake, since it is possible to obtain the same result with a function that does not
achieve encryption. For instance, inverting the first n/2 bits of the output of f leads
to a 50% Hamming distance. Similarly, inverting every input of odd order leads to
the same result. In both cases, the mean of the Hamming distance as described in
(6) is equal to 50% but the correlation defined in (4) is not zero.

These works are presented as “logic encryption”, even though this is absolutely
not the case. The authors of these works defined “logic encryption” as: “logic en-
cryption hides the functionality and the implementation of a design by inserting
some additional gates called key-gates into the original design” [5]. With this def-
inition, logic encryption does not respect the expressions (1) to (7). Consequently,
we claim that all works presented as “logic encryption” are inaccurate because in
fact, they only propose to mask the logic functionality. The security level of such
masking functions is very low compared with proper encryption.

A didactic example of true “logic encryption” is given by considering the follow-
ing 3-input Boolean function f{0,1}3→{0,1}1:

f (A,B,C) = A.B.C

Figure 1 is a diagram of the encrypted logic circuit. This includes the original
logic circuit which computes the Boolean function f , the encryption function ξ f
which computes the encrypted Boolean function f ′ using an embedded secret key
k and the decryption function ψ f which outputs the correct result of the Boolean
function f if and only if the correct key k is applied on the external key input.

                          Original logic circuitA

C

B

Encrypted logic circuit                                                                                      

Fig. 1 Example of logic encryption

This didactic example shows that the area overhead of true logic encryption is
always prohibitive since it requires the implementation of encryption and decryption
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functions. Note that the security level of such a protection depends on the key size.
Nowadays a secure implementation of a symmetric cipher has to use at least a 128-
bit key. All protection schemes that include a secret key that has only a few bits fail
to provide the designer with any security because of the feasibility of a brute force
attack.

2.2 Logic obfuscation

Logic obfuscation comes from the field of computer science in which developers
wish to protect source codes against unauthorized reading and understanding. The
following definition of code obfuscation is proposed by Hachez [7]: Transform a
program P into another program P’ harder to reverse engineer with the same ob-
servable behavior. If P fails to terminate or terminates with an error, then P’ fails
to terminate or terminates with an error. Otherwise, P’ must terminate and produce
the same output as P. Hardware obfuscation consists in applying this definition to
the hardware field, by changing the logic, FSM, or other part of a design without
changing the system behavior.

When the logic part of a circuit is obfuscated, a design modification γ f is applied
to f . The result of this design modification is the Boolean function f ′′{0,1}n →
{0,1}l .

γ f ( f ) = f ′′

The function γ f must meet the following requirement for any input x ∈ {0,1}l :

∀x ∈ {0,1} : f ′′(x) = f (x) (8)

Some works present logic obfuscation but do not fulfill requirement (8) [8, 9].
Most of these works use a secret key that changes the behavior of the original logic
function. These works are typical cases of logic masking, which is presented in
Section 2.3.

It is possible to try to perform obfuscation at the logic-gate level but this usually
implies a large overhead. Indeed, obfuscation techniques aim to increase reverse-
engineering time. The time is at least linear with the area [10]. Increasing the area
increases the time needed for reverse engineering. As a consequence, the main de-
sign modification rule for obfuscation is to not follow the usual design rules for effi-
cient implementation of a Boolean function. Usually, laws and theorems of Boolean
logic are applied to Boolean functions in order to reduce the number of gates (i.e.
the area) of the final hardware implementation. To obfuscate an implementation of
a Boolean function, these laws and theorems are followed in the opposite way, i.e.
they increase the size of the hardware implementation.

Two strategies are used in the first step of obfuscation: develop and obscure. To
develop a Boolean function, the designer can use the canonical disjunctive normal
form (also called min-term canonical form) in which the Boolean function is rep-
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resented and implemented as a sum of min-terms. As a didactic example, let us
consider the following 3-input Boolean function f{0,1}3→{0,1}1:

f (A,B,C) = A.B.C

This Boolean function could be developed using the following canonical disjunc-
tive normal form (first obfuscation step).

f ′′(A,B,C) = A.B.C+A.B.C+A.B.C+A.B.C+A.B.C+A.B.C+A.B.C

f and f ′′ follow requirement (8). Figures 2a and 2b show the logic diagrams of
the two functions with only 2-input AND and OR gates and inverters (other types
of gates could also be used).

