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Abstract—With the scaling down of electronic devices and the
boom of wireless communications, more and more smart de-
vices are interconnected in what we call the Internet of Things.
Connecting devices of everyday use can greatly improve our
comfort, but it can also introduce unprecedented security
problems. With billions of devices connected there is a huge
risk of unauthorized use. In this context, Physical Unclonable
Functions (PUFs) are a promising solution since they extract
device intrinsic fingerprint that can be used for hardware
identification and authentication. Here we present the first fully
functional implementation of Oscillator based PUFs on Flash
based FPGA. The implementation is presented for the Ring
Oscillator based PUF and the Transient Effect Ring Oscillatory
based PUF. After explaining those two PUF principles, we give
all the necessary design practices to follow to obtain an efficient
PUF implementation on Flash FPGA. Finally, we present the
characterization of the PUFs and compare it to previous work.
To the best of our knowledge, it is the first work which deals
with the implementation of Oscillator based PUF on Flash
FPGAs. Moreover, all design files are available online to ensure
repeatability.

1. Introduction

We live in a smart world. The Internet is widely avail-
able, connection costs are low and many devices are emerg-
ing with Wi-Fi capabilities and sensors built into them.
This impacts how we live but also how we work. From
smart phones through smart homes and industry up to smart
and self-driving cars everything is connected. All of these
things are creating what we call the Internet of Things (IoT).
This is the concept of connecting any device with an on/off
switch to each other through the Internet without the need
for human interaction.

Connecting the appliances of everyday use can greatly
improve our comfort, but it can also introduce unprece-
dented security problems. When deployment and integration
of IoT is growing, one of the main challenges is to provide
security solutions regarding privacy and trust issues. With
billions of devices connected there is a huge risk of unau-
thorized use or abuse of these devices. To protect from such
risks we need security mechanisms allowing for a per-device
authentication and authorization, which are built-in from the
very first design stages.

In this context, Physical Unclonable Functions (PUFs)
are a promising solution since they provide device intrinsic
fingerprint usable for secure hardware identification and
authentication.

Moreover, since any kind of device can be a part of
the IoT, we can face two constraints: cost and size. Most
of the IoT devices are embedded in existing systems, thus
there is not much space to fit in. Also since these devices
are deployed in thousands or millions, the cost is extremely
important.

Within these constraints, using a Flash memory based
FPGAs is advantageous for multiple reasons. Firstly, we can
reduce the overall materials cost because there is no need
for a configuration memory.

The next advantage for IoT applications is lower demand
on power supply. The Flash FPGA does not need to be
configured at boot, so there is no configuration power peak.
The whole design consumes only the power it needs to
work. Thus there is no need to over estimate the power
supply needs just to compensate for configuration power
consumption, which leads to lower power supply costs as
well as lower demands on heat sinks and physical space.

Last, but not least, the Flash FPGAs can be safely
deployed in industrial environments where there might be
a lot of electromagnetic noise, which might disturb volatile
SRAM memories. Since industrial automation is one of the
main IoT applications, this aspect is also non negligible.

Contribution: Our main contribution is the first proposal
of design methodologies leading to a fully functional Oscil-
lator PUF on Flash memory based FPGAs. This work is
aiming to enlarge the scope of PUF implementations on
FPGAs when all previous works are on SRAM FPGAs [1],
[2], [3], [4]. Implementing an efficient PUF on Flash FPGAs
is not an easy task.

Structure: In the next section we provide all the neces-
sary background informations on PUF. Section 3 describes
the Ring Oscillator (RO) and Transient Effect Ring Oscil-
lator (TERO) PUF systems implemented and all the design
practices leading to an efficient implementation. In section
4 we present the characterization metrics and compare re-
sults of both PUFs to non-optimized designs. Finally, we
conclude in section 5.



2. Physical Unclonable Functions

PUFs are hardware primitives that use manufacturing
process variations (MPVs), such as the mismatch between
transistors, to generate a device-specific output, which usu-
ally is a binary number. This output can be seen as the
fingerprint of a device. It is called a response.

