
HAL Id: ujm-01575582
https://ujm.hal.science/ujm-01575582v1

Submitted on 21 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Key Reconciliation Protocols for Error Correction of
Silicon PUF Responses

Brice Colombier, Lilian Bossuet, Viktor Fischer, David Hely

To cite this version:
Brice Colombier, Lilian Bossuet, Viktor Fischer, David Hely. Key Reconciliation Protocols for Error
Correction of Silicon PUF Responses. IEEE Transactions on Information Forensics and Security, 2017,
12 (8), pp.1988-2002. �10.1109/TIFS.2017.2689726�. �ujm-01575582�

https://ujm.hal.science/ujm-01575582v1
https://hal.archives-ouvertes.fr

Key Reconciliation Protocols for Error Correction
of Silicon PUF Responses

Brice Colombier, Lilian Bossuet, Viktor Fischer
Univ Lyon, UJM-Saint-Etienne, CNRS
Laboratoire Hubert Curien UMR 5516

F-42023, Saint-Étienne, France
{b.colombier, lilian.bossuet, fischer}@univ-st-etienne.fr

David Hély
Univ. Grenoble Alpes, LCIS
F-26000, Valence - France

david.hely@lcis.grenoble-inp.fr

Abstract—Physical Unclonable Functions (PUFs) are promising
primitives for the lightweight authentication of an integrated
circuit (IC). Indeed, by extracting an identifier from random
process variations, they allow each instance of a design to be
uniquely identified. However, the extracted identifiers are not
stable enough to be used as is, and hence need to be corrected first.
This is currently achieved using error-correcting codes in secure
sketches, that generate helper data through a one-time procedure.
As an alternative, we propose key reconciliation protocols. This
interactive method, originating from quantum key distribution,
allows two entities to correct errors in their respective correlated
keys by discussing over a public channel. We believe that this can
also be used by a device and a remote server to agree on two
different responses to the same challenge from the same PUF
obtained at different times. This approach has the advantage
of requiring very few logic resources on the device side. The
information leakage caused by the key reconciliation process
is limited and easily computable. Results of implementation
on FPGA targets are presented, showing that it is the most
lightweight error-correction module to date.

I. INTRODUCTION

Physical Unclonable Functions (PUFs) have emerged in
the last two decades as a root of trust and a way to provide
identifiers for integrated circuits (ICs). They rapidly gained
attention thanks to their lightweight and tamper-evident nature.
Indeed, they usually require only a small area on the device and
do not require a dedicated technology process, compared to non-
volatile memory which could be used to store a unique identifier.
Moreover, since they rely on physical characteristics to derive
the identifier, most attempts to tamper with the PUF modifies
the responses and makes the PUF useless. This justifies the term
unclonable. These two characteristics made PUFs a convincing
candidate for lightweight and secure IC authentication.

However, PUFs do have one major drawback: two responses
obtained at different times from the same PUF using an identical
challenge are different. This instability is caused by environ-
mental parameters, aging of the device, PUF architecture, etc.
For that reason, PUF responses are not reliable enough to be
directly used as cryptographic keys and require error-correction.

The current way to address this issue is to implement error-
correcting codes with the PUF [1]–[3]. When the PUF is
first challenged, so-called helper data are generated from the
response. Later on, if the PUF is challenged again with an
identical challenge, these related helper data are exploited by
the error correction module to regenerate the original response

from the inaccurate one. Several types of error-correcting codes
can be used to this end, but they all induce significant area
overhead on the IC. This is contrasted with the lightweight
nature of PUFs, and prevents widespread adoption by industry.

A. Contribution

In this paper, we propose to use a key reconciliation protocol
instead. This interactive method, proposed in [4] and improved
in [5], is called the CASCADE protocol. It is the main protocol
for key reconciliation in a quantum key distribution context.
It allows two parties who exchanged a stream of bits through
an insecure and noisy quantum channel to discuss about it
publicly and derive a secret key from it. We believe that this
protocol can also be used to reconcile two PUF responses
obtained from the same challenge but at a different time. The
CASCADE protocol mainly consists in interactively exchanging
parity values of different blocks of the responses. Therefore,
only parity computations need to be carried out on-chip, which
requires very few logic resources. This minimal area overhead
comes at the cost of heavy communication between the IC
and the server. However, in the context of intellectual property
protection of ICs, device authentication occurs rarely in the IC
lifetime. Moreover, existing error-correcting codes are also time
consuming. The parity values are then exploited to modify the
response bits on the server side, like the reverse fuzzy extractor
[6]. When the protocol terminates, it is highly probable that
the two parties will own an identical response. These two
identical responses could then be further processed to generate
a cryptographically strong secret key. The CASCADE protocol
then specifically focuses on correcting errors only, and does
not address further processing which is required to make the
generated keys uniformly distributed for instance.

The CASCADE protocol has two main advantages over
existing error-correcting codes used for PUFs integrated in ICs.
First, since only parity computations need to be embedded on
the circuit, the area overhead is very limited. We then propose
two implementations that balance area overhead and execution
time. As a second advantage, the CASCADE protocol is greatly
parameterisable and can accommodate various error-rates and
failure rates. Moreover, the parameters can be dynamically
modified after the IC has been built. This makes it a very good
candidate for integration alongside PUFs in order to protect
ICs from counterfeiting.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

B. Notations

PUF responses are r, of size n. The reference response,
obtained during enrolment, is denoted by r0. The response
obtained later on, which contains errors with an error rate ε,
is rt. The bit found at index i of the response is denoted by
r[i]. In the key reconciliation protocol, responses r0 and rt are
split into blocks B0,0, B0,1, ..., B0, n

ki
and Bt,0, Bt,1, ..., Bt, n

ki

of size ki. Random permutations used in the protocol are
denoted by σi.

C. Overview

The rest of this paper is organised as follows. Section II
presents the motivation for this work. In particular, it focuses
on how the CASCADE protocol can be used alongside a PUF
to achieve intellectual property protection for ICs. Section III
presents PUFs, error-correcting codes and key reconciliation
protocols. Section IV explains how key reconciliation protocols
can be adapted to correct errors in PUF responses. Section V
gives the results of implementation on various FPGA targets.
Finally, Section VI discusses other aspects such as secret key
generation, implementation variations and security.

D. Reproducibility

We have made our implementation of the CASCADE protocol
on the device and server sides, i.e. hardware and software,
available online1

II. MOTIVATION

A. Economic context

Following Moore’s law, electronic systems are becoming in-
creasingly complex. Such an exponential increase in complexity
comes with an associated rise of manufacturing costs. Overseas
foundries are now major players in the semiconductors market,
and provide fabless designers with manufacturing facilities
[7]. However, in order to have their designs manufactured, IC
designers must disclose it completely to the foundry. Moreover,
once the foundry owns the design for manufacturing, the
designer has no control on his intellectual property anymore.
In particular, the designer has no way of knowing how many
instances of the design are actually built.

This situation has led to the rise of counterfeiting and illegal
copying of ICs [8], [9], even though the vast majority of
the actual incidents are never reported to legal authorities.
According to the Alliance for Gray Market and Counterfeit
Abatement, approximately 10% of the semiconductor products
are counterfeited [10]. The associated losses are worth hundreds
of billions of dollars. The target audience of this work are both
IC designers and intellectual property (IP) core providers who
wish to protect their designs against such threats.

There have been several propositions aiming at mitigating
these threats [11]. Most of them have in common the following
requirement: every instance of a design must be absolutely
distinguishable from the others. Therefore, a unique, per-device
identifier is necessary. In the case of IC activation, the identifier

1https://gitlab.univ-st-etienne.fr/b.colombier/cascade

needs to be derived only once. Therefore, protocol reusability
is not a requirement in this specific use case. As a hardware
root of trust, a PUF is a great candidate for the generation of
such identifiers.

B. Overall scheme

After it has been embedded within the IC, the unique device
identifier is used to remotely identify the IC. Typically, IC
remote identification requires two phases. The first one is the
enrolment phase. It is usually carried out after manufacturing.
The aim is to assign a challenge-response pair to every circuit,
obtained from the PUF, so that it can be identified later on.

The second is the identification phase. Upon device request,
the server sends the challenge of a known challenge-response
pair to the device. The device generates the associated response
by questioning the PUF again and sends it back to the server.
The server then owns two responses to the same challenge
from the same PUF. If the Hamming distance between those
two responses is low enough, the circuit is identified. This
protocol is known to have flaws [12], and is only used for
illustration purpose here. Figure 1 depicts the protocol.

Server Device i

at t = 0 Generates challenge ci
ci−→

enrolment ri,0 ← PUF(ci)
ri,0←−

Stores (ci, ri,0)

at t = t1 Requests activation
ci−→

identification ri,t1 ← PUF(ci)
ri,t1←−

Validates if HD(ri,0, ri,t1) < ε

Fig. 1: Basic protocol for IC remote identification using a PUF.

