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ABSTRACT

Context. The detection of exoplanets by direct imaging is an active research topic in astronomy. Even with the coupling of an ex-
treme adaptive-optics system with a coronagraph, it remains challenging due to the very high contrast between the host star and the
exoplanets.
Aims. The purpose of this paper is to describe a method, named PACO, dedicated to source detection from angular differential imaging
data. Given the complexity of the fluctuations of the background in the datasets, involving spatially variant correlations, we aim to
show the potential of a processing method that learns the statistical model of the background from the data.
Methods. In contrast to existing approaches, the proposed method accounts for spatial correlations in the data. Those correlations
and the average stellar speckles are learned locally and jointly to estimate the flux of the (potential) exoplanets. By preventing from
subtracting images including the stellar speckles residuals, the photometry is intrinsically preserved. A nonstationary multi-variate
Gaussian model of the background is learned. The decision in favor of the presence or the absence of an exoplanet is performed by a
binary hypothesis test.
Results. The statistical accuracy of the model is assessed using VLT/SPHERE-IRDIS datasets. It is shown to capture the nonstationar-
ity in the data so that a unique threshold can be applied to the detection maps to obtain consistent detection performance at all angular
separations. This statistical model makes it possible to directly assess the false alarm rate, probability of detection, photometric and
astrometric accuracies without resorting to Monte-Carlo methods.
Conclusions. PACO offers appealing characteristics: it is parameter-free and photometrically unbiased. The statistical performance in
terms of detection capability, photometric and astrometric accuracies can be straightforwardly assessed. A fast approximate version
of the method is also described that can be used to process large amounts of data from exoplanets search surveys.
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1. Introduction

Direct imaging of exoplanets is a recent observational technique
(Traub & Oppenheimer 2010) particularly adapted to the obser-
vation of young and massive exoplanets. It is complementary to
conventional indirect imaging methods (Santos 2008) such as
Doppler spectroscopyor the radialvelocity technique thathave led
to the detection and characterization of several hundred subJovian
mass exoplanets (Schneider et al. 2011). Direct imaging is also
a privileged observation method to reconstruct the spectrum of
low mass substellar objects (Vigan et al. 2010). This information
is crucial for estimating physical parameters critical for the
characterization of these objects. In particular, it is mandatory
to estimate the objects age, surface gravity, composition, or
effective temperature (Allard et al. 2003, 2007) and to predict
their evolution (Burrows et al. 1997; Chabrier et al. 2000) by
refining the numerical models of low mass objects and the exo-
planet formation theories. Despite the promising future of direct
imaging, only a few dozen exoplanets have been successfully
detected to this day using this technique (Lagrange et al. 2009;

Bonavita et al. 2014; Macintosh et al. 2015; Chauvin et al. 2017).
This is mainly due to the difficulty in detecting a faint exoplanet
signal given the very large contrast (greater than 10−5 in the
near infrared) between the companions and their host star. In
addition to the use of extreme adaptive optics, optical atten-
uation of the host star by using a coronagraph is mandatory
to reach this level of contrast (Soummer 2004; Mawet et al.
2006). Currently, two exoplanet-searchers are optimized using
these instrumental techniques for direct imaging observations:
the Spectro-Polarimetry High-contrast Exoplanet REsearch
(SPHERE; Beuzit et al. 2008) at the Very Large Telescope
(VLT) of the European Southern Observatory (ESO) and the
Gemini Planet Imager (GPI; Macintosh et al. 2014) at the GEM-
INI observatory. These two instruments offer spectroscopic
observations capability in the near infrared via integral fields
spectrographs (IFS) or long slit spectroscopy (Vigan et al. 2010).
The VLT/SPHERE is also equipped with a differential imager,
the InfraRed Dual Imaging Spectrograph (IRDIS; Dohlen et al.
2008a,b) optimized for imaging exoplanets using angular and
spectral differential imaging. In order to enhance the achievable

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A138, page 1 of 27

https://doi.org/10.1051/0004-6361/201832745
https://www.aanda.org
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0