Basic applications include identification [5], authentica-
tion [6] and key generation [7].

Many PUF principles have been published up to now.
The most known are memory based PUFs including for
example SRAM PUFs [8] and delay based PUFs such as ar-
biter PUFs [9], ring oscillator PUFs [10], RS latch PUFs [11]
and transient effect ring oscillator PUFs [1]. Although some
FPGAs, including Flash FPGAs (i.e. Microsemi SmartFu-
sion 2), are provided with SRAM based PUF hardware
IPs, Helfmeier et al. have shown that it is easily clonable
[12]. That’s why another PUF implementation for FPGA
must be found. Moreover, studies have shown that PUF
principles using oscillating circuitries are the best candidates
for FPGAs [2], [3]. For this reason, RO PUF and TERO PUF
were selected.

3. Design and implementation

In this section, the PUF systems implemented and the
design rules to follow ending up with efficient implemen-
tations on Flash FPGAs will be described. All implementa-
tions have been made on Microsemi SmarFusion2 FPGAs
using Microsemi Libero design software v11.7. Design files,
including constraint files are provided for free to ensure
repeatability1.

3.1. Oscillator PUF architecture

The implemented PUFs are composed of 256 oscillating
cells, two counters and a bit extractor as depicted in Fig-
ure 3.a. Cells are divided in two blocks, A and B. To avoid
correlation, a cell of the block A is always compared to a
cell of the block B and is used only once. One cell per block
is selected using two demultiplexers and two multiplexers
are placed right after the cell blocks in order to drive the
correct cell outputs to the clock counters. The cell selection
is usually called a challenge.

ROs are digital oscillators consisting of an odd number
of inverters connected to form a loop. Figure 1 shows a
typical RO cell.

ctrl out

Figure 1. RO cell

1. https://gitlab.univ-st-etienne.fr/ugo.mureddu/flash fpga puf source
code.git

An RO-PUF extracts MPVs in a digital circuit by com-
paring the oscillation frequencies of two identically imple-
mented ROs. Compared RO cells are triggered at the same
time. As soon as one of the counters reaches a maximum
value, an arbiter stops them. If it is the one from the block
A, resp. block B, the arbiter generates a ’1’, resp. ’0’. This
is done for all implemented ROs and the resulting bits are
concatenated to form the 128-bits response.

TEROs corresponds to a very specific configuration of
an RS latch, with two inputs featuring the same voltage and
additional gates, that oscillate temporarily [13]. Figure 2
shows a typical TERO cell.

ctrl
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Figure 2. TERO cell

Here, we compare the number of oscillations. That’s why
the bit extractor is a subtractor. With this structure we can
extract from 1 to 3 bits per challenge. As explained in [4],
counters and activation time of the control signal need to
be sized accordingly to the mean number of oscillations of
the TERO cells. For this work, counters are 11 bits and
activation time is set to 1µs. Since it is not the main subject
of this article this dimensioning will not be further detailed.
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Figure 3. Classic oscillator PUF architecture

3.2. Proposed PUF design methodologies

3.2.1. General design. If the implementation is not done
carefully, it can happen that the comparison of two cells
depends on their position on the FPGA. If this is the case,
some comparisons tend to be biased towards a certain value.
For example if an oscillating cell of the block A is routed
with a bigger delay, its frequency will be lower and the
comparison with a cell of the block B will be biased towards
’0’ on all chips. That’s why, in order to get frequency
variations due to MPVs and not due to differences in routing,
it is really important to have cells identically implemented.