In order to obscure a Boolean function, the designer can apply to f ′′ some of the
Boolean logic laws (absorption, complementary, common identities, etc.) and De-
Morgan’s theorem to increase the number of gates used in the hardware implemen-
tation. For example, by also using some redundant logic operations, f ′′ is described
by the following Boolean expression:

f ′′(A,B,C) =A.B+A.B+A.B+B.C+A.C+A.C+B.C+A.C+B.C+A

+B+C+A.B+A⊕C+A⊕B+A.C+B.C

Again f and f ′′ follow requirement (8). Figure 2c shows the logic diagram of f ′′

after this second step of obfuscation. The designer can also insert dummy logic to
further increase the reverse engineering effort.

Table 1 shows the logic resources required for each logic circuit in Figure 2. For
each circuit, the number of gates is shown for each type (inverter, 2-input and gate,
2-input or gate and 2-input xor gate), along with the gate equivalent metric. The
area overhead is given for the two hardware implementations of f ′′. As mentioned
above, the increase in reverse-engineering time for each obfuscated logic circuit (in
comparison with the original logic circuit) is supposed to be equal to the area over-
head. For example, the time required to reverse engineer circuit shown in Figure 2c
is 14.58 times greater than the time required to reverse engineer the original circuit.

Due to the high area overhead, such logic obfuscation is not suitable for most
applications. Moreover, the hardware design of the obfuscated circuit has to be per-
formed by hand to avoid logic optimization by the synthesis tool. It is possible to
mix a light logic obfuscation with obfuscation at another level. Indeed, hardware
obfuscation is also possible at the HDL [11, 12] or layout levels [13, 14].

The above description of logic encryption and logic obfuscation allows us to
affirm that none of the published works that present “logic encryption” or “logic
obfuscation” meet the formal requirements of these two techniques. Most of these
works in fact describe “logic masking” or “logic locking”. In the remainder of this
section we present logic masking and logic locking techniques.
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A
B

C f

Fig. 2a Original Boolean function implementation

f’’

A B C

Fig. 2b Boolean function implementation after a first step of logic obfuscation

f’’

A B C

Fig. 2c Boolean function implementation after a second step of logic obfuscation
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Table 1 Logic resources requirements and timing overhead for reverse-engineering of the circuits
described in Figure 2

Boolean Logic #Logic gates Gate Area/reverse-engineering
function circuit inv and or xor Equivalent time overhead

f Figure 2a 1 2 4.01 -

f
after first step Figure 2b 3 14 6 35.41 +883%
of obfuscation
f
after second step Figure 2c 6 12 17 2 58.47 +1458%
of obfuscation

2.3 Logic masking

Logic masking consists in inserting xor or xnor gates in the data path of the logic
circuit of a Boolean function in order to change the logic behavior of the circuit if
the wrong masking key is applied. It was first proposed in [3]. Let us consider that
a Boolean function f{0,1}n → {0,1}l could be represented as a set of i Boolean
sub-functions { f0, f1, ..., fi−1}. Logic masking of the Boolean function f by using
the i-bit masking key k = {k0,k1, ...,ki−1} is described by the following expression,
where f ′′′ is a Boolean function f{0,1}n→{0,1}l and	 is the xor or xnor Boolean
operator:

f ′′′ = { f0	0 k0, f1	1 k1, ..., fi−1	i−1 ki−1}

∀ j ∈ [0, i−1]

{
if 	 j ≡ xor→ k j = 1→ f j	 k j = f j

if 	 j ≡ xnor→ k j = 0→ f j	 k j = f j
(9)

The correct masking key k is found by using the laws in (9), and considering the
type of inserted gate. As a didactic example, let us consider the following 3-input
Boolean function f{0,1}3→{0,1}1:

f (A,B,C) = A.B.C

This Boolean function could also be described by the following expression:
f (A,B,C) = f1( f0(A,B),C)

f0(X ,Y ) = X .Y

f1(X ,Y ) = X .Y

A didactic example of logic masking of the Boolean function f is given in Fig-
ure 3, where 	0 is an xnor gate and 	1 is an xor gate. According to the laws in (9),
we can determine the correct masking key k = {0,1} needed to obtain the original
logic behaviour. In Figure 3, additional masking gates are in grey.
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A
B C

f’’’
k0 k1

Fig. 3 Example of logic masking

Efficient insertion of the masking scheme has to be achieved without reducing
performance (mainly by limiting the insertion of gates on the critical path) or in-
creasing area overhead (by limiting the number of additional gates without using
too few bits for the masking key k). For example, works presented in [15] and [4]
propose to use heuristics to reduce overhead.

