
HAL Id: ujm-01784103
https://ujm.hal.science/ujm-01784103v2

Submitted on 18 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of the PLL configuration in a PLL-based
TRNG design

Elie Noumon Allini, Oto Petura, Viktor Fischer, Florent Bernard

To cite this version:
Elie Noumon Allini, Oto Petura, Viktor Fischer, Florent Bernard. Optimization of the PLL config-
uration in a PLL-based TRNG design. 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Mar 2018, Dresden, France. �10.23919/DATE.2018.8342209�. �ujm-01784103v2�

https://ujm.hal.science/ujm-01784103v2
https://hal.archives-ouvertes.fr

Optimization of the PLL Configuration
in a PLL-based TRNG Design
Elie Noumon Allini, Oto Petura, Viktor Fischer, Florent Bernard

Univ Lyon, UJM Saint-Etienne
Laboratoire Hubert Curien, UMR CNRS 5516

42000 Saint-Etienne
(elie.noumon.allini, oto.petura, fischer, florent.bernard)@univ-st-etienne.fr

Abstract—Several recent designs show that the phase locked-
loops (PLLs) are well suited for building true random number
generators (TRNG) in logic devices and especially in FPGAs, in
which PLLs are physically isolated from the rest of the device.
However, the setup of the PLL configuration for the PLL-based
TRNG is a challenging task. Indeed, the designer has to take
into account physical constraints of the hardwired block, when
trying to achieve required performance (bit rate) and security
(entropy rate per bit). In this paper, we introduce a method aimed
at choosing PLL parameters (e.g. input frequency, multiplication
and division factors of the PLL) that satisfy hardware constraints,
while achieving the highest possible bit rate or entropy rate
according to application requirements. The proposed method is
fast enough to produce all possible configurations in a short time.
Comparing to the previous method based on a genetic algorithm,
which was able to find only a locally optimized solution and only
for one PLL in tens of seconds, the new method finds exhaustive
set of feasible configurations of one- or two-PLL TRNG in few
seconds, while the found configurations can be ordered depending
on their performance or sensitivity to jitter.

I. INTRODUCTION

Random number generators represent cryptographic pri-
mitives that are crucial in most cryptographic applications.
They are used to generate confidential cryptographic keys,
initialization vectors, nonces or even random masks in side
channel attack countermeasures. Knowing that the security
of cryptographic constructions relies on the secrecy of the
key [1], random numbers used in cryptographic schemes are
required to be of excellent statistical quality while being
completely unpredictable. This can be achieved in true random
number generators (TRNGs), in which the unpredictability is
guaranteed by some physical random phenomena.

Modern cryptographic systems are usually implemented in
logic devices and contain mostly some oscillator-based TRNG
using random jitter of generated clock signals as a source
of randomness. In FPGAs, free-running oscillators are imple-
mented in logic area, while PLLs are hardwired in a physically
isolated zone, in which the impact of processes running in the
logic area is significantly reduced. This is considered to be the
main advantage of implementation of PLL-TRNG in FPGAs.

1The article was published in the proceedings of the DATE 2018 conference.
The published version is:
E. Noumon Allini, O. Petura, V. Fischer and F. Bernard, ”Optimization of the
PLL configuration in a PLL-based TRNG design,” 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2018,
pp. 1265-1270. doi: 10.23919/DATE.2018.8342209

Its simple and comprehensive design based on the use of one
[2], [3], [4] or two PLLs [5] and availability of the stochastic
model [6] represent other important advantages. Last but not
least, the use of PLL ensures good stability and repeatability
of results in different devices in time, and in large range of
temperatures and power supply voltages.

The main difficulty in the PLL-TRNG design is related to
the choice of appropriate PLL configurations from a large
design space. The chosen configuration should ensure required
entropy rate and sufficient output bit rate. Among restricted
amount of possible configurations that meet frequency ranges
of individual PLL blocks (we call them feasible configura-
tions), only few ensure required entropy and output bit rate to
achieve security and performance requirements (we call them
suitable configurations).

Authors of a recent survey [7] achieved relatively weak
results in the PLL-TRNG design: the entropy rate was mostly
insufficient and the output bit rate was quite low. The same
team then optimized the design of the generator using a genetic
algorithm (GA) [8]. The authors claimed that they significantly
reduced the design time and enhanced both entropy rate and
bit rate at generator output.