Unaltered cell structure. For that, the first thing
to do is to keep the cell structure unaltered during all the
synthesis, place and route processes of the Libero design

https://gitlab.univ-st-etienne.fr/ugo.mureddu/flash_fpga_puf_source_code.git
https://gitlab.univ-st-etienne.fr/ugo.mureddu/flash_fpga_puf_source_code.git


software. Indeed, Libero is always optimizing the code and
unfortunately, there is no way to prevent the optimization.
Still there are few things designers can do. First, disable
the retiming optimization in synthesis options because it
will put loop breakers in the cells and thus modify its
structure. Then, the VHDL code needs to be as low level
as possible to be sure that when it is synthesized it is not
modified (i.e. number of inverting elements). To do so, it is
necessary to only use the components of the SmartFusion2
library. This library provides basic element of a 2-inputs
AND gate (AND2) and an inverter gate (INV) which will
not be optimized by the tool.

Delay control. Delays between gates in an FPGA
can be really important since by definition an FPGA is
composed of an array of gates. If it is necessary to cross
many gates (or buffers) to connect two elements, it is hard
to control the delay. That’s why, elements of the cell have
to be rigorously placed side by side. This is achieved using
the Chip Planner Constraint Manager or a pdc constraint
file where elements can be precisely placed in LUTs.

Exclusive regions. To ensure that no routing can
cross oscillating cells, exclusive regions need to be created.
They are physical regions on the FPGA where only assigned
elements can be placed. This way during the synthesis, place
and route process nothing else will be added inside. To also
avoid routing to cross those regions, the designer has to
select the constrain routing option when creating the region.
For the PUF implementation, it is necessary to create one
region per cell block.

Maximizing local mismatches. Assuming that, at
this point, cells are identically implemented, the frequency
difference between them is only due to MPVs. However, two
sources of mismatch affect FPGAs. The first one is called
local variations (variations at transistor level) and the sec-
ond one global variations (variations at chip level). Global
variations involve a gradient over the chip. To maximize
the randomness of the PUF response the mismatch between
transistors have to be free of any gradient. Otherwise, a bias
can occur. Thus, the two oscillating cell regions have to be
as close as possible.

3.2.2. RO PUF restrictions. The delay path to control for
the RO PUF is much longer than the one of the TERO PUF.
Indeed, to get a fair comparison, cells have to be triggered at
the same time and the delays between output cells and input
counters need to be the same. Thus, the two counters are
placed side by side and multiplexer outputs are sent to clock
buffers (CLKBUF) which route signal to the global clock
network. The global network is composed of global buffers
to distribute low-skew clock signals. This way the delay
between outputs of ROs and inputs of counters is better
controlled. It is not possible to do the same with the enable
signal because global resources are limited so a flip-flop is
placed just before each input of the RO cells. Since the clock
signal is distributed with low skew, flip-flops will switch at
the same time.

Moreover, the output signal of an RO cell has poor
characteristics (i.e. distorted rising and falling edges or

asymmetric duty cycle). To enhance the signal quality a T
flip-flop is placed at the output of each RO cell. This acts as
a buffer and improves the quality of the edges. Moreover,
the duty cycle at the output of the flip-flop is symmetric.
Finally, it divides the oscillation frequency by two which
reduces counter failure possibilities without affecting the
mismatch between cells. This must not be done for TERO
cells because they are very sensitive to output load [13].
To put a T flip-flop at the output would unbalance the
two branches and so drastically decrease the number of
oscillations.

Finally, the oscillations have to be counted for a certain
time. Otherwise, the comparison is noisy. The more you
count, the more you accumulate transistor’s mismatch and
the less the noise impacts results. Indeed the mean value of
the noise as a function of time is null when the transistor
mismatch is increasing with time. Thus, the size of the
counters have to be dimensioned according to the design.
This will improve the stability of the responses.

4. PUFs characterization

4.1. Characterization metrics

The three commonly used metrics to characterize a PUF
are uniqueness, steadiness and randomness [14]. Indeed, a
good PUF must generate responses on different devices that
are unique. Moreover, responses to the same challenge on
the same device should be stable over time and operating
conditions. Finally, the outcome of a PUF must not be
predictable. Thus, the output values ’1’ and ’0’ should be
distributed equally and no correlation between bits should
occur.