2.4 Logic locking

Logic locking allows the designer to insert or, and, nor or nand gates in the data
path of the logic circuit of a Boolean function in order to lock the output to a fixed
logic level (0 or 1) if the wrong unlocking key is applied. Let us consider that a
Boolean function f{0,1}n → {0,1}l can be represented as a set of i Boolean sub-
functions { f0, f1, ..., fi−1}. Logic locking of the Boolean function f by using the
i-bit unlocking word k = {k0,k1, ...,ki−1} is described by the following expression
when f ′′′′ is a Boolean function f{0,1}n→ {0,1}l and � is the and or or Boolean
operator:

f ′′′ = { f0�0 k0, f1�1 k1, ..., fi−1�i−1 ki−1}

∀ j ∈ [0, i−1]

{
if � j ≡ and→ k j = 1→ f j� k j = f j

if � j ≡ or→ k j = 0→ f j� k j = f j
(10)

The correct unlocking key k is found by using the laws in (10), and considering
the type of inserted gate. As a didactic example, let us consider the following 3-input
Boolean function f{0,1}3→{0,1}1:

f (A,B,C) = A.B.C

This Boolean function could be expressed by the following expression:
f (A,B,C) = f1( f0(A,B),C)

f0(X ,Y ) = X .Y

f1(X ,Y ) = X .Y

A didactic example of logic locking of the Boolean function f is given in Figure 4
where �0 is an and gate. In this very simple example, only one gate is used to lock
the logic behavior of the circuit. By following the laws in (10) we can determine
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the correct unlocking word k = 1 to obtain the correct behaviour. In Figure 4 the
additional locking gate is in grey.

A
B C

f’’’’

k0

Fig. 4 Example of logic locking

Like for logic masking, the insertion of the locking gates has to be achieved
without reducing performance and increasing area overhead. In the following sec-
tion, we present a new method based on graph analysis of an RTL netlist, which
achieves efficient and secure logic locking.

Like in logic obfuscation and masking, it is possible to lock a circuit by acting
on parts/levels other than the logic level. For example, recent works propose to lock
the finite-state-machine [16, 17] or the input/output ports [18].

3 Proposed graph analysis-based logic locking scheme

As mentioned in Section 2.4, what we propose here is a new technique to select the
nodes to include in the logic locking process. Indeed, since logic locking requires
the insertion of extra logic gates, it is necessary to find the optimal place in the
combinational netlist on which these extra gates should be inserted. According to
the previously proposed definition, logic locking is the propagation of a fixed logic
value from an internal node to one or several output(s). To achieve this, we need to
identify sequences of gates that could propagate such a logic value. To this end, we
represent the netlist as a graph. This representation is a convenient way of analyzing
relations between logic gates and finding the optimal paths in a netlist that could
propagate the logic locking value.

3.1 Implementation of logic locking

Before building the graph, we must identify the characteristics leading to the propa-
gation of a locking value in a sequence of logic gates. First, it is worth noting that a
specific controlling value exists for non-linear logic gates. If this controlling value is
applied to one of the logic gate’s inputs, then the output is forced to a fixed, known
value. For instance, setting one of the inputs of an and gate to 0 will set the output
to 0. Table 2 summarizes the controlling values for the four 2-input non-linear logic
gates.
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Table 2 Controlling value and associated output value for 2-input non-linear logic gates

Logic gate Controlling value Output value a

and 0 0
nand 0 1
or 1 1
nor 1 0
awhen the controlling value is applied to one of the inputs.

Next, for every node in the netlist, we define two values: Vlocks and Vf orced . Vlocks
is the controlling value of the gate that comes after this node. For instance, if a node
is the input of an or gate, then Vlocks = 1. Vf orced is the value to which the node
will be forced. For instance, if a node is the output of an or gate, Vf orced = 1. It
should be noted that in some cases Vlocks = {0,1}. This occurs if the node has a
fan-out higher than one and spans gates with different controlling values. A node is
useful for logic locking if it is forced to the controlling value of the following gate.
Therefore, for sequences of nodes that can propagate a locking value, all the nodes
meet the following criterion:

Criterion 1: Vf orced ∈Vlocks

If Criterion 1 is verified for all the nodes in a sequence of nodes, then this se-
quence is able to propagate a locking value. In this case, forcing the first node to its
controlling value will set all the nodes in the sequence at a fixed logic value. This is
illustrated in Figure 5.

1
1 0 0

0

Fig. 5 Propagation of a locking value in a sequence of logic gates

With this in mind, one can see how an output can be forced to a fixed logic
value. By inserting logic gates at specific locations in the netlist, the designer will
be able to set controlling values and force the outputs to a fixed value. The aim here
is to select the most appropriate nodes, namely those at the beginning of sequences
of gates like the one presented in Figure 5. To achieve this aim, graph exploration
techniques are used, and are presented in the following sections.

