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Abstract. Security in random number generation for cryptography is closely related
to the entropy rate at the generator output. This rate has to be evaluated using an ap-
propriate stochastic model. The stochastic model proposed in this paper is dedicated
to the transition effect ring oscillator (TERO)-based true random number generator
(TRNG) proposed by Varchola and Drutarovsky (in: Cryptographic hardware and em-
bedded systems (CHES), 2010, Springer, 2010). The advantage and originality of this
model are that it is derived from a physical model based on a detailed study and on
the precise electrical description of the noisy physical phenomena that contribute to
the generation of random numbers. We compare the proposed electrical description
with data generated in two different technologies: TERO TRNG implementations in
40 and 28nm CMOS ASICs. Our experimental results are in very good agreement
with those obtained with both the physical model of TERO’s noisy behavior and the
stochastic model of the TERO TRNG, which we also confirmed using the AIS 31 test
suites.
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1. Introduction

Random number generation is a critical issue in most cryptographic applications. Ran-
dom numbers are used not only as confidential keys, but also as initialization vectors,
challenges, nonces, and random masks in side-channel attack countermeasures. A se-
curity flaw in random number generation has a direct impact on the security of the
whole cryptographic system. Unlike generators used in Monte Carlo simulations and
telecommunications, those designed for cryptography must generate unpredictable ran-
dom numbers—having perfect statistical properties is necessary but not sufficient.
There are two main categories of random number generators: deterministic random

number generators (DRNG) and true random number generators (TRNG), which can
be physical (P-TRNG) or non-physical (NP-TRNG). While deterministic generators are
based on algorithmic processes and are thus not truly random, TRNGs exploit an unpre-
dictable process, such as analog phenomena in electronic devices, to produce a random
binary sequence or a sequence of random numbers. The unpredictability of DRNGs is
guaranteed computationally and that of TRNGs is guaranteed physically. A good knowl-
edge of the physical process underlying TRNG, which ensures its randomness and hence
its unpredictability, is therefore necessary.
The statistical quality of TRNGs and DRNGs is usually evaluated using statistical

test suites such as the one first proposed by George Marsaglia [8] and extended by NIST
[10]. The goal of these suites is to detect statistical weaknesses such as non-uniformity
or the appearance of patterns in a generated random sequence of only limited size. In no
case can these tests guarantee the unpredictability of the random binary sequence.
As summarized by Fischer [3], the best way to evaluate unpredictability is to carefully

estimate the entropy rate at the generator output. The estimation of entropy must be
based on a carefully constructed stochastic model of the random number generation
process. The stochastic model is a mathematical construct, which specifies the family of
probability distributions that contains all possible distributions of the generated random
numbers [7]. In a P-TRNG design, the model consists of a mathematical description of
a link between the variations in the exploited unpredictable analog phenomena and the
variations in the random binary sequence.
The main objective of using a stochastic model is to characterize the probability that

an output bit is equal to one, and/or the probability that an n-bit output vector features a
pattern of some sort. If the variables characterized by these probabilities are independent
and identically distributed (IID), the entropy rate can be estimated from their distribution.
If the variables are not IID, a conditional entropy rate based on conditional probabilities
is usually computed [6].

Estimating entropy using an underlying stochastic model is mandatory in the secu-
rity certification process, specially at high levels of security [7]. Stochastic models are
reasonably easy to construct, but it is sometimes difficult or even impossible to check
all the underlying physical assumptions. A physical model could serve as a basis for
validation of these assumptions, but it is much more difficult to construct and a detailed
knowledge of contributing physical phenomena is necessary.
Our objective was to model the generator recently proposed by Varchola and Dru-

tarovsky [13], which uses a so-called transient effect ring oscillator (TERO) as a source
of randomness. We chose this generator because it is small and easy to implement in
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logic devices, and because it produces good statistical results. However, a satisfactory
stochastic model is not yet available for this generator.
The generic stochastic model from [6] was clearly not suitable for the TERO-based

TRNG. Neither were stochastic models dedicated to other existing generators, like the
one proposed for the elementary ring oscillator-based TRNG in [1], nor that proposed
in [12] for the TRNG using many oscillating rings as sources of randomness, nor the
one proposed in [2] for the PLL-based TRNG. The models dedicated to structures with
transient oscillations, which were proposed in [13] and [5], assume the distribution of
generated random numbers to be Gaussian. This assumption disagreed with our own
experience and even with the graphs presented in the original paper proposing TERO
TRNG [13, p. 8].
For practical reasons—we had only a small number of samples, in which the TERO

TRNG was implemented as an independent circuitry inside two complex logic devices,
at our disposal—we could not study the design repeatability issues of the TERO TRNG
architecture depending on manufacturing process conditions. Our main objective was
thus to validate the proposed model and to study variation of model parameters across
two different ASIC technologies at various operating conditions.
Our contributions (1)Wepropose andvalidate a novel physical TEROmodel including

electric noises that serve as sources of randomness for a given instance of a TERO-
based TRNG implemented in ASIC. (2) From the physical model, we derive a TERO
stochastic model. (3) From the TEROmodel, we propose and validate a stochastic model
of a complete TERO-based TRNG and illustrate the use of this model to estimate the
entropy rate in conjunction with the output bit rate.
Organization of the paper In Sect. 2, we describe the structure of the TERO and its

use in a P-TRNG. In Sect. 3, we present implementation of the TERO structure and
corresponding TRNG in ASIC. The physical (electrical) and derived stochastic models
of the TERO are detailed in Sect. 4. The stochastic model of the complete TERO-based
TRNG is presented in Sect. 5. In Sect. 6, the effect of temperature and voltage variations
on the TERO-based TRNG and on the model parameters is studied. We conclude the
paper in Sect. 7 by a discussion concerning the relationship between the entropy rate
and the output bit rate that can be set up using the proposed stochastic model.