However, since the genetic algorithm finds only the locally
optimal solution, which depends on starting values of para-
meters of the GA selected randomly, it was never sure that
the found solution is the best one. Another disadvantage of
the use of the GA was that it had limited number of possible
input parameters and it was therefore suitable only for the
PLL-TRNG using just one PLL.

In this paper, we propose another method which produces
all usable configurations of a PLL-based TRNG. We opted for
the generation of an exhaustive list of configurations instead
of trying to find the best one because the notion of the best
configuration is application dependent.

Our contribution:
• We propose and verify efficiency of the new algorithm

finding all suitable configurations of a PLL-based TRNG.
• We show that the new method can find configurations for

TRNGs based either on one or two PLLs.

The paper is organized as follows. In Section II, we intro-
duce the principle of the PLL-based TRNG, and explain the
problem to be solved. In Section III, we describe the proposed

method aimed at finding suitable configurations of the PLL-
based TRNG. In Section IV, we present obtained results and
compare them with those provided by the GA. We conclude
the paper in Section V.

II. GENERAL PRINCIPLE OF THE PLL-BASED TRNG

The PLL-based TRNG is based on a coherent sampling
principle: a clock signal clk1 is sampled using another clock
signal clk0 in a D flip-flop (D-FF). Clock signals clk1 and
clk0 can be generated in one [2] or two [5] PLLs as presented
in Fig. 1 a) and b), respectively.

 D-FF
TRNG

outD
 Q
 clk

Decimator
(XOR-ing KD samples)

 clkref clk1

 clk0

 D-FF
TRNG

outD
 Q
 clk

Decimator
(XOR-ing KD samples)

 clkref PLL1

PLL1

PLL0

 clk1

 clk0 = clkref

a)

b)

Fig. 1. PLL-based TRNGs using one (a) or two (b) PLLs

Thanks to the use of PLLs, frequencies of clk1 and clk0 are
mutually related:

f1
f0

=
KM

KD
, (1)

where KM and KD are integer values representing frequency
multiplication and division factors, which depend on PLL
configuration(s).

Note that we do not consider the fractional mode of PLL
operation, in which multiplication and division factors can
obtain real values, since signals generated in this mode can
feature a deterministic jitter caused by the operation of the
Delta sigma modulator [9], [10].

Consequently, for the one-PLL-TRNG from Fig. 1 a),
KM = KM1

and KD = KD1
. In the case of two-PLL TRNG

from Fig. 1 b), TRNG multiplication and division factors are
defined as follows:

KM = KM1
·KD0

, (2)

KD = KM0 ·KD1 . (3)

The use of two PLLs has two advantages: 1) it makes the PLL-
TRNG design more flexible by making the practical ranges of
KM and KD much larger and consequently, by increasing
ranges of bit and entropy rates that can be attained; 2) it
reduces significantly autocorrelation between output bits. The
higher price of this solution can be reduced in most of cases
by sharing PLL0 with other system blocks.

The output signal of the D-FF from Fig. 1 features pseudo-
random pattern with a period TQ = KD/f0 = KM/f1. This
pattern is removed by XOR-ing KD samples in the decimator,

which follows the sampler D-FF [2]. The decimator output
then represents the pattern-free random output of the PLL-
TRNG.

The bit rate of the PLL-TRNG is defined as follows [2]:

R =
f0
KD

=
f1
KM

. (4)

The entropy rate per bit at generator output depends on
parameters of the jitter and on parameters of the generator,
which are characterized by its sensitivity to the jitter [7]:

S = f0 ·KM = f1 ·KD. (5)

The objective of the designer is to set up parameters of the
PLL(s) in order to obtain (depending on application require-
ments) sufficient entropy and bit rate at generator output.
When setting up parameters of the PLL, the designer must
fulfill hardware requirements of the hardwired PLL circuitry,
which will be discussed in the following section.