However, PUF responses are not perfectly stable and contain
errors.Usually, error-correcting codes are associated to the PUF
to correct those errors.

Key reconciliation protocols [5] can be used instead, in order
to correct the differences between two responses obtained at
different times. They are presented in details in the following
section. Once the two response are reconciled, they are identical
with a very high probability. Therefore, they can be used to
encrypt an activation word (AW in Figure 2). Such activation
word is not a cryptographic key, but controls a logic masking
or logic locking module [13] embedded in the circuit. This
module controllably disrupts the outputs of the circuit if a
wrong activation word is sent on its inputs. Since both the
IC and the server own an identical response, the IC can then
internally decrypt the activation word. If the correct activation
word is fed to the logic masking/locking module, the circuit
operates correctly. This protocol is used only once in the IC
lifetime, when an activation request is issued. The modified
activation step of the basic protocol is depicted in Figure 2.

In order to implement the previously described protocol for
intellectual property protection, an activation module must be

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Server Device i

at t = t1 Requests activation
ci−→

rt1 ← PUF(ci)
Key

activation r0
reconciliation←→ rt1

Encrypts AW with rt1
[AW]rt1−→

Decrypts AW

Fig. 2: Overview of a typical activation protocol for IC remote
activation using a key reconciliation protocol.

added to the IC. As stated before, the activation module is
used only once, in order to make the circuit usable if it is
not an illegal copy. Therefore, the main evaluation criterion
for this module is its area overhead. Indeed, such overhead is
directly related to an increase in manufacturing costs for the
designer. The activation module must then be as lightweight
as possible, so that its cost does not exceed the losses due to
counterfeiting.

It is composed of the following components:
• a lightweight block cipher: it allows to decrypt the

cipher-text [AW]rt1 using rt1 as a key in order to obtain
the activation word AW . A lightweight block cipher, such
as PRESENT [14], can be used to this end.

• a PUF: it provides the unique identifier, which is then
used as a key to encrypt the activation word.

• a logic locking/masking module: it makes the circuit
unusable by disrupting the outputs if the wrong activation
word is sent to its inputs.

• a key reconciliation module: it computes the parity
values exploited in the key reconciliation protocol, and
allows to obtain an identical response on the server and
in the circuit.

Figure 3 depicts the activation module integrated in the IC.

Lightweight
blockWcipher

TrustedWzone

PUF
KeyWreconciliation

module

rt1

[AW]
Logic

locking/masking
AW

parity

rt1

Fig. 3: Activation module added to the IC.

The required logic resources must then be as low as
possible. This is the main advantage of key reconciliation
protocols over existing error-correcting codes. This detailed in
Section V. However, this is only possible by relaxing other
design constraints. In particular, the communication overhead
can be more important, since the protocol is meant to be
executed only once in the circuit lifetime.

For the activation to be carried out properly, the availability
of a server with high computational power is also assumed.

III. RELATED WORK

A. Physical Unclonable Functions
Physical Unclonable Functions (PUFs) are hardware primi-

tives that are capable of extracting a binary string from random
process variations. Strong PUFs can be challenged with an
m−bit word called the challenge. The associated n−bit string
obtained from the PUF is called the response. Those two form
challenge-response pairs, which can be used as identifiers for
ICs. Indeed, since the response results from random process
variations, every IC embedding a PUF will generate a different
response to the same challenge.

For the use case we consider, we assume the responses have
full entropy. Making the original response have full entropy is
outside the scope of this work, which targets error-correction.

B. Error-correcting codes for PUFs
An overview of helper data algorithms for PUF-based key

generation has recently been published [15]. Helper data
algorithms have several purposes, such as correcting the errors
in the PUF response, making the response bits independent
or ensuring they are uniformly distributed. Following their
classification in [15], we consider only the so-called Repro-
ducibility requirement. Related to the error correction step, this
requirement guarantees that the corrected response has a very
high probability of being identical to the reference response.

State-of-the-art error-correcting codes adapted to PUF re-
sponses employ the code-offset or the syndrome construction.
Different types of codes are used, including repetition, BCH,
Reed-Muller or Golay codes. A comparison is shown in Table I,
in which logic resources, failure rate, acceptable error-rate and
number of PUF bits required to reach 128-bit entropy are
compared. The logic resources overhead should be as low
as possible. For the failure rate, the typical value found in
most articles is 10−6. The acceptable error-rate depends on
the PUF type which is used and the environmental conditions
in which the PUF is used. Finally, the number of PUF bits
required to reach 128-bit entropy is also an important criterion.
Indeed, the more bits required from the PUF the larger the PUF
implementation. For lightweight applications, requiring less
bits from the PUF is then an advantage. As shown in Table I,
the overhead of classic error-correcting codes exceeds hundred
of slices when implemented on Xilinx Spartan FPGAs, with
4-input LUTs on Xilinx Spartan 3 and 6-input LUTs on Xilinx
Spartan 6. The numbers we report here correspond to the error-
correction core only. It does not include the controllers or the
PUF response storage. The last row in Table I gives the logic
resources required by the key reconciliation protocol presented
in this work. Compared to the smallest error-correcting codes
[6], [16], [17], it requires six to ten times less logic resources.
Another method based on differential sequence coding was
proposed in [18]. Even though it is also very lightweight, it
requires an additional convolutional code to reach low failure
rates of 10−6. In [18], the Viterbi decoder is implemented
in Block RAM, which does not increase the Slices count
although it actually takes logic resources on the device. The
implementation part of our work is detailed in Sect. V.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TABLE I: Logic resources required to implement different codes with different constructions. The failure rate, acceptable
error-rate and number of PUF bits required to obtain 128-bit entropy are also given. For CASCADE protocol implementation,
we provide results for two implementations, one using only logic (LUTs and D flip-flops) and one using RAM blocks.

Article Construction and code(s) Logic resources (Slices) Block Failure Acceptable PUF bits required
Spartan 3 Spartan 6 RAM Bits rate error-rate for 128-bit entropy

Concatenated:
[1] Repetition (7, 1, 3) 221 0 10−9 13% 2226

and BCH (318, 174, 17)

[2] Complementary IBS 250 0 10−6 15% >1536
with Reed-Muller (2, 6) (12×128)

[3] Reed-Muller (4, 7) 179 0 1.48× 10−9 14% 130

[6] BCH (255, 21, 55) >59 0 10−6.97 21.6% 1785

[16] Reed-Muller (2, 6) 164 192 10−6 15% 1536 (12×128)

Concatenated: 168
[17] Repetition (5, 1, 5) (41+ 0 1.49× 10−6 15% 4640

and Reed-Muller (1, 6) 127)

Concatenated 570
[17] Repetition (11, 1, 11) (41+ 0 5.41× 10−7 15% 3696

Golay G24(24, 13, 7) 539)

[18] Differential Sequence Coding 75 27 0 10−3 15% 974
DSC + Viterbi decoder 75 27 10752 10−6 15% 974

logic only 18 11 0
10−6 10% 512

This work CASCADE protocol with RAM 3 1 512

logic only 18 10 0
10−6 15% 1024

with RAM 3 1 1024

An interesting approach called reverse fuzzy extractor is
presented in [6], which is the most fair comparison to our
work. It is called reverse because instead of correcting the
errors on the device side, the reference response stored on the
server side is modified. This makes it possible to transfer the
computationally expensive workload of error correction from
the device to the server. When requested, the PUF generates
helper data from a noisy response. This helper data is then sent
to the server, which uses it to modify the reference response
and get both responses to match. We suggest using this reverse
principle along with key reconciliation protocols.

A key reconciliation approach was taken very recently in
[19]. However, the non-interactive low leakage coding they
proposed has a high area overhead too.

C. Key reconciliation protocols

Key reconciliation protocols have been developed in the
context of quantum key exchange [4], [5]. They allow two
parties who exchanged a message over a quantum channel to
discuss it publicly, locate the errors, and correct them. The
errors can originate from noise in the channel or eavesdropping,
which are usual characteristics of quantum channels. Obviously,
the public discussion comes with associated leakage, which
should be kept as small as possible so that most of the message
is kept secret. Depending on the number of bits leaked, an
appropriate privacy amplification method is used later to extract
a secret key with the appropriate amount of entropy per bit.
The overall protocol is depicted in Figure 4.

Quantum
channel

Public
discussion

-bit leakage

Privacy
amplification

m m~

m

m

key

m

key

m

Fig. 4: Key reconciliation protocol.

