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Abstract—Lensless microscopy, also known as in-line digital
holography, is a 3D quantitative imaging method used in various
fields including microfluidics and biomedical imaging. To estimate
the size and 3D location of microscopic objects in holograms,
maximum likelihood methods have been shown to outperform
traditional approaches based on 3D image reconstruction fol-
lowed by 3D image analysis. However, the presence of objects
other than the object of interest may bias maximum likelihood
estimates. Using experimental videos of holograms, we show
that replacing the maximum likelihood with a robust estimation
procedure reduces this bias. We propose a criterion based on
the intersection of confidence intervals in order to automatically
set the level that distinguishes between inliers and outliers. We
show that this criterion achieves a bias / variance trade-off. We
also show that joint analysis of a sequence of holograms using
the robust procedure is shown to further improve estimation
accuracy.

I. INTRODUCTION

Thanks to the massive development of low-cost imaging
sensors and the simultaneous increase in computational ca-
pabilities, lensless microscopy is emerging as a method of
choice for time-resolved analysis of microscopic objects. It is
already used in several fields where the accurate estimation of
3D location and size over time is crucial, such as in the study
of fluid flows or biomedical imaging [1].

Analysis of digital holograms is traditionally performed by
first reconstructing the 3D volume by light back-propagation,
then analyzing this 3D volume to segment, locate and size
objects [2]. However, this approach suffers from artifacts due
to the imperfect reconstruction step, in particular to spatial
distortions close to the image borders and spurious diffraction
patterns known as twin images in holography [2]. Location
and size estimates can be significantly improved by using
a maximum likelihood estimator, i.e., by fitting a model of
the diffraction pattern generated by the object of interest
directly on the hologram rather than by reconstructing the
image volume. This method is very successful for the study of
isolated objects [3], [4], but some bias appears when unwanted
objects in the field of view alter the hologram. These objects
may have complex or unknown shapes and their influence on
the hologram may be difficult to explicitly model and account
for.

We suggest replacing the maximum likelihood estimator
with a robust estimator so that any notable discrepancies

between the model of the pattern of interest and the data
due to unwanted objects have less influence on the final
estimate. Section II provides a brief presentation of the lens-
less microscopy principle and the model of the diffraction
pattern generated by spherical objects behaving as opaque
objects such as droplets, cells or cocci bacteria. Section III
then describes the proposed robust estimation procedure to
characterize microscopic objects. Special attention is paid on
the setting of the level to distinguish between inliers and
outliers. An automatic criterion based on the intersection of
confidence intervals is proposed to achieve a bias / variance
tradeoff. Section IV illustrates the performance of the proposed
method on holographic videos.

II. CHARACTERIZATION OF MICROSCOPIC OBJECTS WITH
LENSLESS IMAGING

Lensless microscopes are based on the in-line holographic
setup originally proposed by Dennis Gabor [5]. The objects
are illuminated by an incident monochromatic plane wave of
wavelength λ. After free-space propagation over distance zp,
a hologram d is recorded by a monochromatic image sensor,
see Fig. 1.

Based on diffraction theory, it is possible to model the
diffraction pattern created on the hologram plane by an object
of interest of given 3D shape, absorption and optical index.
The case of opaque spherical objects is of particular practical
interest since it covers opaque particles introduced within the
flow in fluid mechanics, and colored spherical objects such as
cocci bacteria or cells in flow cytometry in biology. When the
distance zp is such that zp �

4π.r2p
λ , the diffraction pattern of

an opaque sphere located at (xp, yp, zp), with radius rp, is [6]:

mp(x, y) =
π r2p
λ zp

J1c

(
2π rp ρp
λ zp

)
sin

(
π ρp
λ zp

)
, (1)

where ρp =
√
(x− xp)2 + (y − yp)2 is the transversal dis-

tance to the center of the sphere and J1c(u) = J1(u)/u is
the cardinal Bessel function of first order. More generally, in
the following mθ(a, b) denotes the intensity of the diffraction
pattern generated at the pixel location (a, b) on the sensor
by an object of interest. This object of interest is fully
characterized by a vector of parameters θ (e.g., for an opaque
sphere θ = {xp, yp, zp, rp, }).