A. General Structure of the PLL and Its Configuration

The general structure of the PLL is depicted in Fig. 2.
The PLL blocks are usually hardwired and the designer can
configure the PLL by setting up directly or indirectly (e.g.
by selecting the targeted output frequency) programmable
dividers N,M,PV CO, C, while strictly respecting relation-
ships between individual blocks, and namely permitted ranges
of their input/output frequencies and permitted ranges of
programmable dividers, which are specified in the technical
documentation of the PLL block.

clkin
N

clkout
C

M

PFD CP LF VCO P
VCO

Fig. 2. General internal structure of the PLL (N : input frequency division
factor, M : multiplication factor, PFD: phase-frequency detector, CP: charge
pump, LF: loop filter, VCO: voltage-controlled oscillator, PV CO : post-VCO
frequency divider, C: output frequency division factor).

Namely, the output frequency fPFD of the phase-frequency
detector depends on the input frequency as follows:

fPFD =
fin
N

, (6)

the VCO frequency is:

fV CO = fPFD ·M · PV CO, (7)

and the output frequency is:

fout =
fPFD ·M

C
. (8)

The use of the PLL ensures a rational relation between
frequencies of the input and output signals. More precisely,
we have:

KD · fout = KM · fin, (9)

where:
KM = M and KD = N · C. (10)

In the case of PLL-based TRNGs from Fig. 1.b), frequencies
f0 and f1 are related in the following way:

KM · f0 = KD · f1, (11)

where:

KM = KM1
·KD0

= M1 ·N0 · C0, (12)

and
KD = KM0

·KD1
= M0 ·N1 · C1. (13)

Note that if only one PLL is used, N0 = M0 = C0 = 1 in
Equations (12) and (13). For this reason, we will next consider
only the general case in which two PLLs are used.

B. Problem to Solve

The problem we address in this paper can be split into two
steps:

1) finding all the feasible configurations of PLLs that fulfill
hardware constraints given in their technical documen-
tation,

2) among these feasible configurations, finding suitable
configurations that satisfy performance and/or security
criteria of the targeted application (e.g. entropy rate
specified in AIS-31 recommendations [11]).

The first step is to find, for each i ∈ {0, 1}, the values
of Mi, Ni, Ci satisfying Equations (6) to (13), that are con-
strained by the following inequalities:

Mmin 6 Mi 6 Mmax

Nmin 6 Ni 6 Nmax

Cmin 6 Ci 6 Cmax

fPFDmin
6 fPFDi

6 fPFDmax

fV COmin
6 fV COi

6 fV COmax

foutmin
6 fouti 6 foutmax

,

(14)
(15)
(16)
(17)
(18)
(19)

where the numbers Mmin, Nmin, Cmin, Mmax, Nmax

and Cmax are positive integers, and fPFDmin
, fPFDmax

,
fV COmin , fV COmax , foutmin and foutmax are positive real
numbers, which represent hardware limitations of the PLL
given by manufacturers.

In our experiments, we considered PLL-based TRNGs im-
plemented in three different FPGA families: Intel Cyclone
V [9], Xilinx Spartan-6 [10], and Microsemi SmartFusion R©2
FPGAs [12]. Table I gives hardware restrictions for selected
FPGA families.

Once the configurations that are feasible in selected hard-
ware are found, the designer needs to filter out those, which do
not attain required entropy rate and/or sufficient output bit rate
depending on application objectives and constraints, according
to Equations (4) and (5).

The stochastic model of the PLL-based TRNGs [6] can be
used to provide thresholds for these parameters, which are
necessary to obtain suitable configurations out of all feasible
configurations.

TABLE I
PLL SPECIFICATIONS OF SELECTED FPGA FAMILIES

Parameter Cyclone V Spartan-6 SmartFusion R©2

Min Max Min Max Min Max
fref (MHz) 5 500 19 540 1 200

PV COi
1 2 1 1 1 32

Ni 1 512 1 52 1 16384

Mi 1 512 1 64 1 4194304

Ci 1 512 1 128 1 255

fPFDi
(MHz) 5 325 19 500 1 200

fV COi
(MHz) 600 1300 400 1080 500 1000

fouti (MHz) 0 460 3.125 400 20 400

III. RESEARCH OF PLL-TRNG CONFIGURATIONS

As explained in the previous section, we proceed in two
steps: the search for all feasible PLL configurations is followed
by the search for configurations giving acceptable results.

To find all feasible configurations, the first naive idea could
be to perform an exhaustive search on the PLL design space
and to save configurations that satisfy hardware constraints
(Inequalities (14) to (19)). Due to the number of possible
configurations, it is not reasonable to process this way, since
the algorithm running time could reach several years.