2. TERO-Based RNG

TERO is an electronic circuit that oscillates temporarily. It is composed of two control
gates that restart temporary oscillations and an even number of inverting logic gates
connected in a loop. The number of inverting gates in the loop must be even; otherwise,
oscillations would continue permanently like in standard ring oscillators.
Two typical TERO configurations are presented in Fig. 1a: in addition to two NAND

gates used in both configurations, the TERO cell uses two chains of inverters (left panel)
or two chains of non-inverting buffers (right panel). Consequently, the TERO can be
seen as an RS latch with two inputs featuring the same voltage Vctr and two different
outputs Vout1 and Vout2.
Figure 1b presents traces of the Vctr input and Vout1 output signal captured from os-

cilloscope. Following the rising edge of the Vctr input, the outputs Vout1 and Vout2 start
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(a)

(b)

Fig. 1. Circuit diagram of two typical TERO structures (a) and TERO input/output waveforms (b) .

to oscillate: two rising edges start to propagate in the TERO cell in two opposite direc-
tions, and after traversing the NAND gate at the end of the branch, they are transformed
into two falling edges, etc. Consequently, to enter the oscillatory state, the number of
inverters in each branch of the TERO cell before the NAND gate must be even. Note
that this condition is fulfilled automatically in the structure presented in the right panel
in Fig. 1a, since each buffer present in this structure is realized in logic devices using a
couple of inverters.
The oscillations obtained have a constant mean frequency, but their duty cycle varies

over time: it changes monotonously, and after a certain number of periods, it reaches
the rate of either 0 or 100%. At this point, outputs Vout1 and Vout2 stop oscillating and
remain stable at two opposite logic values.
The three zooms in Fig. 1b show the changing duty cycle: immediately after the

rising edge of the Vctr signal, it is close to 50% and then decreases until it reaches 0%.
Consequently, signal Vout1 stabilizes at logic level 1. Of course, the signal Vout2 behaves
in the opposite way with respect to the duty cycle and stabilizes at logic level 0.
The number of oscillations before the outputs stabilize is not constant but varies

because it is impacted by the electronic noises that disturb the normal behavior of
transistors in the TERO structure.
The P-TRNG based on the TERO structure (TERO TRNG) is depicted in Fig. 2.

The TERO circuitry is followed by an n-bit counter that counts the rising edges of the
temporary oscillations. The counter output shows realizations of the random variable,
i.e., the number of oscillations in successive control periods. The randombinary sequence
is usually obtained by successively concatenating the least significant bits of the counter,
i.e., only one T flip-flop is needed in the counter.
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Fig. 2. True random number generator based on the TERO structure .

τ

τ

Fig. 3. TERO TRNG structure implemented in ASICs .

3. Implementation of the TERO RNG in ASIC

We implemented TERO in two of STMicroelectronics CMOS processes, with 40 and
28nm minimum features, respectively. In order to explore the design space, we made
the delays in the two TERO branches programmable, each in 64 linear steps (see Fig. 3).
Each step consists of one elementary non-inverting buffer.
In the 40nm process, the delays were programmable from 1.6 to 8ns in 64 regularly

spaced steps, resulting in oscillation frequencies in the range of 60–330MHz. In the
28nm process, the delays were programmable from 0.6 to 3.3ns, resulting in oscillation
frequencies in the range of 150–900MHz. The number of oscillations was counted by a
16-bit counter.
Additional circuitry, not shown in the figure, made it possible to start the oscillations

of the TERO circuitry with the ctr signal and to read the counter value only after the
oscillation ended.
A particularly tricky issue in the physical layout consists of accounting for the rout-

ing delays, which, in such rapid processes, often dominate over the buffer delays. The
multiplexers and the two NAND gates themselves add delays that also have be taken in
consideration. So routing among the various multiplexers in the oscillation loop must
be such that the overall delay in each of the 2 branches increases monotonously when
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the number of buffers increases from 1 to 64. This requires a careful layout as well as
post-layout simulations to guarantee the monotonicity.
This extra burden is only necessary when designing characterization chips. In the final

design, the delays should be fixed, or with only a few adjustment steps. Nevertheless,
the layout should always be undertaken with great care to control the delays as much as
possible.

3.1. Implementation Results

We conducted extensive characterization campaigns on both processes. As expected,
the adjustment of the delays τ1 and τ2 from Fig. 3 proved to be crucial in obtaining
satisfactory results. In particular, we want to obtain a number of oscillations close to
100.With such a number of oscillations, we can assume that their variation comesmainly
from the thermal noise inside transistors and that the realizations of the counter values are
independent as it was shown in [4]. Indeed, we observed that for a significantly smaller
number of oscillations the accumulated entropy was insufficient and for a number of
oscillations too high the jitter coming from the flicker noise could cause the dependence
between subsequent output samples to be non-negligible.

– When τ1 and τ2 are adjusted to the same value, the number of oscillations is usually
extremely high, sometimes infinite (i.e., the oscillation never ends). This is of course
not suitable in TRNG design. Values in which the delays differ by only 1 to 3
units (number of buffers) should also be avoided, as they are too close to infinite
oscillation.