Fig. 1. Lensless microscopy setup and object fitting.

Maximum likelihood estimation of the parameters θ of
the object of interest, under the hypothesis of additive white
Gaussian noise, amounts to solving a nonlinear least-squares
problem [3]:

θ̂
(ML)

= arg min
θ

A∑
a=1

B∑
b=1

w(a, b) · [mθ(a, b)− d(a, b)]2, (2)

where d(a, b) represents the recorded data, w(a, b) ∝
1/ε(a, b)2 is a weight that is set to zero for defective pixels and
that can account for a non-stationary noise variance ε(a, b)2,
and A and B are the height and width of the sensor, in pixels.

III. PROPOSED ROBUST ESTIMATION SCHEME

A. Robust estimation by reweighted least squares

To reduce the impact of outliers on the estimation, Huber
introduced the so-called M-estimators [7] that replace the least
squares by another objective function ρ in order to reduce the
penalization of the largest deviations between the model and
the data. Minimization problem (2) is then replaced by:

θ̂
(M)

= arg min
θ

A∑
a=1

B∑
b=1

w(a, b)·ρ
(
mθ(a, b)− d(a, b)

s

)
, (3)

where ρ is a non-negative, continuous and symmetric function
with a minimum equal to 0 at 0, and s is a parameter that scales
the residuals by setting the level that distinguishes between
inliers and outliers.

Depending on the choice of the function ρ, the minimization
problem (3) can be difficult to solve. A simple algorithmic
strategy leading to a local minimizer consists in solving a
sequence of least-squares problems of the form (2): the Iter-
atively Reweighted Least Squares (IRLS) [8]. In this scheme,
the estimate θ̂k+1 at iteration k+1 is obtained by reweighting
the squares with weights wk(a, b) derived from the residuals
of iteration k:

θ̂k+1 := arg min
θ

A∑
a=1

B∑
b=1

wk(a, b) · [mθ(a, b)− d(a, b)]2 , (4)

where the weights wk(a, b) are computed from the residuals
rk(a, b) = mθk

(a, b) − d(a, b) at iteration k according to an
update rule that depends on the objective function ρ:

wk(a, b) = w(a, b) · s

rk(a, b)
· ∂ρ(u)
∂u

∣∣∣∣
u=rk(a,b)/s

. (5)

Many different objective functions ρ and their associated
weight update rules have been studied and classified in the
literature [9]. So-called hard-redescenders are functions ρ
that are constant above a given threshold, thereby leading to

assign zero weights to data points that display a misfit larger
than the chosen threshold. So-called soft-redescenders are
functions ρ whose limit at infinity is finite, thus asymptotically
producing zero weights for large residual values. For lensless
applications, we selected a soft-redescender to achieve a good
compromise between bias reduction and loss of efficiency of
the estimator. In the following, we use the Cauchy objective
function:

ρ(u) =
1

2
log(1 + u2) , (6)

which gives the following weight update:

wk(a, b) = w(a, b) ·
[
1 + (rk(a, b)/s)

2
]−1

. (7)

B. Automatic tuning of parameter s: distinguishing inliers and
outliers

Adequate tuning of the parameter s is essential in robust
estimation schemes [10]. On the one hand, if s is too low, most
residuals rk(a, b) will be (much) larger than s and the weights
of the corresponding data points will decrease in the following
iteration, thereby discarding most of the signal of interest. In
this case, the result will be an increase in the variance of
the estimation. On the other hand, if s is too large (much
larger than the typical discrepancy of outliers), the M-estimator
tends to the least squares estimator and loses its robustness
properties. In this case, reduction in the bias caused by outliers
is no longer obtained.

A common method to estimate the scale parameter s in the
case of i.i.d. noise is based on the median absolute deviation
(MAD) estimator, which provides a robust estimate of the
residuals standard-deviation [7]:

ŝ(MAD) = 1.48 ·median [ |r −median(r)| ] , (8)

where r denotes the collection of all residuals values r(a, b)
for a ∈ [1, A] and b ∈ [1, B].