The public discussion step can be implemented as the
BINARY protocol, described in [4] and shown in Algorithm 2.
First, the original message is scrambled to spread the errors over
the whole message in case they occur in bursts, which is often
the case in quantum key distribution. The permutation used
here is public, and so are the subsequent ones. The message
is then split into blocks of size k1. The initial block size k1 is
derived from the expected error rate in the quantum channel,
so there is approximately one error per block.

Then the parity is computed for all the blocks, and exchanged
over a public channel. The relative parity, i.e. the exclusive-OR
of the parities of the blocks from each of the two responses is
then computed too (see Equation (1) in which B1 and B2 are

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

the blocks containing bits from identical indexes from the two
responses) .

Pr(B1, B2) =

(|B1|⊕
i=1

B1

)
︸ ︷︷ ︸
Parity of B1

⊕
(|B2|⊕

i=1

B2

)
︸ ︷︷ ︸
Parity of B2

(1)

The relative parity is used to detect the errors. If it is
odd, that means that there is an odd number of errors. Thus
there is at least one error to correct. At this point, an error-
correction step is carried out, called CONFIRM. It proceeds
with a binary search in order to isolate the errors. This is shown
in Algorithm 1. This method enables the detection of an odd
number of errors and the correction of one error per execution.
The block is split into two parts of equal size, and the parity
of the first half is exchanged. If the relative parity is odd, then
the error is located in the first half. If the relative parity is
even, then the error is located in the second half. The message
is then split into two parts again and the process is repeated
until the parts are only two bits long. By convention, the first
bit is then sent. Knowing the parity of the two-bit block, the
error has been located and corrected.

Algorithm 1: CONFIRM
Input: B0, Bt

while size(B0) > 1 do
Split B0 into two parts B0,0 and B0,1

Split Bt into two parts Bt,0 and Bt,1

if Pr(B0,0, Bt,0) = 1 then
// The error is located
// in the first half
B0 = B0,0

else
// The error is located
// in the second half
B0 = B0,1

return B0

Algorithm 2: BINARY
Input: r0, rt, ε, npasses

Scramble r0 and rt using a public permutation σ0

Estimate the initial block size k1 from the error rate ε
for i = 1 to npasses do

Split r0 and rt into blocks of size ki
forall blocks do

Compute the relative parity Pr(B0,i, Bt,i)
if Pr(B0,i, Bt,i) = 1 then

CONFIRM(B0,i, Bt,i)

Double the block size ki+1 = 2× ki
Scramble r0 and rt using a public random permutation σi

Unscramble r0 and rt with σ−1
0 , σ−1

1 , ..., σ−1
npasses

return r0, rt

After the CONFIRM method has been executed on all the
blocks for which the relative parity is odd, the BINARY
protocol is resumed. The block size is then doubled. The

message is scrambled again using a public random permutation.
The process starts again for the subsequent pass by splitting the
message into blocks. After a sufficient number of passes, the
probability that an error is still present in the message should
be sufficiently low. A toy example of using the BINARY with
16-bit responses is shown in Figure 5.

CASCADE improved on BINARY by adding a backtracking
step to the protocol. At the end of each pass, all the blocks
have an even relative parity, since all detected errors have
been corrected. Then, in the subsequent passes, if an error is
corrected as index i, that means that all blocks from previous
passes that contain index i are now of odd relative parity.
Therefore, CONFIRM can be applied to them again.

Algorithm 3: CASCADE
Input: r0, rt, ε, npasses

Scramble r0 and rt using a public permutation σ0

Estimate the initial block size k1 from the error rate ε
Create a list of blocks of even relative parity: Leven

Create a list of blocks of odd relative parity: Lodd

for i = 1 to npasses do
Split r0 and rt into blocks of size ki
forall blocks do

Compute the relative parity Pr(B0,i, Bt,i)
if Pr(B0,i, Bt,i) = 1 then

CONFIRM(B0,i, Bt,i): correct an error at index j
Move all blocks containing j from Leven to Lodd or

from Lodd to Leven

Add all blocks to Leven

while Lodd is not empty do
// Backtracking step
Find the smallest block B from Lodd

CONFIRM(B0, Bt): correct an error at index j
Move all blocks containing j from Leven to Lodd or

from Lodd to Leven

Double the block size ki+1 = 2× ki
Scramble r0 and rt using a public random permutation σi

Unscramble r0 and rt with σ−1
0 , σ−1

1 , ..., σ−1
npasses

return r0, rt

First, two lists storing the blocks of even and odd relative
parity are required. The backtracking step starts with the
smallest block of odd relative parity, in which one error is
corrected. All the blocks from the even and odd relative parity
lists that contained this error are moved from one list to the
other. This process is carried out until the list of blocks of
odd relative parity is empty, which means all detected errors
have been corrected. Finally, this allows more errors to be
corrected in the same number of passes than by using the
BINARY method alone.

We believe that the framework in which key reconciliation
protocols are currently used, i.e. quantum key exchange, shares
considerable similarity with the use case of PUFs requiring
error correction presented in Sect. I. Our arguments are detailed
in the following section.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Integrated circuit Server

Owns n-bit response rt Owns n-bit response r0
0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

Authentication request
−−−−−−−−−−−−−−−−→

Chooses a public random permutation σ1
Computes block size k1 from ε

Pass 1
Scrambles r0 using σ1 (public)

012 34 5 67 8 910 1112 1314 15
Splits r0 into blocks of size k1

012 34 5 67 8 910 1112 1314 15
Block 1 (no error)

Indexes of block 1: 2, 12, 1, 4←−−−−−−−−−−−−−−−−−−−−−
Computes parity Computes parity

Pt = rt[2]⊕ rt[12]⊕ rt[1]⊕ rt[4] P0 = r0[2]⊕ r0[12]⊕ r0[1]⊕ r0[4]
Pt−−→

Verifies P0 = Pt

Block 2 (no error)
...

Block 3 (no error)
...

Block 4 (with error)
Indexes of block 4: 13, 15, 0, 3←−−−−−−−−−−−−−−−−−−−−−−

Computes parity Computes parity
Pt = rt[13]⊕ rt[15]⊕ rt[0]⊕ rt[3] P0 = r0[13]⊕ r0[15]⊕ r0[0]⊕ r0[3]

Pt−−→
Pt 6= P0

CONFIRM on block 4
Indexes of first half: 13, 15←−−−−−−−−−−−−−−−−−−−

Computes parity Computes parity
Pt = rt[13]⊕ rt[15] P0 = r0[13]⊕ r0[15]

Pt−−→
Pt 6= P0

Request first bit
←−−−−−−−−−−−

rt[13]−−−−→
Flips r0[13]

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

Fig. 5: Toy-example of executing the BINARY protocol on 16-bit responses with one error.

IV. KEY RECONCILIATION FOR ERROR CORRECTION IN PUF
RESPONSES

Over time, the PUF responses to the same challenge differ
as if they were altered by transmission over a binary symmetric
channel (BSC) under the assumption that all the response bits
have the same flipping probability. Therefore, using public
discussion, the errors in the PUF response could be corrected.
Following the reverse principle of [6], the response is modified
on the server side according to the parity values received from
the device.

A. Protocol parameters

There are two parameters to tune for the CASCADE protocol:
the initial block size and the number of passes.

1) Initial block size: The initial block size k1 is the block
size used in the first pass, which is then doubled for every
subsequent pass. It should be set so that there is one error
per block on average after scrambling. This will make the
error detectable by the parity check. Thus the initial block

size is derived from the error rate ε. In the original article
[5], the initial block size is: k1 ≈ 0.73/ε. However, optimised
versions of CASCADE presented in [20] tend to increase the
initial block size up to 1/ε. Moreover, [20] states that the
block size should be a power of two to achieve to the best
reconciliation efficiency. This is emphasised in [21], in which
the initial block size is given in Equation (2).

k1 = min(2dlog2(
1
p)e,

n

2
) (2)

However, this initial block size makes it possible to correct
enough errors only for very long bit frames, which is typically
the case in quantum key distribution. For PUF responses,
however, using k1 from Equation (2) does not allow enough
errors to be corrected. Therefore, in the following subsections,
we explore different values for k1, from 4 to 32 bits.

2) Number of passes: The number of passes depends on
the acceptable number of responses left uncorrected after the
protocol has been executed. By increasing the number of passes,
more errors can be detected and corrected. However, each pass

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

implies parity exchanges, so increasing the number of passes
also increases the leakage. Yet the final passes leak less since
the blocks on which the parity is computed are larger. On the
other hand, the block size is limited by the size of the response
and cannot exceed half the response length: ∀i, ki ≤ n/2. This
limitation is already present for frames of 214 bits found in
quantum key distribution, but is much more problematic when
dealing with PUF responses, that are much shorter. For instance,
if n = 256, then the passes must stop when the block size
reaches ki = 128 bits.