– When τ1 and τ2 are too different, the average number of oscillations is quite small
(less than 30), usually resulting in a low entropy rate (because of a too weak jitter
accumulation). This too should be avoided.

This leaves a narrow adjustment range for τ1 and τ2: the relative difference
∣
∣
∣
τ2−τ1
τ2+τ1

∣
∣
∣
1

should not be greater than roughly 35%, yet still be greater than 5 or 10%. These ranges
were observed experimentally, but it could be interesting, in a future work, to gain a full
understanding of the underlying phenomenon in order to further enhance the physical
model. The new model would help designers to choose appropriate values of τ1 and τ2
to control apriori expected number of oscillations.

Figure 4 shows distributions of the 8 million counter values obtained from ASIC
devices in four different TERO configurations: two in the 40nm technology (Fig. 4a, b)
and two in the 28nm technology (Fig. 4c, d). In Fig. 4a, the relative difference between
the two TERO branches was 31%; in Fig. 4b, it was 35%; in Fig. 4c, it was 20%; and in
Fig. 4d it was 32%. The differences between the TERO branches were obtained using
the digital configurable delay chain depicted in Fig. 3.
It can be seen that in all cases the number of oscillations varied around a mean value

according to a statistical law, which is apparently not a normal law. This is particularly
clear in the right panels , but also observable in the left panels of the figure. One of our
objectives was to determine this law and its origin.

1Denoted Δr later on the paper.
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Fig. 4. Distribution of numbers of temporary oscillations for four TERO configurations—two in technology
ST 40nm (histogram a, b) and two in technology ST 28nm (histogram c, d), with the following relative
differences in delay between the two TERO branches: a 31%, b 35%, c 20%, and d 32% .

Before proceeding with the construction of the physical and stochastic models, we
tested the statistical quality of the generated bit streams. The bit streams obtained by
successive concatenation of the least significant bits constituted the raw binary streams,
which were then tested using the AIS 31 protocol [KS11]. The data not only successfully
passed all the tests of ProcedureB, but also those of ProcedureAaimed at testing the post-
processed signals. This means that the generator is suitable for certification according
to AIS 31 for PTG.1 and PTG.2 levels even without post-processing.
These good results are mitigated by the fact that they rely on accurate delay adjust-

ments, which may not be compatible with large volume production. Extensive charac-
terization is still needed to validate TERO usability in industrial contexts.
As explained above, successful evaluation of the output of the generator using sta-

tistical tests is a necessary but not sufficient condition to ensure the unpredictability of
the generated numbers. The only way to guarantee such a property is to show the link
between variations in the distribution of the raw random binary sequence and the phys-
ical phenomena that are considered as random, unpredictable, and non-manipulable.
Statistical modeling of underlying analog and digital processes should make it possible
to quantify the uncertainty included in the generated random sequence by estimating the
entropy rate in this sequence.

4. Physical and Stochastic Models of TERO

In this section, we discuss the main processes that transform noisy electric currents into
random binary sequences and explain how these phenomena are interlinked.
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(a) (b)

Fig. 5. Ideal noise-free CMOS inverter (a) and its physical model based on ideal components (b): comparator,
delay element, and slope limiter (inverter input and output signals are also depicted) .

4.1. Modeling the Number of Temporary Oscillations

Our study was based on an existing physical model of RS latches published by Reyneri
et al. [9]. We completed the noise- free model proposed by Reyneri et al. by taking
electric noises into account.

4.1.1. Modeling an Ideal Noise-Free Inverter

First, we assume that TERO is built using ideal noise-free CMOS inverters as presented
in Fig. 5a. This noise-free model is based on the physical model of an inverter with a
variable slope published in [9].We denote the input and output signals of such an inverter
Vin and Vout, respectively. As presented in Fig. 5b, the model proposed in [9] divides the
inverter into three entities:

– A comparator, which outputs VCC if the input voltage Vin is smaller than (VCC +
VGND)/2; otherwise, it outputs VGND;

– A delay line, which delays comparator output signal by a static delay T1;
– A slope limiter, which follows the delay line and generates the output signal Vout.

As depicted in Fig. 6, the model responds to a rising edge of the input signal by
generating a signal that decreases linearly with the slope −K0 until the output voltage
reaches the value (1 − K0) · VCC2 after which the output decreases exponentially until
it reaches the final value VGND.

First, let we consider that the inverter input signal Vin has a linear form as presented
in Fig. 5. We suppose that at t = t↑, signal Vin goes up from VGND to VCC and ta is the
time at which the output signal Vout is equal to (VCC + VGND)/2. At time t = t↓, signal
Vin goes down from VCC to VGND3 and at tb output Vout is equal to (VCC + VGND)/2.
Consequently, the width of the negative pulse at output Vout is equal to wout = tb − ta .
The output period signal is finished at t = tc, when Vin goes back to VCC.
The authors of [9] describe the behavior of the inverter when the input signal has

the same form as the described output signal. They show that in this case wout can be

2Where K0 is a positive real number smaller than 1.
3win can be defined as win = t↓ − t↑.
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Fig. 6. Response of an ideal noise-free inverter to a step function .

(a) (b)

Fig. 7. Model of a noisy inverter (a) and its response to a step function (b) .

approximated by:

wout = tc
2

+
[

win − tc
2

]

[1 + Hd ] (1)

where Hd = 2e
( K0 ·T2− tc

2
(1−K0)·T2

)

.