3.2 Graph building

The original design file is an RTL description of the combinational netlist. The first
step is to convert it into a directed acyclic graph. We chose to represent the netlist’s
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nodes as vertices and the Boolean functions as edges. An example of conversion
from logic gates to graph elements is shown in Figure 6.

A

B
C

A

B
C

A

B

C

D

BA

A

B

A

B

C

C

A

B

C

D

A A

          NAND

          NAND

     OR

     OR

NOT

AND

        AND

        AND

Fig. 6 Conversion from logic gates to graph elements

This is repeated for all logic gates of the netlist. A toy example of a netlist con-
verted into a graph is shown in Figure 7.

G1

G2

G3

G4

G9

       G8

G5

G6

    G11

   G14

   G13

G1

G2

G3

G4

G5

G6

G8

AND

AND

G9

G10

G11

G13

G14

OR

    OR

NAND

NAND

         AND

 
        AND

         NOR

          NOR

          NAND

           NAND

G10    
G12  

G12
NOT

G7
G7

Fig. 7 Conversion from netlist to graph

In order to identify which nodes satisfy criterion 1, Vlocks and Vf orced are com-
puted for all the nodes in the netlist (i.e. all the vertices in the graph). This is done as
follows: outgoing edges are used to compute Vlocks, while incoming edges are used
to compute Vf orced . By convention, for the sake of the following computations, Vlocks
is set to {0,1} for the outputs. Table 3 shows Vlocks and Vf orced values computed for
all the vertices of the graph shown in Figure 7.

The next step is to identify which nodes cannot propagate the locking value.
This means they do not fulfill criterion 1. If a node does not meet this criterion,
its incoming edges are deleted. Thus in the previous example, incoming edges are
deleted for G9, G10 and G12.

What is obtained at this stage is a highly disconnected graph, because the vast
majority of vertices do not fulfill criterion 1. Since we want to achieve logic locking,
connected components that do not contain any output must be removed from the
graph. After applying this method to the graph in the previous example, we obtain
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Table 3 Vlocks and Vf orced values for all the nodes of the netlist shown in Figure 7

Node Vf orced Vlocks Node Vf orced Vlocks

G1 - 0 G8 0 0
G2 - 0 G9 1 0
G3 - 1 G10 1 0
G4 - 1 G11 0 {0,1}
G5 - 0 G12 0 1
G6 - 0 G13 1 {0,1}
G7 - 0 G14 0 {0,1}

the one shown in Figure 8. The original netlist is shown too, and a path that can
propagate a locking value is highlighted.

G1

G2

G3

G4

G9

       G8

G5

G6

    G11

   G14

   G13

G1

G2

G8

AND

G9

G11

G13

 
        AND

          NAND

G10    
G12  

G7
G7

AND

         AND           NAND

G14

          NOR

G12

Fig. 8 Final graph and the original netlist showing a path that can propagate a locking value

The final graph obtained at this stage comprises nodes that can all propagate a
locking value to the output if they are forced to a specific logic value. Some of them,
however, are better candidates, because they span a greater number of outputs or are
more deeply integrated in the netlist. The selection algorithm used to identify the
best nodes to act on is described in the following section.

3.3 Graph analysis for selection of optimal locking nodes

At this stage, the graph is composed of several connected components. They all
include at least one output, and are made of vertices that represent nodes able to
propagate a locking value. These connected components can be classified in the
four different categories depicted in Figure 9.

In the first situation, shown in Figure 9a, there is only one source vertex. There-
fore, since the graph is directed, this vertex necessarily spans all the outputs, and
can lock them all. It is consequently selected as the node to lock.
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G1

G2

G4G3

G5

G7

G6

G8

Fig. 9a One source vertex

G2

G5 G6

G4

G7

G9G10

G8

G3G1

Fig. 9b Multiple source vertices, one output

G2

G5

G7

G10

G11

G3G1

G4

G8

G9

G6

Fig. 9c Multiple source vertices, multiple outputs, one (or more) source vertex spans all the outputs

G12
G11

G8

G6

G10

G9

G7

G4

G5

G1

G3

G2

G13

Fig. 9d Multiple source vertices, multiple outputs, no vertex spanning all the outputs
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The second possibility, shown in Figure 9b, occurs when a connected component
comprises multiple source vertices but only one output. In order to embed the lock-
ing node as deeply as possible in the netlist, the distance between all source nodes
and the output is computed. The furthest node from the output is selected as the
node to lock.

In the case depicted in Figure 9c, there are multiple source vertices too. Some
source vertices, however, do not span all the outputs. In order to lock as many out-
puts as possible with the smallest number of nodes to be modified, only the nodes
spanning all the outputs are kept. If many nodes span all the outputs, then, as previ-
ously, the furthest one from the output is selected.