However, one approach proposed in [20], [21] is to add
extra passes with block size n/2. This makes it possible
to overcome the limitation previously mentioned. It then
increases the success rate without leaking too much additional
information. Indeed, each extra pass requires only two parity
checks. Therefore, for each extra pass, only two bits of the
response are leaked. Up to twenty passes are performed in the
following example. The corresponding block sizes are shown
in Table II.

TABLE II: Block sizes used here for passes 1 to 20.

k1 k2 k3 ... k20

4 32 128 ... 128
8 32 128 ... 128

16 64 128 ... 128
32 64 128 ... 128
64 128 128 ... 128
128 128 128 ... 128

3) Examples:
a) 2% error-rate: Figure 6 shows how the number

of passes influence leakage. The values were obtained by
simulation on 2,500,000 random responses. We chose to
overestimate the leakage here by considering that one bit is
leaked for every parity bit that is transmitted. When considering
all the bits, the errors were assumed to be independent and
identically distributed, although this might not be the case for
practical PUF responses. Different distributions are discussed
in Sect. VI-D.

As mentioned above, the number of passes is limited by the
block size, which cannot exceed n/2. The Shannon bound, i.e.
the maximum number of secret bits that can be achieved with
optimal error correction is in grey. As can be seen in Figure 6,
the best strategy to remain close to the Shannon bound appears
to start with large blocks. For instance here, with n = 256 and
ε = 0.02, starting with 32-bit blocks makes it possible to stay
close to the Shannon bound.

A second metric that has to be taken into account is the
failure rate. It is defined as the ratio of responses that could not
be corrected after executing the protocol. Since increasing the
number of passes enables more errors to be corrected, it also
reduces the failure rate. Similarly, using smaller initial blocks
makes it possible to detect more errors, which can then be
corrected, thereby reducing the failure rate. Reusing previous
parameters, Figure 7 shows how the failure rate is influenced
by the number of passes and the initial block size.

0 1 3 5 10 15 20

Passes

0
16
32

64

128

219

256

F
in

al
re

sp
on

se
le

n
gt

h
(b

it
s)

Shannon bound

(32/64/128)-bit blocks

(16/64/128)-bit blocks

Security threshold

(8/32/128)-bit blocks

(4/32/128)-bit blocks

Fig. 6: Final response length after executing the CASCADE
protocol on a 256-bit response with different numbers of passes
and initial block sizes. Here, the error rate is 2%.

0 1 3 5 10 15 20

Passes

1

10−1

10−2

10−3

10−4

10−5

< 10−6

F
ai

lu
re

ra
te

(32/64/128)-bit blocks

(16/64/128)-bit blocks

(8/32/128)-bit blocks

(4/32/128)-bit blocks

Fig. 7: Failure rate for a 256-bit response with different numbers
of passes and initial block sizes. Here, the error rate is 2%.

b) 15% error-rate: For comparison we provide the same
graphs but this time we consider a PUF with a 15% error-rate.
1024-bit responses are extracted, so the number of errors is 154
on average. The associated leakage is shown in Figure 8. Since
the error-rate is higher, the Shannon bound is lower. Therefore,
more bits are extracted from the PUF to be able to obtain a
reliable and secret 128-bit response.

Compared to Figure 6, the leakage pattern is different here.
Starting with small blocks of 4 bits, the leakage is very high in
the first ten passes but then extra passes leak much less. After 40
passes, leakage is above the 128-bit threshold. Conversely, when
large initial blocks are chosen, the leakage is less important
in the first passes but stays high in the next ones. This is due
to the fact that since the average number of errors is high,
parity checks on large blocks fail to isolate them fast enough.
Therefore, those errors are detected in subsequent passes with a
larger block size. Such a large block size leads to high leakage
when running the CONFIRM method on them. Therefore, in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

this case, 4-bit initial blocks must be chosen.

0 10 20 30 40

Passes

0

128

256

399

512

1024

F
in

al
re

sp
on

se
le

n
gt

h
(b

it
s)

Shannon bound

(32/128/512)-bit blocks

(16/32/128/512)-bit blocks

Security threshold

(8/32/128/512)-bit blocks

(4/8/32/128/512)-bit blocks

Fig. 8: Final response length after executing the CASCADE
protocol on a 1024-bit response with different numbers of
passes and initial block sizes. Here, the error rate is 15%.

The failure rates observed using this configuration are shown
in Figure 9. The only solution to obtain a realistic failure rate
is to start the reconciliation protocol with 4-bit blocks. The
other configurations include too few blocks per pass to be able
to detect and correct the 154 errors on average.

0 10 20 30 40

Passes

1

10−1

10−2

10−3

10−4

10−5

< 10−6

F
ai

lu
re

ra
te

(32/128/512)-bit blocks

(16/32/128/512)-bit blocks

(8/32/128/512)-bit blocks

(4/8/32/128/512)-bit blocks

Fig. 9: Failure rate for a 1024-bit response with different
numbers of passes and initial block sizes. Here, the error rate
is 15%. The first two curves are really close to the top.

The examples given above show how a designer can easily
balance the leakage and the failure rate by tuning the CASCADE
parameters like the number of passes and the initial block size.
It can be tempting to start with large blocks to limit the leakage
induced by parity checks, but then executing the CONFIRM
method on these blocks leaks much more. On the other hand,
adding passes with a block size of n/2 reduces the failure rate
efficiently without leaking too many bits.

The following section presents the typical design flow that
a designer should follow to tune the CASCADE parameters to
a particular use case.

4) Design flow: After characterisation of the PUF, the error
rate can be estimated. Depending on the target application, the
designer can then select a failure rate, and estimate the protocol
parameters that have to be chosen to achieve it: the initial block
size and the number of passes. These two parameters make it
possible to compute the leakage. They give the number of bits
that can be kept secret. If the number of secret bits is too low
for the target application, the designer can request more bits
from the PUF in order to obtain a final secret key of sufficient
length.

Table III shows which parameters can be chosen for the
CASCADE protocol in real-life examples to achieve a failure
rate of 10−4, 10−6 10−8 and a security of 128 bits, which
is the usual value for the length of a symmetric encryption
key. Several types of PUF architectures are considered: a ring-
oscillator (RO), transient-effect ring-oscillator (TERO) and
SRAM PUFs. The associated error rate provided in the original
articles is used to evaluate the initial block size k1, the number
of passes npasses and the number of bits required from the
PUF. The number of bits from the PUF is set to be a power
of two. Three different failure rates, 10−4, 10−6 and 10−8 are
considered.

B. Leakage estimation

As highlighted in [20], the minimum information required
to recover a variable X when an altered version Y is known is
given by the conditional entropy H(X|Y). When considering
a BSC of error rate ε, the conditional entropy is related to
the error rate. Y is then an instance of the X variable, in
which every bit has a flipping probability of ε. The minimum
information to be exchanged between the two parties in order
to reconcile their respective responses is given in Equation (3),
where n is the length of the response and h(ε) is the Shannon
entropy.

nh(ε) = n(−εlog2(ε)− (1− ε)log2(1− ε)) (3)

Therefore, the maximum number of PUF response bits kept
secret after the reconciliation protocol is carried out is given
in Equation (4).

n− nh(ε) = n(1− h(ε)) (4)

For example, for a 5% error rate, one cannot expect to keep
secret more than 182 bits from an initial 256-bit response.
However, if the error rate is lower, 2% for instance, then up
to 219 bits can be kept secret. This is an overestimation, and
tighter bounds can be found in the literature [31]. However,
there is no analytical value for the exact leakage associated
with the execution of CASCADE. In practise, at most one bit is
leaked each time a parity value is transmitted over the public
channel. Therefore, the leakage mainly depends on the number
of passes and the size of the block. In order to limit leakage,
the protocol parameters must be carefully chosen.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TABLE III: Examples of parameters to achieve failure-rates of 10−4, 10−6 and 10−8 for different PUF architectures, aiming at
keeping at least 128 bits secret.

Target failure rate

10−4 10−6 10−8

PUF Article Target Technology Error rate k1 #passes PUF bits k1 #passes PUF bits k1 #passes PUF bits
node ε [bits] required [bits] required [bits] required

RO [22] FPGA 90 nm 0.9% 8 10 256 8 20 256 8 30 256
[23] ASIC 65 nm 2.8% 8 15 256 8 25 256 8 30 256

[24] FPGA 90 nm 1.7% 8 15 256 8 25 256 8 30 256
TERO [25] FPGA 28 nm 1.8% 8 15 256 8 25 256 8 30 256

[26] ASIC 350 nm 0.6% 8 10 256 8 20 256 8 30 256

[27] FPGA — 4% 8 15 256 8 20 512 8 30 512

SRAM [28] FPGA — 10% 4 15 512 8 25 512 4 44 512
[29] FPGA 65 nm 15% 4 15 1024 4 20 1024 4 50 1024
[30] ASIC 65 nm 5.5% 8 18 256 8 20 512 8 30 512

V. IMPLEMENTATION

A. Implementation principle

The implementation of the CASCADE protocols consists in
both a device-side and server-side implementation. We assume
that the server has high computational capabilities, whereas
the implementation should be as lightweight as possible on the
device. Table IV summarises how computations are distributed
between the device and the server.