A&A 618, A138 (2018)

contrast, several observation strategies have been developed
to exploit temporal or spectral diversity. Spectral differential
imaging (SDI; Racine et al. 1999) is based on the assumption that
stellar speckles from diffraction are strongly correlated from one
wavelength to another (when thedifferential aberrations are small)
after compensating for the wavelength scaling. Multiple images
at different wavelengths can thus be combined to numerically
suppress a large fraction of the stellar speckles. In addition, the
SDI technique assumes that the exoplanet flux is detectable at one
wavelength while it is too weak at the other wavelength. Angular
differential imaging (ADI; Marois et al. 2006) consists of tracking
the observation target over time (the telescope derotator is tuned to
maintain the telescope pupil stable while the field of view rotates).
Consequently, candidatecompanionsdescribeanapparentmotion
along a predictive circular trajectory around the host star while
the telescope pupil (including spiders) and coronagraph remain
static. Speckles resulting from instrumental aberrations are thus
strongly correlated from one exposure to the other. The images
can be combined to cancel most of the speckles while preserving
part of the signal from the off-axis sources. Their apparent motion
helps to separate them from the speckle background. Detectability
of the exoplanets therefore relies on the combined ability of the
instrument and the numerical processing to suppress the light
from the host star and extract the signal from the exoplanets from
the remaining stellar speckles. Elaborate processing methods
combining multi-temporal and/or multi-spectral data play a cen-
tral role to reach the ultimate detection limit achievable by such
instruments.

This paper is organized as follows. In Sect. 2 we review the
current methods for exoplanet detection in ADI or SDI. In Sect. 3
we then introduce the principle of our method based on a mod-
eling of patch covariances. The detailed implementation of the
algorithm is described in Sect. 4. We assess the performance of
our method on VLT/SPHERE-IRDIS datasets in Sect. 5. Finally,
Sect. 6 draws the conclusions of the paper.

2. Current methods for exoplanet direct detection
using angular and/or spectral differential imaging

Several methods have been developed to combine different im-
ages taken at several consecutive times and/or wavelengths. Stel-
lar speckles can be attenuated by subtracting a reference stellar
point spread function (PSF). This is the principle of the LOCI
algorithm (Lafreniere et al. 2007). The reference stellar PSF to
be subtracted to the data is created by a linear combination of
images selected in a library of data acquired under experimen-
tal conditions similar to those of the observation of interest. The
optimization of this combination is performed by minimizing, in
the least squares sense, the residual noise inside multiple sub-
sections of the image. To ensure a more efficient suppression of
stellar leakages, the reference stellar PSF is generally extracted
from data in which the exoplanets are to be detected. While at-
tenuating at best the stellar speckles, cancellation of part of the
signal from the exoplanets also occurs when the rotation of the
field of view is small. This problem is more acute at the vicin-
ity of the host star since displacements due to the rotation of
the field of view are the smallest there. Many variants have been
developed to partially alleviate this problem. A more elaborate
version of LOCI called TLOCI (Marois et al. 2013, 2014) is cur-
rently considered as one of the most advanced standards for
the detection and characterization of exoplanets by direct imag-
ing. The main variation compared to the standard LOCI algo-
rithm is related to the construction of the reference stellar PSF.

Instead of only minimizing the noise (i.e., the norm of the resid-
uals), TLOCI also maximizes the exoplanet signal-to-noise ratio
(S/N) in the residuals. In other words, the influence of a spe-
cific choice of linear combination on the reduction of the flux
of the candidate companion is also considered. The TLOCI al-
gorithm is often calibrated for exoplanet signal self-subtraction
by injecting “fake” exoplanets (faint point sources) into the data
to determine the algorithm throughput at each position in the
field of view after the speckle removal. For each fake exoplanet
injected, the ratio of the exoplanet flux in the resulting image
to its initial flux is estimated to produce the 1D-throughput as
a function of the angular separation. The MLOCI algorithm
(Wahhaj et al. 2015) injects fake point sources and maximizes
their S/N, which also improves the S/N of the sources present in
the data. In the ALOCI algorithm (Currie et al. 2012a,b), the data
are divided into annuli and processed independently, thereby al-
lowing different linear combinations at different angular sep-
arations in the definition of the stellar PSF. Another method,
called ANDROMEDA (Mugnier et al. 2009; Cantalloube et al.
2015), forms differences of temporal images to suppress stellar
speckles and performs the detection of differential off-axis PSFs
(i.e., the signature of an exoplanet in the difference images). A
generalized likelihood ratio test is then evaluated. Since the tech-
niques discussed so-far are based on image differences that al-
ways reduce the amplitude of the signal due to the exoplanets,
adapted post-processing calibrations must be applied to recover
the photometry of the detected exoplanets. MOODS algorithm
(Smith et al. 2009), based on the joint estimation of the exo-
planet amplitude and of the stellar PSF (considered constant
for all observations of a temporal dataset), circumvents this
problem.