In the last situation, shown in Figure 9d, multiple source vertices span multiple
outputs, but none spans them all. The way to proceed here is to sort the source ver-
tices according to the number of outputs they span. Next, they are greedily selected
and added to the list of nodes to lock. This process is carried out until all the outputs
are locked.

Note that the situations described above are sorted according to their computa-
tional complexity. The last case, which is the most computationally expensive, is
also by far the least frequent.

One we have a list of nodes to modify, the last step is to add the extra locking
gates that will be responsible for forcing these nodes to a specific value if the wrong
key is applied.

3.4 Netlist modification

Now that we know which nodes to act on, the extra logic gates must be inserted.
They will force these nodes to a specific value. The value to which each node must
be forced is given by Vlocks, the controlling value of the subsequent gate. If a node
must be forced to 0, then an and gate is used. If a node must be forced to 1, then
an or gate is used. This is shown in Figure 10. The associated unlocking bit is the
inverse of the controlling value of the inserted logic gate.

G
K Gmod

G
K Gmod

Vlocks = 0 Vlocks = 1
K = 1 K = 0

Fig. 10 Type of gate to insert according to the Vf orced value and the associated unlocking bit

Coming back to the previous example, the nodes to be modified are G1 and
G12. For G1, Vlocks = 0 and for G12 Vlocks = 1. Then the associated unlocking word
(K1,K2) is ”10”. An and gate is used to force G1 to 0 if the wrong unlocking bit is
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applied, in this case: 0. An or gate is used to force G12 to 1 if the wrong unlocking
bit is applied, in this case: 1. The final, lockable netlist is shown in Figure 11.

G2

G3

G4

G1'

G9

       G8

G5

G6

    G11

   G14

   G13

G10    
G12'

  

G7
K1

G1

G12  

K2

Fig. 11 Lockable netlist, inserted locking gates are in grey. The unlocking word is (K1K2) = ”10”

4 Implementation results

4.1 Logic resources overhead

The logic locking algorithm was implemented in Python, and makes use of the
igraph module to handle graphs. We implemented the locking scheme on ITC’99
combinational benchmarks [19] The netlists are described in VHDL. These bench-
marks range from 1k to 225k gates. The logic resources overhead is measured as
the percentage of logic gates that must be added to the netlist in order to make it
totally lockable. Results are shown in Figure 12. The average resources overhead is
2.9%. This is acceptable, and almost twice lower than the one authors obtained in
[4]. Another interesting feature here is that the overhead remains approximately the
same despite the increase in the number of gates in the original design. Protecting
large netlists is consequently not more expensive than protecting smaller designs.

4.2 Analysis time

Taking a step back, a major feature that will ensure the protection schemes are
widely adopted is usability. It describes how easy it is for a designer to protect
the IP core once it has been designed. In order to increase usability, a key point
is the amount of time required to make the netlist lockable. Since these protection
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Fig. 12 Logic resources overhead obtained for logic locking

techniques could be integrated in EDA tools, the computation time should be rea-
sonable. In Figure 13, we provide a comparison of the computation time required
to protect a netlist with both logic locking and logic masking methods. These re-
sults were obtained by executing the Python scripts on an Intel i5-4570 workstation,
operating at 3.2GHz and embedding 16Gb of RAM.
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Fig. 13 Time required to analyze and modify the netlist

As can be seen in Figure 13, the logic locking based method is more than ten
thousand times faster than the method based on logic masking. For instance, ana-
lyzing a 3,500-gate netlist requires four and a half hours with the method proposed
in [4], whereas with the graph-analysis method, it takes less than one second. We
extended our study to very large netlists of up to 225k gates. It turns out that the
computation time increases quadratically. However, even for very large netlists, the
computation time is reasonable. For the largest one that includes 225k gates, slightly
more than hour is required to make it lockable.
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When it comes to the execution time, the main difference between the two protec-
tion methods is that the one proposed in [4] uses fault simulation to locate the nodes
to modify. It relies on external tools that employ computationally heavy methods.
Conversely, our protection technique is based on graphs, which are an effective way
of representing netlists. In the context of EDA integration, our method is thus much
more suitable and computationally more effective.