Uniqueness. It shows to what extent responses gen-
erated by the PUF on different devices are unique. Con-
sidering two chips i and j, and responses Ri,y and Rj ,y
respectively, the average Uniqueness for a set of n chips
generating x responses is defined in Equation 1:

Uniqueness =
1

n(n− 1)x

n∑
i=1

n∑
j=1
j 6=i

x∑
y=1

HD(Ri,y, Rj)

n

(1)
where Rj is the reference response of j coming from

average of samples Rj ,y and HD the Hamming Distance
between two responses.

With the right amount of data a perfect uniqueness
tend to a binomial distribution of parameters n the num-
ber of experiments and probability p = 0.5 where its
mean = np = 50% and variance = np(1 − p) = 25%.
If the mean is different than 50%, it can either be that
correlation between responses of different chips occurred or
some responses are biased towards a certain value. Without
the sufficient amount of data an acceptable uniqueness can
have a variance lower than 25%. However, if the variance
is bigger than 25%, it indicates some cells correlation within
chips. That’s why it is important to plot the uniqueness
distribution and not only the mean value.



Steadiness. Expresses how efficient is a PUF in
reproducing a response to the same challenge on the same
device. The steadiness defined in Equation 2 quantifies
changes at the output of a PUF over many measurements.

Steadiness =
1

x

x∑
y=1

HD(Ri,y, Ri)

n
(2)

where Ri is reference response of i coming from average
of samples Ri,y at nominal conditions. A perfectly stable
PUF implementation has a Steadiness of 0%.

Randomness. This parameter is the most controver-
sial since there is at the moment no ideal way to estimate
the randomness of a PUF. Most of the time, it is done by
measuring the bias (or bit-aliasing).

Pehl et al. [15] tried to establish some further evaluation
approaches like joint entropy to identify bits correlation
and therefore predictability weaknesses. Others proposed to
use test suites like it is done for True Random Number
Generators with NIST tests or AIS20/31 but to perform
an acceptable entropy estimation the number of responses
needed is very high. Thus millions of test chips are neces-
sary, which does not seem possible.

We believe that one way would be to establish a stochas-
tic model of the PUF prior to implementing it, which will
be of course technology-dependent. This has not been done
yet and we raise this question for future work.

Moreover, it has been proven by Feiten et al. [16] that
uniqueness and bit-aliasing are mutually redundant. That’s
why as part of our study, uniqueness will act as bias esti-
mation.

In this work, to minimize bits-correlation possibilities
one cell of the block A is always compared to a cell of
the block B which avoids them to influence each other.
Moreover a single cell is only used for one bits generation.

Again, if those tests show some bias or correlation we
can conclude the PUF has weaknesses but if not we can not
affirm the PUF has full entropy.

4.2. Experimental setup

The characterization is performed on 24 Microsemi
SmartFusion2 FPGAs. In order to get a bigger amount of
data, designs were locked and moved to different part of the
FPGAs. This way the same PUF implementation extracts
other MPVs because it is not using the same transistors.
Thus characterization is made of 48 PUF implementations.
Each 128-bits response was generated one thousand times.

4.3. Characterization results

Uniqueness. Figures 5 and 6 depict the uniqueness
histograms of the PUFs for a non-optimized implementation
as well as for an implementation following the proposed
design methodologies (see section 3.2). The fitted normal
approximation is also plotted. Moreover, the normal approx-
imation of an ideal uniqueness (N (µ = 50%, σ2 = 25%))

is drawn in dashed line where µ is the mean and σ2 is
the variance. Figure 5 shows the results of the RO PUF
implementation and Figure 6 the TERO PUF results.

Improvements are clearly visible since the mean
uniqueness of the RO PUF, respectively TERO PUF, goes
from 12.1% to 42.2%, respectively 28.3% to 48.1%, with
the proposed design methodologies. V ariance is also in
appropriate ranges since it is below 25% for both imple-
mentations.