4.1.2. Modeling a Noisy Inverter

Noisy behavior at transistor level is modeled by noisy currents that are added to the ideal
noise-free current flowing between the source and the drain. As can be seen in Fig. 7a for
a CMOS inverter, these noisy currents can be represented by two sources of current nN
and nP , which are connected in parallel to output transistors and are only active during
inverter (gate) switching.
The inverter’s noisy output Vout can be seen as the sum of two signals, f (t) and n(t):

– f (t) represents an ideal component of the output signal, which contributes to the
charge and discharge of the CL capacitor by noise-free switching currents between
the source and drain of output transistors MN and MP;
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– n(t) corresponds to the noisy component of the output signal, i.e., it contributes to
the charge and discharge of the CL by the noisy signals nN and nP .

Let t0 be the last moment at which Vout is equal to VCC. Since the noisy currents exist
only during gate switching, n(t0) = 0. It is therefore clear that:

n(t) = n(t) − n(t0) = 1

CL

∫ t

t0
[nN (u) + nP (u)]du

In the following, we assume that nN and nP are Gaussian random variables. This
assumption is reasonable, because the noise currents can be considered as sums of
random variables associated with independent quantum processes in the transistors.
Consequently, n(t) can be represented as a stationary Gaussian random process.4

Let us now analyze variations in the width of the pulse transmitted over one inverter
as explained earlier in this section, but now in the presence of noisy currents. Let us
consider that at t = t↑, signal Vin goes up from VGND to VCC, and we denote ta the time,
at which the signal Vout at the output of the inverter reaches (VCC +VGND)/2. Similarly,
at t = t↓, signal Vin goes down from VCC to VGND and tb corresponds to the time at
which Vout is equal to (VCC + VGND)/2. Finally, at t = tend signal Vin goes back to
VVCC , ending one cycle. We denote tc = tend − t↑ the time that Vin needs to complete
one cycle. For the sake of simplicity, we denote win the width of one (positive) pulse at
signal Vin and wout the corresponding (negative) pulse at the output of an open chain of
inverters.
Proofs of the following lemma and propositions are provided in “Appendix A.”

Lemma 1. Let Ta (resp. Tb) be the random variable representing the time at which
the signal Vout reaches (VCC + VGND)/2 after a rising edge (resp. falling edge) on Vin.
Let ta (resp. tb) denote the ideal time at which Vout should reach (VCC + VGND)/2 in
noise-free conditions. Let Wout be the random variable representing the width of a pulse
at signal Vout corresponding to a pulse of widthwin at signal Vin. Then, with the previous
definitions of signals f (t) and n(t), we have:

1. Ta ∼ N
(

ta,
(

σ
f ′(ta)

)2
)

and Tb ∼ N
(

tb,
(

σ
f ′(tb)

)2
)

2. If Ta and Tb are independent,

Wout ∼ N (μout, σ 2
out) with

⎧

⎨

⎩

μout = tc
2 + (win − tc

2

)

(1 + Hd)

σ 2
out = σ 2

(

1

( f ′(ta))2
+ 1

( f ′(tb))2

)

where Hd is the constant introduced in Eq. (1).

4This may be not true at the device startup, but this assumption is reasonable after some time t0. For
each t ≥ t0, we assume that n(t) follows a normal distribution with mean 0 and variance σ 2, denoted
n(t) ∼ N (0, σ 2) in the following.
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Fig. 8. TERO structure (a) and its initial behavior (b) .

4.1.3. Shortening of the Pulse While it Traverses a Delay Chain

Let us now consider the open chain of N inverters discussed in the previous section,
where N is a nonzero positive integer. Let Vin be the input signal of the first inverter
and VoutN the output signal of the N th inverter. WoutN is the width of a pulse at VoutN
corresponding to a pulse win at signal Vin. The random behavior of WoutN is given in
Proposition 1.

Proposition 1. If the noise source in the inverter is independent from the noise sources
in other inverters, then

WoutN ∼ N (μoutN , σ 2
outN )with

{

μoutN = tc
2 + (win − tc

2

)

(1 + Hd)
N

σ 2
outN = σ 2

out

(
(1+Hd )2N−1
(1+Hd )2−1

)

4.1.4. Modeling Temporary Oscillations in the TERO Structure

Let us now consider two chains of inverters, as discussed in the previous section. Let
{K j } j=1...2M represent the set of inverters in the first chain and {L j } j=1...2M ′ those in
the second chain. We denote NK and NL the two NAND gates with outputs VK and
VL . They are connected to chains {K j } and {L j } (as depicted in Fig. 8a) and complete a
TERO. If Vctr is equal to VCC, NK (resp. NL) can be seen as the K th

2M+1 (resp. L
th
2M ′+1)

inverter of the chain K := {K j } j=1...2M+1 (resp. L := {L j } j=1...2M ′+1) generating the
mean delay τ1 (resp. τ2). Theoretically, τ1 and τ2 can be identical, if both branches have
the same topology. In practice, because of imperfections in the manufacturing process,
their values always differ. Without any loss of generality, we can assume that τ2 > τ1.

At t = 0, let signal Vctr go up from VGND to VCC. As shown in Fig 8b, this rising edge
forces the outputs of NAND gates NK and NL to fall from VCC to VGND. The falling
edge created at VL (resp. at VK ) propagates over K (resp. L). This creates a pulse of
mean width τ1 (resp. τ2) at VK (resp. VL ).

The two rising edges created on VK and VL start to propagate over elements L and
K . After a mean delay τ2 (resp. τ1), they cause signal VK (resp. VL ) to fall from VCC to
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VGND. The generated signals behave in the same way as the signals traversing set {I j }
in the previous section with a cycle of width tc = τ1 + τ2.