The proposed improvement of the optimization algorithm
consists in a sequential search of all values of Mi, Ni and Ci

that lead to feasible configurations of the two PLLs.
Indeed, from Equation (6), we can see that for the given

value fref , Ni is the only variable for which the value has to
be found. Also, from Equations (6) and (7), we can express
fV COi as a function of fref , Ni and Mi. So for given values
of fref and Ni, we look for all possible values of Mi. In the
same way, for given values of fref , Ni and Mi, Equation (8)
helps to find the values of Ci. This process is repeated for
each value of PV COi .

A. Research of All Feasible PLL Configurations

We first set a value for fref between frefmin and frefmax

defined in Table I. Then, for each value of PV COi , we proceed
as follows:

1) From Equation (6), Ni =
fref
fPFDi

. When combined with

Inequalities (15) and (17), we can write:

Nmini
6 Ni 6 Nmaxi

, (20)

where

Nmini
= max

(
Nmin,

⌈
fref

fPFDmax

⌉)
(21)

and

Nmaxi = min

(
Nmax,

⌊
fref

fPFDmin

⌋)
. (22)

Note that Nmaxi
− Nmini

6 Nmax − Nmin, showing
that the range for searching Ni is reduced.

2) Inequality (20) provides a new range of possible values
of Ni. For a value of Ni chosen in this range, we can
express a new range of possible values for Mi. Indeed,
from Equations (6) and (7), we can write:

Mi =
Ni · fV COi

fref · PV COi

. (23)

With the assumption that Ni, fref and PV COi
are given,

fV COi is the only variable value. From Inequalities (14)
and (18), it follows:

Mmini 6 Mi 6 Mmaxi , (24)

where

Mmini = max

(
Mmin,

⌈
Ni · fV COmin

fref · PV COi

⌉)
(25)

and

Mmaxi
= min

(
Mmax,

⌊
Ni · fV COmax

fref · PV COi

⌋)
. (26)

3) Inequality (24) provides a smaller set of possible values
of Mi, for some a priori chosen value of Ni. For chosen
values of Ni and Mi, Equations (6) and (8) give Ci =
fref ·Mi

Ni · fi
. Knowing that all values are given except for

fouti which ranges from foutmin to foutmax , it follows:

Cmini 6 Ci 6 Cmaxi , (27)

where

Cmini = max

(
Cmin,

⌈
fref ·Mi

Ni · foutmax

⌉)
(28)

and

Cmaxi
= min

(
Cmax,

⌊
fref ·Mi

Ni · foutmin

⌋)
. (29)

Thanks to Inequalities (20), (24) and (27) we are guaranteed
to obtain only feasible configurations and all of them in a
reasonable amount of time (several hours instead of years).

This search process can be improved in the context of PLL-
based TRNG.

B. Research of Suitable PLL Configurations

A feasible configuration for a PLL-based TRNG is any one
found according to the process described in section III-A.
Moreover, in the PLL-based TRNG [2], KD must be odd
and co-prime with KM . Even though the coprimality of
KM and KD has to be checked by the Euclidean algorithm
(gcd(KM ,KD) = 1), it is possible to skip the parity test of
KD. Indeed, KD ought to be odd, and from Equation (13),
this implies that M0, N1 and C1 should all be odd. Values of
M0, N1 and C1 can then be looked for by a step of 2, starting
with the smallest odd number in each range. This consideration
reduces by a factor of 2, for each of these parameters, the
number of values that have to be checked, and it thus speeds
up the algorithm.

Furthermore, for security reasons, the sensitivity to the jitter
must be sufficiently high. For performance reasons, we want

the output bit rate to be as high as possible. Then, using
application requirements and Equations (4) and (5), values
of KM and KD must be bounded. In order to give more
flexibility to the designer, we introduce sM and sD as their
respective upper bounds. Thus:

0 6 KM 6 sM and 0 6 KD 6 sD. (30)

Using Equations (12) and (13), it follows:

0 6 C0 6
sM

M1 ·N0
and 0 6 C1 6

sD
M0 ·N1

. (31)

We can thus define smaller upper bounds C ′max0
, C ′max1

to
C0 and C1, respectively, by:

C ′max0
=

⌊
min

(
Cmax,

fref ·M0

N0 · foutmin

,
sM

M1 ·N0

)⌋
(32)

and

C ′max1
=

⌊
min

(
Cmax,

fref ·M1

N1 · foutmin

,
sD

M0 ·N1

)⌋
. (33)

These new considerations reduce significantly the number of
possible configurations of both PLLs. We thus have a smaller
subset among all the feasible configurations suitable for the
PLL-based TRNGs implemented in the selected FPGA family.