MM-estimators have been proposed to achieve high ro-
bustness to the presence of outliers while conserving high
efficiency in the absence of outliers[11]. These estimators
consist in two steps: (i) estimation of the scale of the residuals
s using an M-estimator defined by a hard-redescender ρ; and
(ii) actual estimation of the parameters of interest θ with a
more efficient penalty function ρ (such as a soft-redescender).

One drawback of these methods of setting parameter s is
that they do not account for the actual impact of the outliers
on the estimation. When considering unwanted objects within
the field of view, the location of the objects with respect
to the object of interest may or may not lead to biases. In
other words, while ŝ(MAD) is suitable in cases where the
outliers are uniformly distributed in the measured signal, a
more appropriate choice of s could be made in cases of non-
uniform distribution of outliers.

We propose to estimate parameter s using a method that
accounts for the actual impact of the outliers on the esti-
mation. Starting from the value ŝ(MAD), which may be over-
conservative, we apply the intersection of confidence intervals
(ICI) rule to decide up to what point parameter s can be



Fig. 2. Estimation of s with the ICI rule.

increased to reduce estimation variance before being subject to
bias due to outliers. The ICI rule has been successfully applied
in image denoising to locally select the largest neighborhoods
on which to perform denoising by local polynomial approx-
imation [12]. Its application only requires knowledge of the
estimate along with its standard deviation.

The vector of parameters θ is estimated using the robust
IRLS estimation scheme (4) by progressively increasing pa-
rameter s until the new estimate θ̂

(M)

s obtained with parameter
s leads to a confidence interval [θ̂

(M)

s −δs, θ̂
(M)

s +δs] with an
empty intersection with the preceding confidence intervals:

ŝ(ICI) = max

{
s ∈

[
ŝ(MAD), ∞

) ∣∣∣∣
∃θ, ∀s0 ∈

[
ŝ(MAD), s

]
, θ ∈

[
θ̂
(M)

s0 − δs0 , θ̂
(M)

s0 + δs0

]}
. (9)

This principle is illustrated in Fig. 2 considering a single
parameter θ.

To build the confidence intervals, we used the Cramér-Rao
Lower Bounds (CRLBs) [13]. The CRLB δ(i) represents the
minimum standard-deviation for any unbiased estimator of the
parameter θ(i). Under additive white Gaussian noise, the least
squares estimator (2) asymptotically reaches the CRLB given
by:

δ2(i) =
[
I(θ)−1

]
i,i
, (10)

where Fisher information matrix I is defined by:

[I(θ)]i,j =

A∑
a=1

B∑
b=1

w(a, b)
∂mθ(a, b)

∂θ(i)

∂mθ(a, b)

∂θ(j)
, (11)

In the presence of outliers, we approximate the confidence
intervals by computing the CRLB with the weights obtained
by the IRLS procedure.

To reduce the computational cost of estimating parameter
s according to the ICI rule (9), we consider a non-uniform
discretization of the set

[
ŝ(MAD), ∞

)
such that two successive

s values lead to a given decrease in the CRLBs. In practice,
each s value is obtained by bisection to achieve the prescribed
CRLBs reduction.

We now illustrate the tuning of parameter s based on the
ICI rule (9) on a simple 1D problem: estimating the xp

Fig. 3. Estimation of the position of a pattern by a robust approach using the
MAD and the proposed ICI rule. Evolution of ŝ and MSE are respectively in
dash and solid lines.

location of a Gaussian-shaped pattern m. We simulate 100
noisy realizations d by adding to the model a Gaussian white
noise (with a peak signal-to-noise ratio of 10) and a constant
outlier formed by a rectangular function with 3 samples in
width (with a peak signal-to-noise ratio of 1), see Fig. 3(a).

The ICI rule leads to values of s that are about 5 times
larger than ŝ(MAD) when the outlier is too far to introduce a
significant bias, and to values of s close to that of ŝ(MAD)

when the outlier affects the estimation, see Fig. 3(b). When
ŝ(ICI) is higher than ŝ(MAD) (resulting in a weaker penalization
of the residuals), the mean square error (MSE) on the location
of the pattern is reduced by a factor between 2 and 4. In
practice, the empirical standard-deviation reaches the CLRB
when the outlier has little impact on the estimate. A difference
of a few tens of percent is observed when the constant outlier
has an impact on the estimate since the estimator is no longer
asymptotically unbiased. Determination of s with an ICI rule
is still possible. In conclusion, choosing the parameter s with
the ICI rule improves the mean square error compared to a
MAD estimator.