Another family of methods considers that the fluctuations
of the stellar speckles (i.e., the stellar PSF) span a small-
dimensional subspace. Exoplanets are thus detected on the sub-
space orthogonal to the subspace that captures fluctuations of
the stellar speckles. The data are projected in an orthogonal ba-
sis created by principal components analysis (PCA). This is the
principle of the KLIP algorithm (Soummer et al. 2012) which
builds a basis of the subspace capturing the stellar PSF by per-
forming a Karhunen-Loève transform of the images from the ref-
erence library. To obtain a model of the stellar PSF to subtract
in order to attenuate the speckles, the science data is projected
onto a predetermined number of modes. Even if the general
principle is close to the LOCI type algorithms, KLIP is much
faster thanks to the truncation. The sKLIP (Absil et al. 2013)
algorithm partially prevents the subtraction of signal from the
companions by building the reference library only from images
where the candidate exoplanets underwent a sufficient rotation.
The LLSG (Gonzalez et al. 2016) algorithm is also related to
subspace methods. It locally decomposes a temporal serie of im-
ages into low-rank, sparse and Gaussian components. It is ex-
perimentally shown that the exoplanet signals mostly remain in
the sparse term allowing for an improved detection. However,
it is expected that this method is sensitive to outliers in the data
(such as bad or hot pixels), which are also recovered in the sparse
component together with the candidate exoplanets.

Finally, the last family of detection methods are based on
a modeling of the stellar PSF based on diffraction modeling.
PeX algorithm (Thiébaut et al. 2016; Devaney & Thiébaut 2017)
models the chromatic dependence of speckles. MEDUSAE
method (Ygouf 2012; Cantalloube 2016) performs an inversion
to identify the phase aberrations in a physical model of the coro-
nagraph and deconvolve the images to recover the circumstellar
objects by exploiting spectral diversity and regularization terms.
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All of these techniques have several tuning parameters that
often require tuning by trial and error and the intervention of
an expert, making the optimality difficult to reach. It is also of-
ten observed that the detection maps (or residual images) have
nonstationary behaviors (typically with a variance that increases
at smaller angular separations). As a result, it is necessary to
carry out a pre-calibration step to control the probability of false
alarm when using these techniques. This pre-calibration is tricky
to perform in the presence of numerous background sources. The
pre-calibration is also dependent on the injected fake exoplanet
flux, resulting in a large processing time.

3. PACO: Exoplanet detection based on
PAtch COvariances

The prereduction of the SPHERE datasets uses the Data
Reduction Handling (DRH) pipeline (Pavlov et al. 2008) that
was delivered by the SPHERE consortium with the instrument
to ESO. Additional optimized prereduction tools allow accu-
rate astrometric calibrations (Maire et al. 2016). These prere-
ductions made use of the SPHERE data center (Delorme et al.
2017) which assembles raw images into calibrated datasets by
performing several corrections: bad pixels identification and
interpolation1, thermal background subtraction, flat-field correc-
tion, anamorphism correction, true north alignment, frame cen-
tering, compensation for spectral transmission, frame selection,
and flux normalization. The outputs of these first steps are tem-
poral sequences of coronagraphic images (organized in datasets
with three dimensions hereafter), and of the associated off-axis
PSF. Figure 1 shows an example of a science frame derived from
VLT/SPHERE-IRDIS data and a view of two spatio-temporal
slices extracted at two different locations (along the solid line:
far from the host star, along the dashed line: near the host star).
Within the central region (angular separations below 1 arcsec at
the wavelength λ1 = 2.110 µm), the signal is dominated by stel-
lar speckles due to the diffraction in presence of aberrations. At
farther angular separations, the noise comes mainly from a com-
bination of photon noise from thermal background flux and de-
tector readout. Observation of the temporal fluctuations in the
spatio-temporal cuts reveals spatial variations of the variance of
the fluctuations but also an evolution of their spatial correlations.
Beyond accounting for the average intensity of stellar speckles,
we base our exoplanet detection method on a nonstationary mod-
eling of short-range spatial covariances. To ease the statistical
learning of these covariances directly from the data and to ob-
tain a detection method based on local processing, we consider
a decomposition of the field of view into small patches whose
size covers the core of the off-axis PSF. Our detection method
accounts for the (spatial) covariance of these patches, hence the
name PACO for PAtch COvariance. In the following paragraphs,
we describe into more details the proposed model, derive a detec-
tion criterion and characterize the photometric and astrometric
accuracies.