Proposition 2. Let WK0 (resp. WL0) be the width of the pulse observed at signal VK

(resp. VL) and WKS (resp. WLS) be the pulse width, once it has crossed S times over
both sets K and L.
If WK0 ∼ N (τ1, σ 2

out2M+1
) and WL0 ∼ N (τ2, σ 2

out2M ′+1
) and if the noise sources in

all the inverters are independent, then

WKS ∼ N (μKS , σ 2
KS

) with

⎧

⎨

⎩

μKS = τ1+τ2
2 + τ1−τ2

2 RS

σ 2
KS

= σ 2
out

R2S R2
M − 1

(1 + Hd)2 − 1

WLS ∼ N (μLS , σ 2
LS

) with

⎧

⎨

⎩

μLS = τ1+τ2
2 + τ2−τ1

2 RS

σ 2
LS

= σ 2
out

R2S R2
M ′ − 1

(1 + Hd)2 − 1

where RM = (1 + Hd)
2M+1, RM ′ = (1 + Hd)

2M ′+1 and R = RM RM ′ = (1 +
Hd)

2M+2M ′+2.

According to Proposition 2,μLS+μKS = τ1+τ2, so themean values of the duty cycles
of signals VK and VL are always complementary. Since by definition, WKS represents
thewidth of the pulses observed at signal VK and because of our assumption that τ2 > τ1,
oscillations disappear when WKS = 0. Consequently, the number of oscillations NOSC
corresponds to the last value of S at which WKS is positive:

NOSC = max{S|WKS > 0}. (2)

Let q be a positive integer different from zero. From Eq. (2), it follows that if NOSC
is greater than q, then WKq is positive and different from zero, too. Using this fact, we
can derive the probability that NOSC is greater than q from Proposition 2:

Pr{NOSC > q} = Pr{WKq > 0}. (3)

Then

Pr{NOSC > q} = 1√
2πσKq

∫ +∞
[

τ2−τ1
2

]

Rq− τ1+τ2
2

e
− u2

2σ2Kq du, (4)

or equivalently

Pr{NOSC > q} = 1

2

⎡

⎢
⎢
⎣
1 − er f

⎛

⎜
⎜
⎝

[τ2 − τ1]Rq − τ1 − τ2

2
√
2σout

√

R2q R2
M−1

(1+Hd )2−1

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

. (5)



From Physical to Stochastic Modeling…

Finally, from Eq. (5) we get the probability that NOSC is smaller than or equal to q:

Pr{NOSC ≤ q} = 1 − Pr{NOSC > q} = 1

2

⎡

⎣1 − er f

⎛

⎝K
1 − Rq−q0
√

R2q R2
M − 1

⎞

⎠

⎤

⎦ , (6)

where K and q0 are equal to:

K =
√
R2 − 1

2
√
2σr

, (7)

q0 = − log(Δr )

log(R)
, (8)

and where

σr =
σout

√
R2−1

(1+Hd )2−1

τ1 + τ2
= σout2M+2M ′+2

τ1 + τ2
,

Δr = τ2 − τ1

τ1 + τ2

Using Eq. (6), the probability pq that NOSC is equal to q (for q ≥ 1) can be estimated
by

pq = Pr{NOSC ≤ q} − Pr{NOSC ≤ q − 1},

pq = 1

2

⎡

⎣er f

⎛

⎝K
1 − Rq−q0−1
√

R2q−2R2
M − 1

⎞

⎠− er f

⎛

⎝K
1 − Rq−q0
√

R2q R2
M − 1

⎞

⎠

⎤

⎦ . (9)

Equation (9) is very important, because it can be used to model the distribution of
the number of temporary oscillations. Its main advantage is that the parameters of the
model (R, σr and Δr ) are easy to quantify (see Sect. 4.2). Parameter R is the ratio of
the geometric series and is related to the device technology and the number of inverters,
σr is the relative jitter accumulated over 2M + 2M ′ + 2 inverters, and Δr is the relative
difference between TERO branches. The proposed model, as we will see later, can serve
as a basis for the TERO TRNG stochastic model.

4.2. Experimental Validation of the TERO Stochastic Model

We validated the TEROmodel using the four TERO configurations presented in Sect. 2.
We evaluated the appropriateness of the model using 65536 realizations {Ak}k=1...65536
of theTERO temporary oscillations. Themodel parameters R,Δr , andσr were computed
from acquired data by determining K and q0 from Eqs. (7) and (8) as follows:

1. First, the distribution of temporary oscillations NOSC is obtained experimentally.
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2. Equation (6) states that Pr{NOSC ≤ q} = 1
2 for q = q0, meaning that q0 is the

median of the distribution of temporary oscillations NOSC:

q0 = median(NOSC).

3. The probability distribution Pr{NOSC ≤ q} can be thus computed for each q:

Pr{NOSC ≤ q} ≈ #{NOSC | NOSC ≤ q}
#{NOSC} .

4. Then using this approximation, Y (q) = er f −1
(

1 − 2Pr{NOSC ≤ q}
)

can be

computed. According to Eq. (6), er f −1
(

1−2Pr{NOSC ≤ q}
)

= K 1−Rq−q0
√

R2q R2
M−1

, so

Y (q) ≈ K
1 − Rq−q0
√

R2q R2
M − 1

.