IV. APPLICATION TO LENSLESS MICROSCOPY VIDEOS

In this section, the performance of the robust estimate
scheme applied in lensless microscopy is evaluated on two
lensless imaging applications. The goal is to accurately es-
timate the radius rp of spherical objects. We also evaluate
the performance of a robust estimation performed jointly
over several consecutive frames (super-resolution). In these
examples, the image formation model mθ is non-linear with
respect to the parameters θ, as given by equation (1). As a
result, the minimization problem (2) and each IRLS iteration
in (4) is solved using a few iterations of Levenberg-Marquardt
algorithm. The original videos and the results of the robust
estimation are available online at http://perso.univ-st-etienne.
fr/deniloic/robust lensless video.html.

A. Holographic video of an object of constant size

We consider a 200 frames video of a slightly moving
particle located near an unwanted object. The object of interest



Fig. 4. Calibrated particle near an outlier – example of a frame.

is a circular chromium deposit on a glass plate, with a
calibrated radius of 50 µm (OptimaskTM, diameter ± 1 µm,
roundness error ± 0.25 µm). The unwanted object is a fixed
human hair [14].

Since the outlier is fixed throughout the video, it is possible
to roughly remove outlier pixels by applying a static binary
weighting mask w(a, b) = 0 if pixel (a, b) is in the masked
region, w(a, b) = 1 otherwise. Figure 4 shows two frames
from the video and the manual removal of the outlier by
masking. Due to the mask w, part of the signal due to the
particle of interest (diffraction rings) is not accounted for.

Since the radius rp of the particle remains constant during
acquisition, it is possible to jointly estimate this parameter
in several consecutive frames. This super-resolution approach
has already been successfully applied in lensless microscopy
considering the non-robust minimization problem (2) [14].
We propose to combine this super-resolution approach with
a robust estimation scheme (minimization problem (4)) con-
sidering 40 stacks of 5 successive frames.

In each frame the vector of parameters θ is estimated by
least squares fitting, Eq. (2), with constant weights (hereafter
denoted single – without mask) or with the binary mask
(denoted single – with mask), and using the robust M-
estimator, Eq. (4) and ŝ(MAD) (denoted single – robust). In
the case of a joint estimation, the term single is replaced by
the term joint in the denomination of the methods tested.

Figure 4 is an example of the weights used for the last
IRLS iteration. The weights are close to a segmentation of
the pixels impacted by the unwanted object. The diffraction
rings characterizing the particle of interest are well preserved
(weights close to 1). Figure 5 shows the evolution of the
estimated radius during the IRLS iterations for the first 5
frames of the video. This shows that the algorithm converges
in a few iterations and that the joint estimate of the radius
carried out by super-resolution is very close to the ground
truth equal to 50 µm.

Table I lists the mean estimated radius 〈r̂(M)
p 〉, the corre-

sponding standard-deviation σ and the CRLB δ obtained with
ŝ(MAD) for each method tested. The manual removal of the
outliers appears to reduce the estimation bias. The bias is
further reduced when a robust weighting of residuals by IRLS
is applied since it preferentially eliminates the outliers while
retaining the signal of interest. As a result, the estimation using
a robust approach leads to a very small increase in CLRB
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Fig. 5. Estimated radius as a function of the number of IRLS iterations.

TABLE I
MEAN ESTIMATED RADIUS, STANDARD-DEVIATION σ AND CRLB δ

FOR THE DIFFERENT METHODS TESTED

Method: 〈r̂(M)
p 〉 (µm) σ (µm) δ (µm)

single – without mask 49.71 0.31 0.014
single – with mask 49.78 0.25 0.016

single – robust 49.91 0.26 0.015

joint – without mask 49.71 0.13 0.014 /
√
5

joint – with mask 49.78 0.08 0.016 /
√
5

joint – robust 49.93 0.09 0.015 /
√
5

which is negligible compared with the reduction of the bias.
The combination of a robust estimation method with a

super-resolution scheme (joint – robust) exploiting the in-
formation redundancy between different frames significantly
reduce the estimation standard-deviation. In agreement with
statistical results [15], we observed a decrease in the standard-
deviation by a factor at least equal to

√
5. This joint robust

estimation approach enables accurate (i.e. low bias and low
standard-deviation) estimates of the radius of the holographic
objects and thus improves the overall performance of a con-
ventional least squares estimation process.