5 Evaluation

5.1 Correlation

In [4], the authors evaluate the efficiency of their locking scheme using the Ham-
ming distance between the output of the original design and the output of the design
when the wrong key is applied on the key inputs (i.e. when logic masking is acti-
vated). According to these authors, obtaining a 50% Hamming distance on average
is a proof that the protection scheme is efficient. However, we have shown in Sec-
tion 2 that even simple circuits can exhibit such a characteristic, and that 50% Ham-
ming distance is simply one consequence of a zero correlation. We consequently
use correlation to evaluate the efficiency of the protection scheme. The correlation
is computed using Pearson’s coefficient. The results are shown in Table IV. Since the
standard deviation is zero when the outputs are locked by logic locking, Pearson’s
correlation coefficient is not defined. It can be considered as zero though, because
when the output is locked, it provides no information about the normal behavior.
Two methods are compared for logic masking: random and fault analysis-based
node selection. Random selection [3] rapidly becomes inefficient when the circuit’s
size increases. Randomly inserting 128 xor gates in a 3,612-node netlist only re-
duces the correlation to 0.761. Fault analysis-based logic masking is more efficient,
and reduces the correlation faster as the key size increases. For large netlists, how-
ever, it fails to reduce it significantly. For example, the correlation only drops from
0.254 to 0.217 when the key size increases from 32 to 128 bits on C7552. For larger
designs such as the ones considered in Section 4, the performance will probably be
even worse.

We can conclude from this observation that correlation should not be used to eval-
uate a protection scheme. It is a cryptographic property, which should be only used
in the appropriate frame. We give more details about security in Section 7 below.
Instead of correlation, we propose a metric to evaluate protection schemes based on
the insertion of extra logic gates, which is presented in the following subsection.
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Table 4 Pearson’s correlation coefficient computed for different node selection methods and key
sizes

Logic masking Logic locking

Benchmark Key size Random [3] Fault analysis [4] Graph analysis

c432, 7 outputs, 189 nodes 32 bits 0.272 0.012 0
64 bits 0.153 0.019 0
128 bits 0.026 0.014 0

c5315, 123 outputs, 2362 nodes 32 bits 0.902 0.554 0
64 bits 0.873 0.357 0
128 bits 0.820 0.277 0

c7552, 108 outputs, 3612 nodes 32 bits 0.952 0.254 0
64 bits 0.920 0.235 0
128 bits 0.761 0.217 0

5.2 Logic locking metric

The intrinsic feature of a protection scheme based on the insertion of extra logic
gates is altering the outputs using the extra gates. Therefore, two characteristics can
be used to evaluate how effective these schemes are. The first one is: how many
inputs are spanned by each extra logic gate? This is related to the amount of gates
that have to be inserted to ensure total locking. If one gate locks multiple outputs, it
is obviously more efficient than if multiple gates are required. The locking ratio is
defined as follows:

Locking ratio =
#out puts

#locking gates
(11)

Since the locking gates should be inserted as deeply as possible into the netlist,
a second metric is: how far is the inserted gate from the outputs? The number of
logic levels between the locking gate and the outputs is consequently also computed.
The average distance between the inserted gates and the outputs is computed as the
average number of logic levels on the shortest path between the inserted gates and
every output that is reachable from them. The results we obtained when applying
our graph-based insertion method for logic locking are presented in Table 5.

We can see that the number of outputs spanned by each locking gates is very
close to 1. This basically means that, mostly, one logic locking gate is responsible
for forcing one output. This is discussed in the following section. We can also see
that the number of logic levels between the locking gates and the locked outputs is
low. This could be a problem if the attacker has access to the RTL description of
the design. Indeed, if the locking gates are located very close to the outputs, then
the attacker can identify them easily and possibly modify the netlist to bypass the
locking circuitry. This is why the locking gates need to be embedded as deeply as
possible in the netlist.
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Table 5 Evaluation of the proposed node selection technique by locking ratio and mean distance
to outputs

Benchmark #logic gates Locking ratio Average distance to outputs (logic levels)

c432 160 1.75 1.43
b10 C 172 1.13 1
b13 C 289 1.13 1.13
c880 383 1.63 3.39
b07 C 383 1.32 1.16
c1355 546 1.03 2
b04 C 652 1.02 1.11
b11 C 726 1.03 1.19
c1908 880 1.04 1
b05 C 927 1.82 1.52
b12 C 944 1.1 1.18
c2670 1193 1.68 2.38
c3540 1669 1.1 1.82
c5315 2307 1.68 2.07
c6288 2416 1.03 1
c7552 3512 1.16 1.5
b14 1 C 6569 1.15 1.48
b15 C 8367 1.12 1.69
b14 C 9767 1.16 1.42
b15 1 C 12543 1.12 2.06
b21 1 C 13898 1.14 1.33
b20 1 C 13899 1.14 1.32
b20 C 19682 1.15 1.36
b21 C 20027 1.14 1.29
b22 1 C 20983 1.14 1.35
b22 C 29162 1.15 1.36
b17 C 30777 1.11 1.76
b17 1 C 38116 1.11 1.97
b18 1 C 105102 1.12 1.74
b18 C 111241 1.12 1.74