TABLE IV: Distribution of features between device and server.

Feature Device side Server side

Block-size computation ×
Parity computations × ×
Permutations ×
Error detection ×
Error correction ×

1) Device side: For the device side implementation of
CASCADE, we chose cost-optimised FPGA devices from the
Xilinx Spartan and Intel Cyclone families, since those are typi-
cally the ones used in applications requiring a lightweight root
of trust like a PUF. We selected two FPGAs per family, namely
Spartan 3, Spartan 6, Cyclone III and Cyclone V. We integrated
the module computing the parity in a simple controller with
three states: idle, compute parity and send parity. The only
computation carried out on the device is the parity computation.
It must be done on blocks of variable length.

a) Implementation option 1: Multiplexing the response
bits: The first option is to multiplex the PUF response bits
to an XOR gate one after the other. We assume the PUF
response is stored in an n-bit register. After the XOR gate,
the intermediate result is sampled by a D flip-flop. This is
illustrated in Figure 10.

However, one can make use of an existing shift-register to
reduce the overhead. This is detailed in the next paragraph.

b) Implementation option 2: Making an existing shift
register circular: Among the PUF architectures we considered,
both the RO and TERO PUFs have the characteristic to not
derive the full response immediately. Instead, the RO PUF

D Q
parity

r0
r1

rn−2
rn−1

index log2(n)

Fig. 10: Hardware architecture of the parity computation
module when multiplexing the response bits stored in registers.

generates one response bit per challenge, as the result of the
comparison between the frequencies of two ring oscillators.
Similarly, the TERO-PUF generates from one up to three bits
of response per challenge. In both cases, in order to obtain
the full response, the response bits must be stored in a shift
register. Such existing shift register can be leveraged to further
reduce the logic resources overhead of the implementation.

The architecture of the parity computation module in this
case is detailed in Figure 11. The bottom left D flip-flop samples
the response bit once it is available at the output of the shift
register. The XOR gate computes the parity value, which is
then sampled by another D flip-flop.

Therefore, the only additional components to add to the PUF
are the following, since the shift-register is already present:
• One log2(n)-bit counter,
• One XOR gate,
• Two flip-flops.
The shift register is made circular by connecting its output

to its input. Depending by how much the data in the circular
shift register is shifted, the appropriate response bit is selected
and sent to the parity computation module. The amount of
shifting required to select a specific response bit is controlled
by a counter, connected to the ∆ input.

Let us identify two consecutively selected response bits as
r[i] and r[j]. r[j] is then the response bit to be selected after
r[i]. Two cases can occur when selecting these response bits.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

D Q
parity

D Q

log
2
(n)-bit counter

Circular
Shif

Register
ena
D Q

Δ

ri

r j

Fig. 11: Hardware architecture of the parity computation
module where an existing shift-register storing the response is
reused and made circular.

• If j > i, the counter must be set to count for j − i clock
cycles, which is the difference of indexes.

• If j < i, the counter must be set to count for n+ j − i
clock cycles, which is the difference of indexes when
wrapping beyond the response size n.

The counter must then count for ∆ clock cycles (see
Equation (5)).

∆ = (j − i) mod n (5)

Therefore, the counter must be log2(n)-bit wide so that it
can index all response bits.

c) Implementation option 3: Storing the response in RAM:
Finally, the last implementation alternative we explored is when
the response is stored in RAM. In order to store 2256, 512 and
1024-bit responses, 32x8, 64x8 and 128x8-bit RAM blocks
are used respectively, and the response is split into bytes. In
this case, the multiplexing capability is intrinsic to the RAM,
and response bytes can be accessed directly. In order to select
the response bits individually, a 8:1 multiplexer is used. When
an index is sent by the server, the three least significant bits
are used as a selection signal by the multiplexer, to select
the response bit in the response byte. The most significant
bits down to the third are used as the address signal by the
RAM. The remaining part of the parity computation module is
the same, comprising one D flip-flop and one XOR gate. The
hardware architecture is shown in Figure 12.

2) Server side: All the other computations are handled
by the server, where Python was used for development. The
communication between the server and the device consists in
a list of indexes sent by the server to the device and a parity
value sent back to the server from the device. The permutations
are selected by the server, and only individual indexes are
transmitted to the device. Therefore, the permutation layer is
entirely implemented on the server side. After the error has
been located using binary search, it is corrected on the server.

D Q
parityRAM

8

n/8
8

index
log2(n) log2(n) :3

2:0addr.

data
out

Fig. 12: Hardware architecture of the parity computation
module where the PUF response is stored in RAM

B. Implementation results

1) Logic resources: We give the implementation results on
the four FPGA targets previously considered with the same
metrics: number of LUTs, number of D flip-flops, number
of RAM bits and number of Slices/ALMs/LCs2. We provide
the number of Slices/ALMs/LCs as a mean of comparison
with existing work, but only LUTs and D flip-flops figures
should be taken into account when comparing between different
families. Moreover, more recent FPGAs like Spartan 6 or
Cyclone V embed LUTs with a greater number of inputs.
Therefore, implementing the same logic function takes less
LUTs on those. Similarly to the method used for Table I, we
only report the logic resources used by the parity computation
module. Thus for implementation option 1 and 2, we do not
report the registers used to store the PUF response. However,
for implementation option 3, we report the RAM bits used to
store the PUF response. This is shown in Table V.

As we can see when comparing with the results obtained
for existing error-correcting codes presented in Table I, the
CASCADE protocol is very lightweight.

For implementation option 1, where a multiplexer is used,
most of the resources are required to implement the large n:1
multiplexer. Thus the number of LUTs required to implement
it increases linearly with the response length. Even though we
reported implementation results on FPGAs, we can note that
such an implementation option is much more suited for ASICs.
Indeed, large multiplexers are not efficiently implemented on
FPGAs because there are too few D flip-flops per logic element
compared to the number of LUT entries.

The second implementation option, reusing a shift register to
make it circular, is much more lightweight. The main advantage
here is that since the number of flip-flops required by the
counter grows logarithmically with the counter size, so does
the number of LUTs. Therefore, when the response length is
doubled, only one extra flip-flop is needed. This implementation
is suited for either ASICs or FPGAs.

Finally, the third implementation option is clearly oriented
toward FPGAs. Indeed, on such devices, RAM is available and
easily usable. By taking advantage of the intrinsic multiplexing
capability of the RAM, the amount of logic resources required
drops significantly compared to the two previous implementa-

2ALM: Adaptive Logic Module LC: Logic Cell

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

256-bit response

Target device Option 1: Registers and multiplexer Option 2: Circular shift register Option 3: RAM

LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic

Xilinx Spartan 3a 133 1 0 67 Slices 26 12 0 17 Slices 5 1 256 3 Slices
Xilinx Spartan 6b 67 1 0 19 Slices 17 12 0 7 Slices 3 1 256 1 Slice

Intel Cyclone IIIa 170 1 0 170 LCs 25 20 0 26 LCs 6 1 256 6 LCs
Intel Cyclone Vc 86 1 0 46 ALMs 23 20 0 13 ALMs 4 1 256 3 ALMs

512-bit response

Target device Option 1: Registers and multiplexer Option 2: Circular shift register Option 3: RAM

LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic

Xilinx Spartan 3a 265 1 0 133 Slices 26 13 0 18 Slices 5 1 512 3 Slices
Xilinx Spartan 6b 171 1 0 92 Slices 25 13 0 11 Slices 3 1 512 1 Slice

Intel Cyclone IIIa 342 1 0 342 LCs 28 22 0 29 LCs 6 1 512 6 LCs
Intel Cyclone Vc 171 1 0 87 ALMs 26 22 0 14 ALMs 4 1 512 3 ALMs

1024-bit response

Target device Option 1: Registers and multiplexer Option 2: Circular shift register Option 3: RAM

LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic

Xilinx Spartan 3a 529 1 0 265 Slices 28 14 0 18 Slices 5 1 1024 3 Slices
Xilinx Spartan 6b 341 1 0 182 Slices 27 14 0 10 Slices 3 1 1024 1 Slice

Intel Cyclone IIIa 683 1 0 683 LCs 30 24 0 31 LCs 6 1 1024 6 LCs
Intel Cyclone Vc 342 1 0 176 ALMs 28 24 0 15 ALMs 4 1 1024 3 ALMs

a 4-input LUTs
b 6-input LUTs
c 7-input LUTs

TABLE V: Logic resources required for three implementation options of the parity computation module and three response
sizes.

tion options presented. Moreover, since the 8:1 multiplexer only
selects one specific bit in the response byte, its size remains
constant when the length of the response increases. Since the
RAM is used to store the PUF response, the number of RAM
bits required grows linearly with the response length. With
implementation figures between 3 and 6 LUTs and 1 D flip-flop,
this FPGA implementation of the CASCADE protocol using
RAM is by far the most lightweight error-correction module
to date.