3.1. Statistical model for source detection and
characterization

To simplify the notations and the discussion, we have consid-
ered datasets at a single wavelength. If observations at several

1 In practice, some bad pixels displaying large fluctuations only on
a few frames remain after this processing. These can be attributed to
either too conservative selection criteria or evolving temporal behavior
of the detector bad pixels.

Fig. 1. Sample from a VLT/SPHERE-IRDIS dataset (HIP 72192 dataset
at λ1 = 2.110 µm). Two spatio-temporal slices cut along the solid and
dashed line are displayed at the bottom of the figure, emphasizing the
spatial variations of the structure of the signal.

wavelengths are available, they can be split and processed in-
dependently from each other. Joint processing of multi-spectral
data can be beneficial but requires some refinements that are be-
yond the scope of this paper and that will be covered by a fol-
lowing paper.

Science images obtained by high-contrast imaging within
ADI have two components: (i) the signal of interest, due to the
presence of exoplanets or background sources in the field of
view, and (ii) a very strong background, produced by the stel-
lar speckles and other sources of noise, that displays temporal
fluctuations. The motion of the background sources/exoplanets
due to the rotation of the field of view is precisely known. An
exoplanet at some bidimensional angular location φ0 at a chosen
initial time t0 is seen at location φt = Ft(φ0) at time t, where
Ft is the geometrical transform (e.g., a rotation) modeling the
apparent motion of the field of view between the observation
configurations at time t0 and time t. We note that a reminder
of the main notations used throughout the paper is given in
Table 1.

Since very few sources are within the field of view and
these sources are faint, we have modeled locally the observed
data as the super-imposition of a background (stellar speckles
and noise) and at most one other source, unresolved and lo-
cated in the immediate vincinity (no overlapping of several faint
sources).
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Table 1. Reminder of the main notations.

Not. Definitions

Constants
T number of temporal frames
N number of pixels in a temporal frame
K number of pixels in a patch

Data quantities
r observed intensity
f background
h off-axis PSF

Positions
φ0 2D angular location at a chosen initial time t0
Ft(φ0) field of view motion model between t and t0
φt 2D angular location at time t with φt = Ft(φ0)
bφte closest on-grid location to φt
θk a 2D on-grid pixel location

The observed intensity rθk ,t` at the 2D pixel location θk and
time t`, corresponding to the spatio-temporal index (k, `) in the
dataset, can then be decomposed into the two components:

rθk ,t` =α hθk (φt` ) + fθk ,t` , (1)

with α≥ 0 the flux of the unresolved source (α= 0 in the absence
of such source), hθk (φt` ) = h(θk − φt` ) the off-axis PSF, centered
on the location φt` of the source at time t` and sampled at pixel
location θk, and fθk ,t` the background at spatio-temporal index
(k, `) which accounts for stellar speckles and noise.