Knowing that K =
√
R2−1

2
√
2σr

and σr = σout

√
R2−1

(1+Hd )2−1
/(τ1 + τ2), K can be ex-

pressed as

K = (τ1 + τ2)

√

(1 + Hd)2 − 1

2
√
2σout

= (τ1 + τ2)

√

R
1

M+M ′+1 − 1

2
√
2σout

and Y (q) as

Y (q) = (τ1 + τ2)

2
√
2σout

︸ ︷︷ ︸

K ′

(1 − Rq−q0)

√

R
1

M+M ′+1 − 1
√

R2q R2
M − 1

. (10)

5. Finally, the value of R is determined. Knowing that R ∼ 1 and R > 1, the value
Rloop, such that the ratio Y (q)/Z(q) is almost constant (i.e., independent from q),
is searched in a loop for R > 1 in the neighborhood of 1 . This constant named K ′
represents an approximation of the value (τ1+τ2)

2
√
2σout

. As mentioned above, Y (q) was

obtained experimentally and Z(q) is derived from Eq. (10) as follows:

Z(q) =
(1 − Rq−q0

loop )

√

R
1

M+M ′+1
loop − 1

√

R2q
loop R

2
M − 1

. (11)
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Fig. 9. Experimental validation of the model for two TERO topologies in technology ST 40nm (graphs a, b)
and ST 28nm (graphs c, d), with the following relative differences in delay between the two TERO branches:
a 31%, b 35%, c 20%, and d 32% .

Then when this particular R and the constant K ′ are found, we finally compute the
two last parameters of the model

σr =
√
R2 − 1

2
√
2K ′
√

R
1

M+M ′+1 − 1

and

Δr = R−q0.

The results are presented in Fig. 9. The distribution depicted in Fig. 9a was obtained
using parameter values: R = 1.01221; Δr = 0.3081; σr = 0.00205, the distribution
in Fig. 9b was modeled with parameters: R = 1.00701; Δr = 0.3531; σr = 0.00398,
the distribution in Fig. 9c had: R = 1.01841; Δr = 0.1936; σr = 0.00173, and finally
the distribution in Fig. 9d was modeled with parameters: R = 1.01191; Δr = 0.3171;
σr = 0.00615.
In the following section, we will use our model to estimate entropy at the TERO

TRNG output.

5. Stochastic Model of the Complete TERO-Based TRNG

Let Hosc be the entropy contained in the sequence of number of oscillations Nosc. Since
realizations of Nosc are assumed to be independent (the generator is restarted periodically
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and is thus memory-less), this entropy is related to pq from Eq. (9) as follows:

HNosc = −
∑

q∈N
pq log2(pq)

We computed the value of HNosc for the four distributions depicted in Fig. 9. The distri-
bution shown in Fig. 9a had the entropy rate per sample (per byte) HNosc = 4.80, that
in Fig. 9b had the entropy rate HNosc = 6.76, the distribution in Fig. 9c had the entropy
rate HNosc = 4.39, and in the fourth case we obtained HNosc = 6.42.
Let pb be the probability that the least significant bit of Nosc is equal to 1. This

probability is related to pq from Eq. (9) as follows:

pb =
k=+∞
∑

k=0

p2k+1. (12)

For each realization,we select the least significant bit of Nosc to formavector (bn−1 . . . b0)2.
This vector can be interpreted as a binary number Bn ∈ {0, . . . , 2n − 1}. As the TRNG
is restarted after each acquisition of Nosc, bits (bk)k=0...n−1 are independent. Thus, for
each n-bit integer Xn = (xn−1 . . . x1x0)2

pXn = Pr(Bn = Xn) =
n−1
∏

j=0

[1 − pb]1−x j [pb]x j .

If the random process associated with Bn is stationary, the entropy per bit at the
generator output is equal to [11]:

H = lim
n→+∞

Hn

n
,

where

Hn = −
∑

Xn∈{0,...,2n−1}
pXn log2(pXn ).

Since jitter realizations are assumed to be independent, realizations of Nosc and bk
are also assumed to be independent. Consequently, we consider that the generator has
no memory and consequently that the generated random bits do not contain any short-
or long-term dependencies. The Shannon entropy per bit at the generator output derived
from our model can thus be simplified as follows:

Hb = −pb log2(pb) − (1 − pb) log2(1 − pb).

We computed the entropy rate per bit for the four TERO configurations discussed in
Sect. 4.2. The model parameters and entropy estimations for four TERO configurations
having histograms from Fig. 4 are presented in Table 1.
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Table 1. Model parameters and entropy estimation for the four TERO TRNG configurations featuring his-
tograms from Fig. 4.

Technology ST 40nm ST 28nm
TERO configuration (a) (b) (c) (d)

R 1.01221 1.00701 1.01841 1.01191
Δr 0.3081 0.3531 0.1936 0.3171
σr 0.00205 0.00398 0.00173 0.00615
HNosc 4.801523 6.761983 4.390844 6.423837
Hb > 0.9999 > 0.9999 > 0.9999 > 0.9999

As can be seen, in all cases, the entropy rate at the least significant bit was higher than
0.9999, meaning that the entropy per bit exceeded the value required by AIS 31. This
was in perfect agreement with the experimental results of the tests AIS 31 presented in
Sect. 3.1.