The whole search process is resumed in Algorithm 1.

IV. RESULTS AND DISCUSSION

A. Implementation Results

To evaluate the speed and efficiency of the search process,
according to hardware limitations specified by manufacturers,
we implemented our algorithm in C language. The algorithm
takes only two inputs: the reference frequency fref and the
FPGA family, for which we want to generate configurations.

We ran the algorithm on an HP Compaq 6005 Pro MT
PC AMD AthlonTM II X2 B24 Processor. When fed with
a reference frequency of 125MHz (we selected the same
reference frequency for all families in order to get comparable
results), our algorithm found all the usable configurations in
less than 10 seconds for each of the above mentioned FPGA
families.

We decided to generate all the usable configurations, instead
of trying to find the best configuration, because we wanted to
provide a general tool that designers can use to generate a
suitable PLL-TRNG configuration. Indeed, the notion of best
configuration is closely dependent on the target application.

According to the application the TRNG is designed for,
parameters that have to be optimized may change. For ex-
ample, when the generator is expected to achieve a fair
level of security with the highest output bit rate, the opti-
mization process will search for the highest output bit rate
which guarantees a suitable security level that reaches the
requirements. However, for a high level security application,
the optimization process would be finding configurations that
ensures the highest entropy, regardless or not the output bit
rate.

1: compute Nmin0 from Equation (21)
2: compute Nmax0 from Equation (22)
3: Nmin1

← round up to odd(Nmin0
)

4: Nmax1
← Nmax0

5: configs ← MAKEEMPTYLIST()
6: for all PV CO0

in Pvco vals do
7: for all PV CO1 in Pvco vals do
8: for N1 = Nmin1 to Nmax1 by 2 do
9: compute Mmin1

from Eq. (25)
10: compute Mmax1

from Eq. (26)
11: for N0 = Nmin0

to Nmax0
do

12: compute Mmin0
from Eq. (25)

13: Mmin0 ← round up to odd (Mmin0)
14: compute Mmax0 from Eq. (26)
15: for M0 = Mmin0

to Mmax0
by 2 do

16: compute Cmin0
from Eq. (28)

17: for M1 = Mmin1
to Mmax1

do
18: compute Cmin1 from Eq. (28)
19: Cmin1 ← round up to odd (Cmin1)
20: compute C ′max0

from Eq. (32)
21: compute C ′max1

from Eq. (33)
22: for C1 = Cmin1

to C ′max1
by 2 do

23: compute KD from Eq. (13)
24: for C0 = Cmin0 to C ′max0

do
25: compute KM from Eq. (12)
26: if gcd(KM ,KD) = 1 then
27: compute f0 and f1 from Eq. (8)
28: compute R from Eq. (4)
29: compute S from Eq. (5)
30: save into configs, values of fref ,

PV CO0 , PV CO1 , M0, N0, C0, M1,
N1, C1, f0, f1, KM , KD, R, S

31: end if
32: end for
33: end for
34: end for
35: end for
36: end for
37: end for
38: end for
39: end for

Algorithm 1. PLL configuration search algorithm for the PLL-TRNG

The timing analysis of our PLL-TRNG design showed the
maximum supported clock frequency of around 250MHz on
all three tested FPGA families. This frequency is the limiting
frequency of the logic resources in our design. To comply with
these limits, we decreased the PLL maximum output frequency
from manufacturers’ limit to 250MHz in order to exclude the
PLL configurations to fast for our circuitry.

The minimum value of sensitivity to jitter can be determined
from the required entropy rate using stochastic model pre-
sented in [6]. For the Shannon entropy rate required by AIS31
[11] (H1=0.997), the minimum sensitivity to jitter obtained
from the model must be higher than 0.09 ps−1. So we limited
our search to configurations satisfying this security condition.