The major difficulty in the detection of exoplanets lies in the
fact that the amplitude of the background fθk ,t` is much larger
than the exoplanet contribution αhθk (φt` ) and that it fluctuates
from one time t to another. It is necessary to follow a statistical
approach to account for these fluctuations. The collection of all
observations {rθk ,t` }k=1:N, `=1:T in the presence of an exoplanet ini-
tially located at φ0 with a flux α is then described as a random
realization with a distribution given by the probability density
function p f of the background:

pr({rθk ,t` }k=1:N, `=1:T |α, φt` ) =

p f ({rθk ,t` − α hθk (φt` )}k=1:N, `=1:T ). (2)

Based on this model and under the hypothesis that there are
few sources within the field of view (so that each source can
be considered separately), an unbiased estimation of the flux α
knowing the initial angular location φ0 is provided by the maxi-
mum likelihood estimator:

α̂= arg max
α

p f ({rθk ,t` − α hθk (Ft` (φ0))}k=1:N, `=1:T ). (3)

We note that α̂ implicitly depends on the assumed position φ0 of
the source. The detection of a point source at a given location φ0
can be formalized as a hypothesis test:
H0 : {rθk ,t` }`=1:T, k=1:N = { fθk ,t` }`=1:T, k=1:N

H1 : {rθk ,t` }`=1:T, k=1:N = α {hθk (φt` )}`=1:T, k=1:N

+ { fθk ,t` }`=1:T, k=1:N .

(4)

Literally, this means that under hypothesis H0 the collection of
all observations corresponds to pure background (stellar speck-
les and noise) while under hypothesis H1 it is the superimposi-
tion of the off-axis PSF with a flux α and some background.

By replacing α inH1 with the maximum likelihood estimate
α̂ obtained from (3) for an assumed initial position φ0, the (gen-
eralized) likelihood of each hypothesis can be compared to form
the generalized likelihood ratio test (GLRT, see for example
Kay 1998a):

log
p f ({rθk ,t` − α̂ hθk (φt` )}k=1:N, `=1:T )

p f ({rθk ,t` }k=1:N, `=1:T )
H1
≷
H0

η· (5)

In order to apply Eqs. (3) and (5) to the detection and photo-
metric or astrometric estimations, it is necessary to specify the sta-
tistical model of the background. In most of the existing methods
for exoplanet detection by ADI, some data preprocessing is ap-
plied in order to reduce the amplitude of the background term and
whiten it (i.e., lessen its spatial correlations). Such preprocessing
takes the form of (weighted) temporal differences in ADI, TLOCI
and ANDROMEDA, a high-pass filtering, or the projection onto
the subspace orthogonal to the dominant modes identified by a
PCA in KLIP and its variations. ANDROMEDA distinguishes
itself in that both its detection and estimation procedures are de-
rived from a statistical framework (Eqs. (3) and (5) applied un-
der the assumption of uncorrelated Gaussian noise). Rather than
transforming the data so that a simple statistical model can be as-
sumed (uncorrelated observations), we performed no preprocess-
ing but account for the spatial correlations in our model. Given
that more than a few tens of photons are collected at each detec-
tor pixel, the Poisson detection statistics can be approximated by
a Gaussian distribution. The other contributions for the temporal
fluctuations (thermal background noise, evolution of the speckle
patterns due to evolving phase aberrations or the decentering of
the star on the coronagraph) will be considered, in the absence of
a more precise model, to be Gaussian distributed. This Gaussian
approximation gives closed-form expressions that have a prac-
tical interest for the implementation. The spatial structure of the
background is mainly due to that of the speckles (related to the an-
gular resolution) and the interpolation steps in the data reduction
pipeline. Most of these correlations are at small scale. Moreover,
the off-axis PSF h(φ) has a core (also defined by the angular res-
olution) that is only a few pixels wide. Hence, in Eqs. (3) and (5),
only pixels (k, `) of the dataset such that hθk (φt` ) is non negligible
have an impact on the estimation or detection. These pixels are
represented in green in Fig. 2.

We denote the set of the K spatial pixels that form an ex-
tended spatial neighborhood centered at pixel θk, at time t`, as
the patch2 rθk ,t` ∈ R