B. Holographic video of evaporating droplets

We used a 160 frames video of an evaporating diethyl
ether droplet dispersed in a homogeneous and nearly isotropic
turbulence that is tracked over time. As the particle evaporates,
it produces a plume of vapor that diffuses around it. The vapor
plume creates outliers since its signal mixes with the signal
produced by the particle of interest. Other evaporating particles
passing close to the particle of interest also act as outliers. The
evaporation rate of these particles was recently studied using
the least squares approach (2) [16].

Figure 6(b) shows two frames from the video and the 2D
trajectory of the particle over time (superimposed color line).

Figure 6(a) shows the evolution of the rescale factor of
the residuals obtained with a MAD estimator and with the
proposed ICI rule as well as the IRLS weights for two different
frames. The ICI rule leads to a larger value of s than MAD but
without notably modifying the estimation of the radius rp. This
is the case when outliers do not disturb the estimate like in
frame 60 (left column) since the particle of interest is isolated
and the plume of vapor is rather small. In contrast, ŝ(MAD) and
ŝ(ICI) are very close when the particle of interest is strongly
disturbed by outliers. This is illustrated by frame 97 (right
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Fig. 6. Robust detection and tracking of an evaporating droplet. (a) evolution
of ŝ(MAD) and ŝ(ICI). (b), (c) and (d) respectively give the holograms,
confidence interval diagrams, and robust weighting maps for two video frames.
(holographic video credit: Fluid Mechanics and Acoustics Laboratory LMFA,
CNRS–Université de Lyon, France)

column) where another evaporating particle is close to the
particle of interest and disturbs its signal. These observations
underline the fact that the MAD estimator only accounts for
the presence of outliers strongly deviating from the model
but does not account for their spatial localization and hence,
their actual impact on the estimate. Figure 6(c) illustrates the
evolution of confidence intervals for increasing values of s.
Figure 6(d) shows the weights obtained at the end of the IRLS
procedure for ŝ(MAD) (first row) and ŝ(ICI) (second row). On
frame 60, ŝ(ICI) is significantly larger than ŝ(MAD), leading to
larger weights, while on frame 97 ŝ(MAD) = ŝ(ICI) and the
weights are identical.

Figure 7 shows the evolution of the estimated radius over
time with the three methods of estimation tested. The robust
estimation scheme leads to an average increase of 0.4 µm in
the estimated radius. We also observed that it reduces the
estimation standard-deviation. These experimental results are
explained by the fact that the moving outliers (vapor plume
plus other particle) cause a non-stationary disturbance of the
signal of interest over time. The robust approach considering
a MAD or ICI rule to set the parameter s lead to close results
in this application. This is due to the fact that the weighting
matrix obtained with ŝ(MAD) already guarantees a high level of
efficiency (around 90% of the maximum efficiency obtained
without reweighting).

20 40 60 80 100 120 140 160
76

78

80

82

84

86

Fig. 7. Estimated radius over time with the different methods tested.

V. CONCLUSION

We have shown that the use of a robust approach to
estimate the 3D position and size of objects in lensless
microscopy videos reduces the estimation bias caused by
unwanted objects. We proposed a simple method to estimate
the scale parameter that distinguishes between inliers and
outliers in the robust estimation scheme. This method is based
on an intervals confidence intersection rule and achieves a
better bias / variance trade-off than the usual MAD rule.
Finally, we have shown that the combination of the proposed
robust approach with a joint estimation scheme also reduces
the standard-deviation of the estimation and consequently
improves the overall performance of the method.
Work supported by CNRS grant DETECTION (DEFI IMAG’In 2015)
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