Although the distribution of counter values is shown to be well characterized by our
model, we are aware that this distribution itself does not stipulate that probabilities
of 0’s and 1’s at the TRNG output are balanced. Indeed, to verify the validity of the
model, we must ensure that no bit patterns or autocorrelations could be observed at
the TRNG output. To check this, we computed the autocorrelation coefficients for the
least significant bit of the counter for a 10,000-bit sequence, while shifting the output
sequence by 1 to 40 bits. (The autocorrelation naturally decreases as the shift increases.)
As can be seen in Fig. 10, the obtained autocorrelation values were close to 0 for shifts
> 0 inside the confidence interval represented by the two horizontal dotted lines.

6. Impact of Temperature and Voltage Variations

The measurement results presented in the previous sections have been obtained under
nominal operating conditions (voltage and temperature). In the next step, we observed
generator output values and variation of the model parameters (σr ,Δr and R) in varying
conditions. Following our conservative approach, we wished to determine the lower
bound of entropy per bit that can be achieved even in the worst case.
ATEROcell featuringM = 18 andM ′ = 20with the following parameters computed

under nominal conditions (T = 25 ◦C and V = 1.1V):

– R = 1.01911,
– Δr = 0.1506238,
– σr = 0.000525218,
– Mean number of oscillations: N osc = 126

was first placed into an environmental simulation chamber BINDER MKT 240, and we
changed the temperature inside the chamber from− 20 to+ 65 ◦C.Once the temperature
stabilized at the given measurement step, we acquired 10,000 counter values from the
device and computed the model parameters. Their evolution depending on temperature
is summarized in Fig. 11.
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Fig. 10. Autocorrelation of the TERO-based TRNG output for four studied configurations (a–d).

Despite a relative stability of the model parameters and the output entropy rate around
the nominal temperature (25 ◦C), we could observe that the results and in particular
relative delays and transition timings (both rising and falling edges) that are represented
by Δr and R, respectively, changed slightly with the temperature.

Following the presented conservative approach of entropy estimation, we took the
minimum value of the entropy rate per output bit as a low entropy bound for the given
implementation. Note that because the entropy rate depends not only on σr but also
on Δr and R, this minimum entropy rate value does not necessarily correspond to the
minimum value of σr .
Wemade similar experiments at various power supply voltages (from1000 to 1200mV

by step of 10mV) and acquired 10,000 counter values in each step to compute the model
parameters. Their evolution depending on supply voltage is summarized in Fig. 12.
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Fig. 11. Impact of the temperature on the model input parameters and output entropy rate per bit .

As can be seen, the supply voltage variation impacts the TERO structure and thus the
model parameters more than the temperature variation. The parameter R is not stable
around the nominal voltage any more, and it decreases regularly with the increasing
voltage. This effect can be explained by the fact that the supply voltage modifies both
falling and rising edge times that are modeled globally by the parameter R. Similarly as
for temperature variations, we compute the entropy rate per output bit achievable in the
worst case.
We could observe in this section that the model parameters are sensitive to environ-

mental changes. These changes should be detected by some dedicated tests that should
be embedded in the same device in order to signal significant deviations of security
critical parameters caused by deterioration of operating conditions or some attacks.
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Fig. 12. Impact of the supply voltage on the model parameters and output entropy rate per bit .

7. Discussion

As we have seen above, the distribution of counter values for a given instance of the
TERO-based TRNG is very well characterized by the model parameters R, σr , and Δr ,
and the entropy of the generated sequence depends on this distribution. Using the model,
we can observe the impact of the TERO design on the distribution of random numbers
and hence on entropy.
First, entropy is determined by relative jitter, i.e., by parameter σr . Since designers

cannot directly alter the sources of thermal noise, they can only change the relative jitter
by reducing the delay of the two TERO branches. This corresponds to increasing the
frequency of oscillations.
Another important model parameter that determines entropy rate is the relative dif-

ference between the two TERO branches, i.e., parameter Δr . With smaller relative dif-
ferences, TERO accumulates more jitter because it oscillates longer. As we saw in our
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TERO TRNG implementations, the entropy rate per generated output byte was over
4.8, 6.7, 4.3, and 6.4, respectively. This means that if the designer only used one bit
per generated byte (the counter output), they would be discarding a high percentage
of usable random data. Of course, some post-processing could be used to profit from
as much entropy as possible, but it would require additional silicon area, especially if a
sophisticated algorithmwas used (which would probably be the case in order to maintain
a maximum entropy rate).
Another much more practical solution would be to unbalance the two TERO branches

to the extent that the entropy rate per generated byte is sufficiently higher than 1 and
then to use only one bit per generated number. Because of the difference in delays in the
two branches, the TERO would oscillate for a shorter time and the output bit rate would
consequently be higher. Since the entropy rate per generated number would be higher
than one, each generated bit (the least significant bit of the counter) would have enough
entropy and post-processing would not be necessary.

8. Conclusion

In this paper, we analyzed the processes that transform the noisy currents in the TERO
circuitry into a random bit stream of the TERO-based TRNG. First, we conducted a
detailed analysis of electric processes inside the TERO structure, and based on this
analysis, we proposed the physical model of the TERO. We checked the model in four
TERO configurations implemented in an ST 40nm and ST 28nm ASIC technology.
Next, based on this model, we proposed a stochastic model of a complete TERO-

based TRNG. We showed that the proposed stochastic model can be successfully used
to estimate the entropy rate. The entropy estimations are in perfect agreement with the
results of the AIS 31 test suites.
We also showed that the proposed TRNG stochastic model can not only be used to

estimate the entropy rate at the output of the generator, but also for entropymanagement,
by setting a sufficient entropy rate while maintaining the maximum output bit rate.