Average: 1.22 1.56

To this end, dummy logic levels can be inserted between the locking gate and
the output, thereby achieving additional logic obfuscation as described in Section 2.
For instance, an or gate can be replaced by the three gates depicted in Figure 14.
G is the node to be forced and K is the locking/unlocking input. Another node is
picked randomly and used for the dummy logic. As depicted, the output value is
either 1 or G, which means that locking is successful. Obviously, the increase in
reverse engineering effort comes at the price of an increased area overhead. In order
to add one logic level, three gates are inserted instead of one. If the designer wants
to add a second dummy logic level, then the structure must be duplicated. Then five
gates are inserted. The logic resources overhead is then n(2k+ 1), where n is the
number of locking gates to be inserted and k is the number of dummy logic levels.
In order to limit the overhead, dummy logic levels can be used only for the nodes
that are too close to the outputs.
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Fig. 14 or locking gate replacement with an extra logic level

6 Security analysis

6.1 Threat model

To evaluate the security of logic locking, we must first distinguish the threat model
of the actual context. Since we are trying to protect IP cores against illegal cloning,
we must assume that the attacker has access to the original design, and can imple-
ment it. We make a stronger assumption by not limiting the number of implementa-
tions. Our aim for logic locking is only to make illegal copies non-functional. Thus
we first assume that the designer has access to the inputs used to unlock the design,
i.e. the inputs to which the unlocking word encrypted with the secret key must be
applied to unlock the circuit and to use it. In practical terms, the designer is able
to write in a specific memory inside the chip, which will unlock the circuit if the
correct value is provided. Moreover, since the designer appears to be legitimate at
first sight, he also has access to test vectors.

6.2 Hill-climbing attack

Considering the threat model described above, a major concern expressed in [20]
is the ease of a hill-climbing attack. It was described as an attack against the logic
masking technique presented in [3]. However, it turns out to be equally efficient
against logic locking. This is due to the tight link between the masking/locking
inputs and the outputs. The attack procedure for logic masking described in [20] is
as follows. First, pick a random key and apply it on the unlocking inputs. Compute
the Hamming distance between the actual and the expected output, given by the test
vectors. Flip the first bit of the key. If the Hamming distance increases, then flip this
bit again and repeat the action for all the bits of the key. Otherwise, if the Hamming
distance decreases, move on to the next bit. The method is similar for logic locking,
except that instead of using the Hamming distance as the function to minimize,
the number of locked outputs is used. The main concern here is that, since there
is a gradient toward the correct key in the key space, it can be easily recovered. In
other words, the Hamming distance between the actual and expected output grows
linearly with respect to the number of wrong key bits when logic masking is applied.
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Similarly, the number of outputs that are locked and the number of wrong key bits
are correlated.

This is due to the fact that, as shown in Table 5, the ratio of the number of inserted
gates to the number of outputs is close to one. In most cases, one gate is responsible
for locking one output. This is a serious security concern. In this case, the security
of the protection system is as low as the greatest number of key bits influencing
one output. If the key bits and the outputs are connected pairwise, then the overall
security level is 1 bit. In the following section, we discuss countermeasures against
hill-climbing attacks.

6.3 A partial countermeasure against hill-climbing attack

In order to avoid hill-climbing attacks, the correlation between the unlocking inputs
and the outputs has to be reduced. One unlocking input should have an impact on
multiple outputs, in order to hide the internal relation. Similarly, every output should
be locked by several key inputs.

One possible countermeasure is to add some redundancy between the locking
gates and the key inputs. This can be achieved by adding inputs to the locking gates.
These inputs are connected to key inputs that have the same value as the first key
input of the locking gate. For example, two locking gates for which the key bit is
1 can be associated, as depicted in Figure 15. It follows that in order to obtain the
correct values for G0mod and G1mod, both K0 and K1 must have the correct value.
It can be extended to add more key inputs to the locking gates, and more redundancy.
However, this countermeasure is only partially effective. Indeed, it only increases
the equivalent security level to the number of inputs added to the locking gates.
Making it secure would require the locking gates to have a very large number of
inputs, which is not feasible.