However results of the RO PUF still disclose either a
correlation between responses of different implementations
or a bias towards 0. To find out, it is necessary to check
if some bits of the responses are always the same on all
the PUF implementations. It turns out that there is at least
one bit of the response which is always 0. This explains the
offset of the uniqueness distribution towards 0.

If after improvements, routing differences are still more
important than MPVs it can mean that either the RO-PUF
is not extracting MPVs well enough on Flash FPGAs or the
design still needs some optimizations. One thing that could
be further explored is the delay between ROs and output of
the multiplexers. To better control this delay the multiplexers
could also be made with components of the SmartFusion2
library since there is a MUX4 element.

Steadiness. After following the proposed design
methodologies, the mean steadiness is 1.68% for the RO
PUF and 1.52% for the TERO PUF. Before, it was 0.69%
for the RO PUF and 1.3% for the TERO PUF.

However, when the uniqueness is too far from 50%, the
steadiness, even close to 0%, is no longer representative
because the PUF has a very strong bias. Looking at a single
statistical parameter cannot lead to the conclusion that PUF
quality is sufficient. That’s why it is important to observe
both, uniqueness and steadiness.

Moreover, steadiness of the proposed RO PUF over
voltage variations have been studied for different counter
sizes. Figure 4 depicts the result where 1.2V is the nominal
voltage of the device.

Figure 4. Steadiness of the RO-PUF over voltage variations

It is very distinct, especially at voltage corners, how the
counter size affects the stability. For a 7-bits counter, the
stability can vary up to 27% when for an 11-bits counter, it
is not going more than 5%. However after a certain counter
size, improvements are no longer evolving. That’s why in
this case it is not needed to use a counter bigger than 11-bits.



TABLE 1. SUMMARY OF CHARACTERIZATION RESULTS OF THE RO AND TERO PUFS

PUF metrics RO-PUF TERO-PUF
Hardware Xilinx [2] Microsemi Xilinx [4] Altera [4] Microsemi

Target Spartan-3E SmartFusion 2 Spartan-6 Cyclone-V SmartFusion 2

Non-optimized Optimized Non-optimized Optimized

Uniqueness 47.3% 12.1% 42.2% 48.5% 47.6% 28.3% 48.1%

Steadiness 0.9% not interpretable 1.68% 2.6% 1.8% not interpretable 1.52%

This is not a general truth. Dimensioning of the counters
needs to be done for each implementation.

Comparison. In order to compare a non optimized
design with an optimized design, results are summarized in
Table 1. It depicts mean uniqueness and mean steadiness
for each of them. Results from implementations of RO-
PUFs on Xilinx Spartan 3 [2] and TERO-PUF on Xilinx
Spartan 6 [4], Altera Cyclone V [4] are also depicted. From
what can be observed the proposed methodologies increase
plainly the PUF quality. As explained before, steadiness
can not be interpreted if the uniqueness is too far from
50%. That’s why, for the non-optimized design steadiness
is reported as not interpretable in the table. The TERO
implementation is more efficient than the RO-PUF since
it has a better uniqueness. This is probably due to the
fact that the delay path to control is shorter which makes
it easier to implement. Indeed, we can see that even with
a sufficient steadiness the RO PUF has a lack in terms of
statistical quality since there is a slight correlation between
responses of different implementations. Compared to other
implementations the optimized design of the TERO PUF is
in appropriate range with a 1.52% mean steadiness and
48.1% mean uniqueness.

5. Conclusion

In this paper, efficient designs of an RO PUF and a
TERO PUF have been proposed for the first time on Flash
based FPGAs. Those implementations have been made at the
lowest possible level. It shows a number of improvements:
First, how to keep the cell structure unaltered. Second, how
to control the delay of the critical elements of the PUF.
Third, a way to isolate oscillating cells from disturbing
elements. Fourth, the maximization of the local mismatches.
And finally, how to improve signal quality at the output
of the RO cells. Characterization results have shown the
efficiency gain with an optimized design.
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Figure 5. RO-PUF uniqueness
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Figure 6. TERO-PUF uniqueness
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