2) Execution Time: Another criterion used to evaluate the
different error-correcting codes is their execution time. We
give the execution times in number of clock cycles to be
device-independent. Implementation options 1 and 3 have an
identical way of selecting the PUF bits, therefore they have
the same execution time. Implementation option 2 on the other
hand has a longer execution time since it requires to shift the
circular shift register to select the appropriate response bit.
The execution time of the protocol can be split into a fixed
and a variable portion. The fixed portion includes the parity
computations aimed at detecting the errors, which are executed
after the scrambling step of each pass. The variable portion
is related to the execution of the CONFIRM method. If the
errors are detected in the initial passes, then the CONFIRM
method will be applied to small blocks. On the other hand,
if errors remain until the last passes, correcting them means
CONFIRM will have to be executed on large blocks. The larger

the blocks, the longer the parity computations. This is detailed
in the following paragraphs.

a) Implementation options 1 & 3: These two implementa-
tions multiplex the response bits directly, in one clock cycle. In
this case, accessing the response bits has O(1) time complexity
for an n-bit response.

Computing the parities for all the blocks of an n-bit response
requires n clock cycles with the module shown in Figure 10.
The number of clock cycles required for parity computations
when executing the CONFIRM method on a t-bit block is given
by Equation (6). This corresponds to computing parities on
blocks of sizes starting at t/2 bits down to 1 bit.

log2(t)∑
i=1

t

2i
= t− 1 (6)

Let us consider the previous case of a 256-bit response and
a 2% error-rate. On average, five bits are flipping. We assume
the protocol starts with 32-bit blocks and runs for 15 passes.
We distinguish two border cases. The actual execution time of
one execution of the protocol lies between those two cases.

In the best case, the errors are corrected as soon as possible.
The binary search is conducted on smaller blocks and is shorter.
The five errors are corrected in the first pass. Therefore, the
device-side execution time is:

256× 15 + 5× (32− 1) = 3, 995 clock cycles

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

In the worst case, there are more than five errors. For
example, let us assume that 15 bits are faulty. This occurs
with a probability of 2.10−4 Moreover, since we are in the
worst case scenario, the errors are corrected as late as possible.
The binary search is then conducted on larger blocks and is
longer. The errors are corrected in the last passes.

In this case, the execution time is:

256× 15 + 15× (128− 1) = 5, 745 clock cycles

b) Implementation option 2: In order to select a response
bit, the circular shift register must be shifted by an amount δ,
with δ ∈ [1;n− 1]. On average, reaching the next response bit
requires n/2 shifts. Therefore, accessing the response bits has
O(n) time complexity for an n-bit response.

Therefore, computing the parity on a t-bit block taken out of
an n-bit response is done in (t.n)/2 clock cycles on average.
Since there are n/t of these blocks in the response, computing
the parity of all the blocks of an n-bit response requires n2/2
clock cycles on average. This is much longer than with the
other options, for which only n clock cycles are necessary.

The other step which increases in execution time with this
implementation is the CONFIRM method. The number of clock
cycles required to execute the CONFIRM method on a t-bit
block is given in Equation (7).

log2(t)∑
i=1

t.n2
2i

=
n.(t− 1)

2
(7)

We need to consider the best and worst case for the
CONFIRM method. A 256-bit response with a 2% error rate
is studied, with five bits flipping on average. We assume the
protocol starts with 32-bit blocks and runs for 15 passes.

In the best case, the errors are corrected as early as possible,
in the first pass where blocks are 32 bits long. Therefore, the
associated device-side execution time is:

2562

2
× 15 + 5× 256× (32− 1)

2
= 511, 360 clock cycles

In the worst case, the errors are corrected as late as possible,
when the blocks are 128 bits long. Moreover, there are 15 of
them instead of 5. In this case, the execution time is:

2562

2
× 15 + 15× 256× (128− 1)

2
= 735, 360 clock cycles

c) Comparison to existing codes: Table VI gives a
comparison with existing error-correcting codes in terms of
execution time. We considered two corner cases for CASCADE.
First, the protocol was executed on a 256-bit response with a
1% error rate. The errors were corrected as early as possible,
making it the best case scenario. In the worst case, we
considered a 1024-bit response with ε = 15%, in which the
errors were corrected as late as possible.

The execution time of the CASCADE protocol is very
dependent on the size of the response to correct. It also depends
on the error rate, since the error-correction steps achieved by
the CONFIRM method are also a source of execution time.

Depending on when the errors are corrected, the execution
time also varies to a great extent.

Implementation options 1 and 3 have execution times
between 4,000 and 200,000 clock cycles. This is comparable
to the range observed for existing codes, between 1,210 and
108,000 clock cycles. However, when implementation option 2
is selected, the execution time increases dramatically. This is
compliant with the O(n) time complexity. Therefore, for high
error-rates, options 1 and 3 should be preferred.

TABLE VI: Execution Time in clock cycles of different codes
with different constructions.

Article Construction and code(s) Execution
time (cycles)

Concatenated:
[1] Repetition (7, 1, 3) 50,831

and BCH (318, 174, 17)

[2] Complementary IBS —with Reed-Muller (2, 6)

[3] Reed-Muller (4, 7) 108,000

[6] BCH (255, 21, 55) —

[16] Reed-Muller (2, 6) 10,298

Concatenated:
[17] Repetition (5, 1, 5) 6,505

and Reed-Muller (1, 6)

Concatenated:
[17] Repetition (11, 1, 11) 1,210

Golay G24(24, 13, 7)

[18] Differential Sequence Coding 29,243

CASCADE on 256-bit responses and ε = 1%,
options 15 passes, starting with 32-bit blocks 3,933
1 & 3 (errors corrected as early as possible)

CASCADE on 1024-bit responses and ε = 15%,
options 45 passes, starting with 4-bit blocks 203,622
1 & 3 (errors corrected as late as possible)

CASCADE on 256-bit responses and ε = 1%,
option 2 15 passes, starting with 32-bit blocks 503,424

(errors corrected as early as possible)

On the implementation side, we can note that the logic
function is very simple here, and has a very short critical path.
A higher clock frequency than the one used by the other logic
of the circuit could then be used to reduce the delay required
by the CASCADE protocol.

Due to the great interactivity of the CASCADE protocol, the
main execution time bottleneck is the communication between
the device and the server. It can be order of magnitude slower
that intra-device communication. Thus the associated execution
time depends to a great extent on the target platform.

VI. DISCUSSION

A. Privacy amplification

For this analysis, we assume to be in the random oracle
model. The number of bits leaked during the error correction
step can be estimated. However, the remaining entropy is not
only concentrated in the non-leaked bits. Instead, it is evenly
spread over all the bits of the response. Moreover, the initial

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

responses usually have poor statistical properties, such as not
being independent and identically distributed. The next step
is thus to shorten the response in order to get all the bits
with maximum entropy. This is called privacy amplification. In
practise, a cryptographic hash function is used, and is assumed
to behave as a random oracle [32]. Figure 13 shows how the
number of bits varies at different steps.

Key
reconciliation

Privacy
amplification

leakage

n n (n−t)

t

Fig. 13: Changes in the number of bits in the response at
different steps.

After key reconciliation, t bits are leaked. Therefore, the
hash function used for privacy amplification should have an
output of size inferior or equal to (n − t) bits so that all
the output bits have maximum entropy. A lightweight hash
function can be used to achieve privacy amplification with low
area penalty. SPONGENT [33] was used in [1], and requires
only 22 Slices on a Xilinx Spartan 6 FPGA for the 128-bit
output block option. An alternative is to implement Toeplitz
hashing [34], which was chosen in [35]. Based on an LFSR,
this construction occupies 59 Slices on a Xilinx Spartan 3
FPGA. Other low-area hash functions can be found on the
SHA-3 webpage, in the “low-area implementations” section3.

B. Replacing parity check with hashing

Some works [36], [37] suggested using a hash function
instead of a parity check to detect the errors in corresponding
response blocks. This would enable detection of two errors
in the same block, which is not possible using the simple
parity check. However, this error detection method cannot be
used with small blocks. For example, if the CASCADE protocol
starts with 8-bit blocks, then an attacker can pre-compute a
28-bit look-up table containing the hashes if the hash function
is public. By observing the successive hash values sent by the
device, the attacker could easily recover the PUF response.