Acknowledgements

This work received funds from the European ENIAC Joint Undertaking (JU) in the
framework of the project TOISE (Trusted Computing for European Embedded Systems)
and from the European Union’s Horizon 2020 research and innovation programme in
the framework of the project HECTOR (Hardware Enabled Crypto and Randomness)
under Grant Agreement No. 644052. The authors wish to thankNicolas Bruneau,Michel
Agoyan, and Yannick Teglia for their help and numerous discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/


F. Bernard et al.

Appendix

A. Proofs

In this section, we give proofs of Lemma 1, Propositions 1 and 2.

Proof of Lemma 1. In a neighborhood of ta , f (t) can be approximated by its tangent
line at time ta , giving the relation Ta − ta = n(ta)

f ′(ta) . Since n(ta) ∼ N (0, σ 2), Ta ∼
N
(

ta,
σ 2

f ′(ta)2
)

. The same holds for Tb in a neighborhood of tb, because n(t) is stationary.

By definition, Wout = Tb − Ta . If Ta and Tb are independent, Wout follows a normal
distribution with mean μout = tb − ta = tc

2 + [win − tc
2

] [1 + Hd ] from Sect. 4.1 and

variance σ 2
out = σ 2

Tb
+ σ 2

Ta
= σ 2

(

1
f ′(ta)2

+ 1
f ′(tb)2

)

. �

Proof of Proposition 1. (by recurrence on N)
Lemma 1 gives expression of μoutN and σ 2

outN for N = 1. Let {I j } j=1...N+1 be a set of
inverters, and let VN be the signal between the two last inverters. Logically, the output
of inverter IN becomes the input of inverter IN+1. Let Vin be the input signal of the first
inverter I1 and Vout is the output signal of the last inverter IN+1 in the chain. win is the
width of a pulse at I1. Let WN be the width of the corresponding pulse appearing at
signal VN and WN+1 be the width of the pulse at VN+1. By assumption of recurrence,

WN ∼ N (μoutN , σ 2
outN ) with

{

μoutN = tc
2 + (win − tc

2

)

(1 + Hd)
N

σ 2
outN = σ 2

out

(
(1+Hd )2N−1
(1+Hd )2−1

)

According to Lemma 1, WN+1 ∼ N (μout, σ 2
out) with μout = tc

2 + (wn − tc
2

)

(1 + Hd)

where wn is a realization of WN . Assuming independence of noise sources in the chain,
we have μoutN+1 = tc

2 + (μoutN − tc
2

)

(1 + Hd) and σ 2
outN+1

= σ 2
outN (1 + Hd)

2 + σ 2
out

giving

μoutN+1 = tc
2

+
(
tc
2

+
(

win − tc
2

)

(1 + Hd)
N − tc

2

)

(1 + Hd)

= tc
2

+
(

win − tc
2

)

(1 + Hd)
N+1

and σ 2
outN+1

= σ 2
out

(
(1+Hd )2N−1
(1+Hd )2−1

)

(1+Hd)
2+σ 2

out = σ 2
out

(
(1+Hd )2N+2−(1+Hd )2

(1+Hd )2−1
+ 1
)

=
σ 2
out

(
(1+Hd )2N+2−1

(1+Hd )2−1

)

.

The statement in Proposition 1 is true for N + 1. By recurrence over N , Proposition 1
is true for any N . �

Proof of Proposition 2. Here we provide the proof for WKS . (The same is valid for
WLS by replacing τ1 with τ2.)
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Assuming that there is a pulse wkS−1 at VK , the corresponding pulse WKS at VK after
crossing the branches L and K (equivalent to a single chain of 2M + 2M ′ + 2 inverters)
is given as follows (according to Proposition 1 with N = 2M + 2M ′ + 2):

WKS ∼ N

⎛

⎜
⎜
⎜
⎜
⎜
⎝

tc
2

+
(

wkS−1 − tc
2

)

R, σ 2
out

(
R2 − 1

(1 + Hd)2 − 1

)

︸ ︷︷ ︸

σ 2
out2M+2M ′+2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where R = (1 + Hd)
2M+2M ′+2 and tc = τ1 + τ2.

Thus, assuming independence of the noise sources in chains K and L , we have two rela-
tions of recurrence on μKS = τ1+τ2

2 + (μKS−1 − τ1+τ2
2

)

R and on σ 2
KS

= σ 2
out2M+2M ′+2

+
σ 2
KS−1

R2.
It is easy to show that ∀S ≥ 1,

μKS = τ1+τ2
2 + (μK0 − τ1+τ2

2

)

RS = τ1+τ2
2 + τ1−τ1

2 RS,

σ 2
KS

= R2Sσ 2
K0

+ σ 2
out2M+2M ′+2

∑S−1
i=0 (R2)i = R2Sσ 2

out2M+1
+ σ 2

out2M+2M ′+2

R2S−1
R2−1

.

According to Proposition 1,

σ 2
out2M+1

= σ 2
out

((1 + Hd)
2M+1)2 − 1

(1 + Hd)2 − 1
= σ 2

out
R2
M − 1

(1 + Hd)2 − 1
and σout2M+2M ′+2

= σ 2
out

((1 + Hd)
2M+2M ′+2)2 − 1

(1 + Hd)2 − 1
= σ 2

out
R2 − 1

(1 + Hd)2 − 1
,

therefore σ 2
KS

= σ 2
out

(1+Hd )2−1

(

R2S(R2
M − 1) + (R2 − 1) R

2S−1
R2−1

)

= σ 2
out

R2S R2
M

(1+Hd )2−1
. �
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