The search returned 188 suitable configurations out of
389 853 (0.048%) feasible ones for Intel Cyclone V, 8 out
of 89 025 (0.0089%) for Xilinx Spartan-6, and 9 976 out of
2 339 412 (0.426%) for SmartFusion R©2.

The number of configurations satisfying security conditions
is smaller than 1 % of the total number of feasible configu-
rations (even with the additional output frequency constraint
mentioned above) for every FPGA family tested, so the manual
search is nearly impossible.

Table II presents three representative configurations for each
FPGA family: the one with the best bit rate R, best sensitivity
S, and best product R ·S. While for Cyclone V and Spartan-6
families we could select three different configurations depen-
ding on optimization criteria, one configuration (out of seven)
in SmartFusion R©2 was the best regarding all of them.

To validate the quality of the chosen configurations, we
ran the AIS31 statistical test suite on output bit sequences
of the TRNG with given configurations. Since the sensitivity
limit was chosen according to the stochastic model, it is not
surprising that outputs of all the configurations passed the
statistical tests.

B. Comparison of Found One-PLL Configurations with Re-
sults of the GA

In order to compare our method with the one based on the
genetic algorithm, we implemented a version of our algorithm
which uses only one PLL. For each of the three FPGA
families, we ran this algorithm with the reference frequency
recorded in [8, Table II]. Table III presents the obtained results.

As could be expected, the proposed algorithm found all the
configurations provided by the GA. However, as can be seen
in Table III, it also found better configurations ensuring higher
output bit rate or jitter sensitivity. It thus gives the designer a
very efficient tool to find the best configuration, which fulfills
hardware constraints and satisfies high security requirements
in the given true random number generation context.

V. CONCLUSION

In this paper, we have introduced a method for generating
all suitable PLL-TRNG configurations out of all feasible PLL
configurations in a TRNG design based on one or two PLLs.
This solves the problem of finding configurations of a PLL-
TRNG in a most efficient way and also in the case, in which
the published genetic algorithm could not be applied because
of high number of variables. We also showed that in the case of
a one-PLL-TRNG, the algorithm finds all configurations found
by the genetic algorithm, but also configurations providing
higher output bit rate or jitter sensitivity, than the previous
ones.

Furthermore, contrary to the genetic algorithm approach,
our method is fast enough to generate all suitable configura-
tions within seconds for both one-PLL and two-PLL designs.
This approach guarantees the global optimality of found results
as all feasible configurations are obtained and all suitable
configurations are selected from them according to specific
constraints of the application.

TABLE II
TWO-PLL-TRNG CONFIGURATIONS FOR SENSITIVITY S > 0.09 ps−1

Config. fref PV CO0
PV CO1

M0 N0 C0 M1 N1 C1 f0 f1 KM KD R S R · S
(MHz) (MHz) (MHz) (Mbit /s)

(
ps−1

)
Intel Cyclone V

Highest S 125 1 1 7 1 4 113 19 3 218.75 247.807 452 399 0.548 0.0988 0.0542

Highest R 125 2 1 43 11 2 17 3 3 244.318 236.111 374 387 0.631 0.0913 0.0577

Highest R · S 125 1 1 19 2 5 41 7 3 237.5 244.047 410 399 0.595 0.0973 0.0579

Xilinx Spartan-6
Highest S, R, and R · S 125 1 1 43 5 5 17 3 3 215 236.11 425 387 0.555 0.0913 0.0507

Microsemi SmartFusion R©2

Highest S 125 1 1 7 1 4 113 19 3 218.75 247.807 452 399 0.548 0.098 0.054

Highest R 125 1 4 29 5 3 25 13 1 241.66 240.384 375 377 0.641 0.090 0.058

Highest R · S 125 1 4 23 3 4 33 17 1 239.58 242.647 396 391 0.612 0.094 0.058

TABLE III
COMPARISON OF ONE-PLL-TRNG CONFIGURATIONS FOUND BY THE PROPOSED ALGORITHM WITH THOSE FOUND USING THE GA

fref PV CO M N C f1 KM KD R S

(MHz) (MHz) (Mbit /s)
(
ps−1

)
Intel Cyclone V

Best configuration from [8] 350 1 131 37 3 413 131 111 3.15 0.045

Configuration found in this paper 350 1 136 37 3 428.82 136 111 3.15 0.047
Xilinx Spartan-6