C. Security analysis

In this section, we assume again that the PUF responses
have full entropy.

1) Brute force attack: By observing the indexes sent to the
PUF and the associated parity value that it returns, an attacker
can build a system of linear equations describing the parity
relations between the indexes. This system can then be solved to
obtain the PUF response by Gaussian elimination. However, the
system of linear equations does not fully specify the values of
the variables, and multiple responses can satisfy these equations.
Therefore, an attacker would have to exhaustively explore the
remaining space until the correct response is revealed.

Assuming t parity bits have been leaked during the protocol
execution on n-bit responses, 2n−t possible responses are

3http://ehash.iaik.tugraz.at/wiki/SHA-3 Hardware Implementations

still to explore for the attacker. Therefore, after executing the
CASCADE protocol, taking the conservative estimation that one
bit of information is leaked every time a parity value is sent,
the security level drops from 2n to 2n−t. As detailed before,
it is up to the PUF designer to tune the protocol parameters so
that t remains as low as possible in order to limit the leakage.

2) Device impersonation: chosen parity values scenario:
An attacker could impersonate the PUF and return parity
values of his choice to the server, with the aim of setting
the reference response r0 to a chosen value. This corresponds
to a chosen parity values scenario. We propose the following
counter-measure to address this threat.

a) Counter-measure: Device impersonation is thwarted
by limiting the number of modifiable bits on the server side.
Since response bits have probability ε of flipping, the total
number of bits that flipped in a n-bit response follows the
binomial distribution B(n, ε). We chose to allow up to m bits
to be modified. m was chosen so that the probability that m
bits flip is lower than the expected failure rate. For example,
for a 256-bit response and a 2% error rate, if a failure rate
of 10−6 is specified, then we search for the number of bits
flipping m such that Pr(X = m) < 10−6. Therefore, the
maximum number of bit modifications we would allow for on
the server side in this configuration is m = 20.

The general value for the number of modifiable bits m on
the server side with respect to the failure rate f is given in
Equation (8), where X is the number of bits modified by
executing the CASCADE protocol.

m : P (X = m) < f (8)

Beyond this limit, the probability that an attacker is trying
to modify the response is higher than the failure rate of the
protocol. Thus further modifications are not allowed and the
protocol is stopped.

3) Server impersonation: chosen indexes scenario: Follow-
ing our use case, the main threat here is server impersonation.
Indeed, this would allow an attacker to unlock an IC by sending
the activation word encrypted with a chosen PUF response.
In order to do so, an attacker must construct a PUF response.
He can choose the indexes sent to the PUF, and obtain the
associated parity values. This corresponds to a chosen indexes
scenario. The point here is to obtain a sufficient number of
parity relations between the PUF bits, to forge a PUF response.

Considering a set of parity relations as a sufficiently deter-
mined system of equations over GF (2), Gaussian elimination
can be used to recover the PUF response bits. However, this
requires the attacker to be able to build a sufficiently determined
system of equations. Therefore, we propose the two following
counter-measures against server impersonation. In addition,
deterministic scrambling, presented in Subsection VI-D, demon-
strates another way to avoid server impersonation.

a) Counter-measure 1: This countermeasure comes in
two aspects. The point is to prevent the attacker from building
a sufficiently determined system of equations. First, a hard
limit is set on the device-side for the number of parity values

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations

which can be sent when the protocol is executed. By setting it
at the security requirement, 128-bit in our case, the designer
can be sure that at least 128 bits are kept secret. However,
this can be circumvented by resetting the device and executing
the CASCADE protocol multiple times, to obtain more linear
equations. Therefore, we propose to add an extra counter-
measure.

b) Counter-measure 2: At the beginning of each execution
of the CASCADE protocol, a new PUF response must be
requested. By doing so, the attacker can obtain more parity
relations between the PUF response bits. However, since a new
response has been generated, some bits might have flipped
to an erroneous value or flipped back to a correct value with
respect to the reference response r0. Therefore, the parity
relations do not correspond to the same PUF response, and
cannot be used to forge a response by Gaussian elimination.
This problem is similar to the Learning parities with noise
problem, which is considered a hard problem and has been
used as the hardness assumption in constructing cryptographic
schemes [38]. Learning parities with noise is equivalent in
complexity to decoding from a random linear code [39], which
is known to be an NP-hard problem. Proving rigorously the
equivalence between LPN and the case we study here requires
further investigation.

4) Single index request: By challenging the system with
only one index i, an attacker could obtain the value of the PUF
response at index i. Doing so sequentially for all indexes would
allow the attacker to recover the whole response. A simple and
not costly secure controller should thus be implemented in the
system to avoid this type of manipulation. For example, single
index requests can be counted and not allowed anymore once
a specific threshold is reached. Indeed, knowing the error-rate,
one can fix a threshold on the number of faulty bits. Above
this threshold, single index requests are not allowed anymore.
It prevents an attacker from recovering the entire response.
Such a counter is very lightweight. Determining the size of
the counter can be done using Equation (8). For the example
given above, counting up to m = 20 requires only 5 extra D
flip-flops. All those counter-measures are fully compatible with
the industrial use case we consider here.

5) Helper data manipulation: Recent works highlight the
fact that helper data can be manipulated [40]. Since the
CASCADE protocol only requires exchanging simple parity
values, manipulation is not a threat and is handled like
impersonation.

D. Deterministic scrambling

The first step of the key reconciliation protocol is scrambling.
Depending on the PUF architecture used, characterisation can
be done right after the PUF is implemented on the device. This
will detect which bits of the response are the most unstable,
i.e. the ones whose value is the most likely to change over
time [41]. At that point, the chosen permutation can assign
one unstable bit per response block, so that the potential errors
are easily detected and corrected in the first passes of the
CASCADE protocol.

Another point of using deterministic scrambling is to thwart
attacks which aim at fully determining the system of parity
equations in order to solve it and recover the response, i.e.
server impersonation. This could be achieved for example
by executing the CASCADE protocol on the same circuit
multiple times, since random permutations are normally used.
If deterministic scrambling is used instead, the same fixed set
of permutations is used for all protocol executions. Therefore,
running the protocol multiple times does not help an attacker
in building a sufficiently determined system of parity equations,
hence avoiding the previously described threat.

E. Dynamic parameterisability

Tables III gives the parameters of the CASCADE protocol for
several error-rates and failure rates. However, those parameters
are not set in stone and can be modified later. This can be
necessary if the error rate increases under poor environmental
conditions. The server can then increase the number of passes
or start the protocol with smaller blocks, so that more errors are
detected. This must be taken into consideration when choosing
the nominal parameters, so that these modifications do not
lower the security level too much. This is visible in Table III,
in the SRAM row: starting with 8-bit blocks can correct the
errors when ε = 5.5% or ε = 10% depending on the number
of passes, 20 or 25. Hence if the PUF is expected to exhibit
an error rate of 5% but it increases to 10% later, the number
of passes can be changed to handle it.

VII. CONCLUSION

This article proposes to use key reconciliation protocols
for error correction of PUF responses. We show that this
interactive method is efficient at reaching very low failure rates
while requiring less bits from the PUF than existing error-
correcting codes. Although it incurs significant communication
compared to existing error-correcting codes, its main advantage
is requiring very low area overhead on the device and small
execution time for the computations. Another advantage of this
solution is its great flexibility. Parameters can be easily tuned
to the design constraints. This makes it a suitable option for
resource constrained applications, which are the ones targeted
by PUFs in the first place. Our work clearly points toward using
silicon PUFs and key reconciliation protocols in an industrial
context for intellectual property protection and authentication
of ICs.

ACKNOWLEDGEMENTS

The work presented in this paper was realised in the frame of
the SALWARE project number ANR-13-JS03-0003 supported
by the French “Agence Nationale de la Recherche” and by
the French “Fondation de Recherche pour l’Aéronautique et
l’Espace”, funding for this project was also provided by a
grant from “La Région Rhône-Alpes”.

This work has also received funding from the European
Union’s Horizon 2020 research and innovation programme in
the framework of the project HECTOR (Hardware Enabled
Crypto and Randomness) under grant agreement No 644052.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

REFERENCES

[1] R. Maes, A. V. Herrewege, and I. Verbauwhede, “PUFKY: A fully func-
tional PUF-based cryptographic key generator,” in International Work-
shop on Cryptographic Hardware and Embedded Systems, vol. 7428,
Leuven, Belgium, Sep. 2012, pp. 302–319.