G0           

K0           

G1           

K1           

                  G0mod

                  G1mod

G0           

K0           

G1           

K1           

                  G0mod

                  G1mod

Fig. 15 Partial countermeasure against hill-climbing attack

After another look at the previously described characteristic, it is very similar
to the diffusion property of cryptographic functions. This led us to adopt another
design plan for the protection scheme. Thus the logic locking module is only re-
sponsible for disturbing the original behavior. Security is ensured by using a sepa-
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rate cryptographic primitive. The overall architecture is described in the following
section

7 Architecture of a complete design data protection scheme

7.1 Area/locking strength trade-off

Before examining the whole protection scheme architecture, let us focus on the
implementation of the logic locking module. After the graph has been built and
analyzed, the final graph contains nodes that are all able to propagate a locking
value. The method presented in Section 3.3 to select the best nodes to modify selects
as few nodes as possible in the connected components to ensure total locking, but
all the other nodes are also able to lock the associated output. Therefore, some extra
locking gates can be added to increase the locking strength. Indeed, if the locking
signal is carried by only one wire, it could be subject to side channel attacks such as
optical injection [21] and its logic value can be flipped. In fact all the nodes found in
the connected components of the final graph can be modified to increase the locking
strength. This comes at the cost of increased logic resources overhead. This design
trade-off is illustrated in Figure 16, where the logic resources related to minimum
overhead and maximum locking strength are given for all ISCAS’85 benchmarks.
For b15 C for instance, the minimum overhead to achieve total functional locking is
4.52%. However, up to 29% extra resources can be added to further strengthen logic
locking. The designer can decide on the acceptable resources overhead and increase
the associated locking strength accordingly.
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Fig. 16 Trade-off between locking strength and resources overhead

An example is given in Figure 17. The original netlist and the netlist modified
for logic locking with minimal overhead are shown in Figure 17a. There is only one
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node forced, and one unlocking bit input. On the other hand, since all nodes G0,
G2 and G4 can propagate a locking value, they can all be forced to increase the
locking strength. This is shown in Figure 17b. Three locking gates are inserted. The
associated unlocking bits must all be set to their correct value in order to get the
correct output. Of course, it comes at the price of an increased area overhead.

  G2

G4
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G1           

G3           

G5           

  G2

G4G1           

G3           
G5           

          G0mod

           G6

G0           
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Fig. 17a Original netlist and modified netlist with lowest area overhead
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Fig. 17b Modified netlist with maximum locking strength and separated key bits

7.2 On the need for a cryptographic primitive

In [4], the authors claim to achieve security by reaching 50% Hamming distance
between the original and masked outputs. Since in this case, security is not based on
a cryptographic primitive, it is easily broken and [20] showed how it was possible
to recover the key using a basic hill-climbing attack.

Only the system integrators allowed by the designer to unlock the IP core should
be able to do so. If provable security is necessary, there is no other way than using
a cryptographic primitive to obtain it. Another advantage is that such primitives, if
chosen carefully, have been subject to a variety of attacks. Therefore, their security
has been tested. The designer can then pick a strong cryptographic primitive that has
successfully resisted multiple attacks, and implement it carefully. This will provide
provable security of access to the normal operation of the IP core. For that reason,
using a cryptographic primitive is necessary.
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7.3 Architecture

Owing to such considerations, we are now able to define the general architecture of
the design protection scheme. It is depicted in Figure 18.

Fig. 18 Architecture of the proposed design protection module

The first block is the cryptographic primitive, which ensures secure access and
avoids simple attacks. Using a lightweight, hardware-oriented algorithm is a good
option here to limit the area overhead. The second block is a PUF, acting as a unique
identifier, which is necessary in the case of IP distribution to uniquely identify all the
instances of a particular design. It allows the designer to have a database containing
all the IP core instances and their associated key. This is used to derive the key
encrypting the unlocking word. In this way, it helps fulfill the following requirement:
owning the key for one instance of the design should not help in unlocking another
instance. Different types of PUFs are available, such as the TERO-PUF [22], the
butterfly PUF [23] or the arbiter PUF [24]. It could also be achieved in the form of a
secret word stored in non-volatile memory. An error-correction module corrects the
PUF’s response. Finally, the unlocking word is deciphered and sent to the locking
module. The locking module can implement logic encryption, masking or locking.
Its role is to make the circuit unusable if the message sent to the cryptographic
primitive is not the right unlocking word encrypted with the correct key associated
with the circuit.

8 Summary

Design data protection schemes modifying the logic are a powerful way to render the
circuit harder to reverse-engineer or unusable if it has been counterfeited. Several
techniques to modify the logic are available, namely logic encryption, obfuscation,
masking or locking. They act on specific sites of the combinational logic part of the
design. The method to select the sites to act on must be computationally efficient
to be easily used, but also select the best sites. A graph analysis-based method is
presented, which is fast and effective. Finally, we present design considerations,
which include the integration of the logic modification in a wider protection scheme,
in order to provide cryptographic strength and per-device uniqueness.
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