Best configuration from [8] 430 1 47 21 5 192 47 105 4.095 0.020

Configuration found in this paper 430 1 47 21 3 320.79 47 63 6.82 0.020

Microsemi SmartFusion R©2

Best configuration from [8] 200 2 216 127 1 340 216 127 1.574 0.043

Configuration found in this paper 200 2 253 127 1 398.425 253 127 1.574 0.05

Last but not least, a stochastic model can be used to set a
minimum threshold for the sensitivity in order to guarantee a
sufficient entropy rate at the TRNG output. This threshold
has been taken as a constraint and has been used to get
suitable PLL configurations (less than 1 % of all feasible
configurations) that fulfill this important security requirement.
The designer can then sort the configurations in order of
their preference while still satisfying the given security level,
knowing that for some security levels sufficient bit rate may
not exist.

ACKNOWLEDGMENT

This work has received funding from the French DGA under
grant agreement No 16810066 and the European Union’s
Horizon 2020 in the framework of the project HECTOR under
grant agreement No 644052.

REFERENCES

[1] A. Kerckhoffs, “La cryptographie militaire,” Journal des Sciences Mil-
itaires, vol. IX, pp. 5–38, January 1883.

[2] V. Fischer and M. Drutarovsky, “True random number generator
embedded in reconfigurable hardware,” in Cryptographic Hardware
and Embedded Systems - CHES 2002, ser. LNCS, vol. 2523, Redwood
Shores, CA, USA. Springer Verlag, 2002, pp. 415–430. [Online]. Avail-
able: http://www.springerlink.com/content/00veem7fjd2ejaqj/fulltext.pdf

[3] S. C. Bagal, V. V. Deotare, D. V. Padole, and S. C. Bagal, “Generation of
true random number using analog phase locked loop,” in International
Journal of Advanced Research in Electronics and Communication En-
gineering (IJARECE), 2015, pp. 1913–1916.

[4] C. Liu and J. McNeill, “A digital-PLL-based true random number
generator,” in 2005 PhD Research in Microelectronics and Electronics,
vol. 1, 2005, pp. 113–116.

[5] V. Fischer, M. Drutarovsky, M. Simka, and N. Bochard, “High
performance true random number generator in Altera stratix FPLDs,”
in Field Programmable Logic and Application: 14th International
Conference, FPL 2004, Leuven, Belgium, August 30-September 1,
2004. Proceedings. Springer, 2004, pp. 555–564. [Online]. Available:
http://www.springerlink.com/content/mx45y5j24ng3kx6q/fulltext.pdf

[6] F. Bernard, V. Fischer, and B. Valtchanov, “Mathematical model
of physical rngs based on coherent sampling,” Tatra Mountains
Mathematical Publications, vol. 45, no. 1, pp. 1–14, 2010. [Online].
Available: http://tatra.mat.savba.sk/Full/45/01be-f-v.pdf

[7] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A
survey of AIS-20/31 compliant TRNG cores suitable for FPGA devices,”
in 26th International Conference on Field-Programmable Logic and
Applications, FPL ’16, Lausanne, Switzerland, Aug. 2016.

[8] O. Petura, U. Mureddu, N. Bochard, and V. Fischer, “Optimization of
the PLL Based TRNG Design Using the Genetic Algorithm,” in IEEE
International Symposium on Circuits and Systems, ISCAS, 2017, pp.
2202–2205.

[9] Altera, Cyclone V Device Datasheet (CV51002), 2015. [Online].
Available: www.altera.com

[10] Xilinx, Spartan-6 FPGA Clocking Resources (UG382), 2015. [Online].
Available: www.xilinx.com/support/documentation/user guides/ug382.
pdf

[11] W. Killmann and W. Schindler, “A proposal for: Functionality
classes for random number generators,” 2011. [Online]. Available:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/
Interpretationen/AIS 31 Functionality classes for random number
generators e.pdf? blob=publicationFile

[12] Microsemi, SmartFusion2 and IGLOO2 Clocking
Resources (UG0449), 2015. [Online]. Avail-
able: www.microsemi.com/document-portal/doc view/
132012-ug0449-smartfusion2-and-igloo2-clocking-resources-user-guide