[2] M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS:
application specific error correction for PUFs,” in IEEE International
Symposium on Hardware-Oriented Security and Trust, San Francisco,
CA, USA, Jun. 2012, pp. 1–6.

[3] M. Hiller, L. Kurzinger, G. Sigl, S. Müelich, S. Puchinger, and M.
Bossert, “Low-area reed decoding in a generalized concatenated code
construction for PUFs,” in IEEE Computer Society Annual Symposium
on VLSI, Montpellier, France, Jul. 2015, pp. 143–148.

[4] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. A. Smolin,
“Experimental quantum cryptography,” Journal of Cryptology, vol. 5,
no. 1, pp. 3–28, 1992.

[5] G. Brassard and L. Salvail, “Secret-key reconciliation by public
discussion,” in EUROCRYPT, Lofthus, Norway, May 1993, pp. 410–423.

[6] A. V. Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A. Sadeghi,
I. Verbauwhede, and C. Wachsmann, “Reverse fuzzy extractors:
Enabling lightweight mutual authentication for PUF-enabled RFIDs,” in
International Conference on Financial Cryptography and Data Security,
Kralendijk, Bonaire, Feb. 2012, pp. 374–389.

[7] D. A. Hodges, “Building the fabless/foundry business model,” IEEE
Solid-State Circuits Magazine, vol. 3, no. 4, pp. 7–44, 2011.

[8] C. Gorman, “Counterfeit chips on the rise,” IEEE Spectrum, vol. 49,
no. 6, pp. 16–17, 2012.

[9] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proceedings of the IEEE, vol. 102, no.
8, pp. 1207–1228, 2014.

[10] AGMA, “Managing the risks of counterfeiting in the information
technology industry,” Alliance for Gray Market and Counterfeit
Abatement, Tech. Rep., 2005.

[11] B. Colombier and L. Bossuet, “Survey of hardware protection of design
data for integrated circuits and intellectual properties,” IET Computers
& Digital Techniques, vol. 8, no. 6, pp. 274–287, Nov. 2014.

[12] J. Delvaux, D. Gu, R. Peeters, and I. Verbauwhede. (Jan. 2015). A
survey on lightweight entity authentication with strong PUFs.

[13] B. Colombier, L. Bossuet, and D. Hély, “From secured logic to IP
protection,” Elsevier Microprocessors and Microsystems, vol. 47, pp. 44–
54, 2016.

[14] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: an ultra-
lightweight block cipher,” in International Workshop on Cryptographic
Hardware and Embedded Systems, Vienna, Austria, Sep. 2007, pp. 450–
466.

[15] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data
algorithms for PUF-based key generation: Overview and analysis,” IEEE
Transactions on CAD of Integrated Circuits and Systems, vol. 34, no.
6, pp. 889–902, 2015.

[16] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-overhead implementation
of a soft decision helper data algorithm for SRAM PUFs,” in
International Workshop on Cryptographic Hardware and Embedded
Systems, Lausanne, Switzerland, Sep. 2009, pp. 332–347.

[17] C. Bösch, J. Guajardo, A. Sadeghi, J. Shokrollahi, and P. Tuyls, “Effi-
cient helper data key extractor on FPGAs,” in International Workshop
on Cryptographic Hardware and Embedded Systems, Washington, D.C.,
USA, Aug. 2008, pp. 181–197.

[18] M. Hiller, M. Yu, and G. Sigl, “Cherry-picking reliable PUF bits with
differential sequence coding,” IEEE Trans. Information Forensics and
Security, vol. 11, no. 9, pp. 2065–2076, 2016.

[19] M. Hiller, M. Yu, and M. Pehl, “Systematic low leakage coding for
physical unclonable functions,” in ACM Symposium on Information,
Computer and Communications Security, Singapore, Apr. 2015, pp. 155–
166.

[20] J. Martinez-Mateo, C. Pacher, M. Peev, A. Ciurana, and V. Martin,
“Demystifying the information reconciliation protocol CASCADE,”
Quantum Information & Computation, vol. 15, no. 5&6, pp. 453–477,
2015.

[21] C. Pacher, P. Grabenweger, J. Martinez-Mateo, and V. Martin, “An
information reconciliation protocol for secret-key agreement with small

leakage,” in IEEE International Symposium on Information Theory,
Hong Kong, Hong Kong, Jun. 2015, pp. 730–734.

[22] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale
characterization of RO-PUF,” in IEEE International Symposium on
Hardware-Oriented Security and Trust, Anaheim CA, USA, Jun. 2010,
pp. 94–99.

[23] R. Maes, V. Rozic, I. Verbauwhede, P. Koeberl, E. van der Sluis, and
V. van der Leest, “Experimental evaluation of physically unclonable
functions in 65 nm CMOS,” in European Solid-State Circuit Conference,
Bordeaux, France, Sep. 2012, pp. 486–489.

[24] L. Bossuet, X. T. Ngo, Z. Cherif, and V. Fischer, “A PUF based on
transient effect ring oscillator and insensitive to locking phenomenon,”
IEEE Transaction on Emerging Topics in Computing, vol. 2, no. 1,
pp. 30–36, 2014.

[25] C. Marchand, L. Bossuet, and A. Cherkaoui, “Enhanced TERO-PUF
implementations and characterization on FPGAs,” in International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
Feb. 2016, p. 282.

[26] A. Cherkaoui, L. Bossuet, and C. Marchand, “Design, evaluation and
optimization of physical unclonable functions based on transient effect
ring oscillators,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 6, pp. 1291–1305, 2016.

[27] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in International Workshop on
Cryptographic Hardware and Embedded Systems, Vienna, Austria, Sep.
2007, pp. 63–80.

[28] A. Aysu, E. Gulcan, D. Moriyama, P. Schaumont, and M. Yung, “End-to-
end design of a PUF-based privacy preserving authentication protocol,”
in International Workshop on Cryptographic Hardware and Embedded
Systems, Saint-Malo, France, Sep. 2015.

[29] R. Maes, P. Tuyls, and I. Verbauwhede, “A soft decision helper data
algorithm for SRAM pufs,” in IEEE International Symposium on
Information Theory, Seoul, Korea: IEEE, Jun. 2009, pp. 2101–2105.

[30] M. Claes, V. van der Leest, and A. Braeken, “Comparison of SRAM
and FF-PUF in 65nm technology,” in Nordic Conference on Secure IT
Systems, vol. 7161, Tallinn, Estonia, Oct. 2011, pp. 47–64.

[31] R. L.-Y. Ng, “A probabilistic analysis of CASCADE,” in International
conference on quantum cryptography, 2014.

[32] B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F. Standaert,
and Y. Yu, “Leftover hash lemma, revisited,” in Annual Cryptology
Conference, vol. 6841, Springer, 2011, pp. 1–20.

[33] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and
I. Verbauwhede, “SPONGENT: A lightweight hash function,” in
International Workshop on Cryptographic Hardware and Embedded
Systems, Nara, Japan, Sep. 2011, pp. 312–325.

[34] H. Krawczyk, “LFSR-based hashing and authentication,” in Annual In-
ternational Cryptology Conference, vol. 839, Santa Barbara, California,
USA, Aug. 1994, pp. 129–139.

[35] R. Maes, D. Schellekens, P. Tuyls, and I. Verbauwhede, “Analysis and
design of active IC metering schemes,” in IEEE International Workshop
on Hardware-Oriented Security and Trust, San Francisco CA, USA,
Jul. 2009, pp. 74–81.

[36] C. H. Bennett, G. Brassard, and J. Robert, “Privacy amplification
by public discussion,” SIAM Journal on Computing, vol. 17, no. 2,
pp. 210–229, 1988.

[37] A. Yamamura and H. Ishizuka, “Error detection and authentication in
quantum key distribution,” in Australasian Conference on Information
Security and Privacy, vol. 2119, Sydney, Australia, Jul. 2001, pp. 260–
273.

[38] K. Pietrzak, “Cryptography from learning parity with noise,” in 38th
Conference on Current Trends in Theory and Practice of Computer
Science, Špindlerův Mlýn, Czech Republic, Jan. 2012, pp. 99–114.

[39] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the
inherent intractability of certain coding problems,” IEEE Transactions
on Information Theory, vol. 24, no. 3, pp. 384–386, 1978.

[40] J. Delvaux and I. Verbauwhede, “Key-recovery attacks on various RO
PUF constructions via helper data manipulation,” in Design, Automation
& Test in Europe Conference, Dresden, Germany, Mar. 2014, pp. 1–6.

[41] R. Maes, “An accurate probabilistic reliability model for silicon PUFs,”
in International Workshop on Cryptographic Hardware and Embedded
Systems, vol. 8086, Santa Barbara, CA, USA, Aug. 2013, pp. 73–89.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2017.2689726

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