K . In the following, patches are sets of pix-
els with the shape of a discrete disk. If the radius of this disk is
chosen large enough to encompass the core of the off-axis PSF,
the collection of all pixel values {rθk ,t` }k=1:N, `=1:T used in Eqs. (5)
and (3) to detect or estimate the flux of an exoplanet located
at φ0 can be reduced to the collection of patches {rbφte,t` }`=1:T
(with bφte the closest pixel to the subpixel location φt) that con-
tains the exoplanet. Only the joint distribution of these obser-
vations need be modeled. Since the background is different in
each patch (and possibly varies differently according to time),
we used a different model for each patch (local adaptivity of the
model), see Fig. 2. The reduced number T of available back-
ground patches at a given spatial location (typically, from a few
tens to a hundred temporal frames) limits the correlations that
can be accounted for. We chose to account only for spatial corre-
lations3 and to use a multivariate Gaussian model to describe the
2 We use bold fonts to denote patches while normal fonts are reserved
to scalars and angular positions.
3 Generalization to spatio-temporal correlations is straightforward but
raises difficulties in practice due to the lack of samples.
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Fig. 2. Apparent motion of an exoplanet in an ADI stack of frames.
Green patches contain, in each frame, the exoplanet (i.e., the off-axis
PSF) superimposed with the background. The statistical model of a
background patch is built locally based on observed patches at the same
location but at different times (set of red patches).

distribution of each background patch. Patches at different times
are considered to be statistically independent. Rather than defin-
ing the distribution p f of all background pixels, we then modeled
only the distribution of background pixels in the patches of inter-
est. This distribution p f ({ f bφte,t` }`=1:T ) is modeled as a product of
Gaussian distributions defined over each patch that would con-
tain an exoplanet if that exoplanet was initially located at φ0

p f ({ f bφte,t` }`=1:T ) =

T∏
`=1

N( f bφte,t` | mbφte,Cbφte) , (6)

withN(· | mbφte,Cbφte) the probability density function of the mul-
tivariate Gaussian (mean m and covariance C) that describes
background patches centered at pixel bφte.

3.2. Statistical learning of the background

In our model, we have considered a common mean mθk and co-
variance Cθk for all T background patches { f θk ,t` }`=1:T centered
at a given pixel location θk. Background patches are not directly
available, only observed patches {rθk ,t` }`=1:T can be used to es-
timate the mean mθk and covariance Cθk . Moreover, the limited
number T of temporal frames makes a direct estimation of Cθk

by the sample covariance either rank deficient (if T <K) or too
noisy. Some form of regularization must thus be enforced. Sev-
eral strategies can be considered (see Appendix A and Fig. A.1).
We found that a shrinkage approach (Kay & Eldar 2008) with a
data-driven shrinkage factor was the best adapted to our prob-
lem due to its capability to balance locally the regularization and
thanks to the absence of any tuning parameter. In a nutshell, a
shrinkage covariance estimator Ĉ is defined by the convex com-
bination of two estimators Ŝ and F̂

Ĉ = (1 − ρ̂) Ŝ + ρ̂ F̂ (7)

where ρ̂ is the shrinkage weight. The two estimators Ŝ and F̂ are
chosen such that one estimator has very little bias (but a large
variance) and the other one has fewer degrees of freedom, hence
a much smaller variance, at the cost of an increased bias. The pa-
rameter ρ̂ is set in order to achieve a bias–variance trade-off. As
detailed in Appendix A, we defined Ŝ as the sample covariance
matrix computed at location θk:

Ŝθk =
1
T

T∑
`=1

(
rθk ,t` − m̂θk

)
·
(
rθk ,t` − m̂θk

)t (8)

with

m̂θk =
1
T

T∑
`=1

rθk ,t` , (9)

the sample mean. The chosen estimator F̂ is the diagonal matrix
formed from the sample covariance:

[
F̂θk

]
ii =

1
T

T∑
`=1

[
rθk ,t` − m̂θk

]2
ii =

[̂
Sθk

]
ii (10)

and
[
F̂θk

]
i j = 0 if i , j. (11)

Diagonal elements of the shrinkage estimator Ĉ then correspond
to the empirical variance while off-diagonal elements (i.e., co-
variance terms) are shrunk toward 0 by a factor 1 − ρ̂, hence the
name.

The shrinkage factor ρ̂ is locally adapted in an unsupervised
data-driven way. In Appendix A we derive its expression4:

ρ̂
(

Ŝθk

)
=

tr
(

Ŝ2
θk

)
+ tr2

(
Ŝθk

)
− 2

∑K
i=1

[
Ŝθk

]2

ii(
T + 1

)(
tr

(
Ŝ2
θk

)
−

∑K
i=1

[
Ŝθk

]2

ii

) · (12)

Remaining bad pixels after the prereduction (see introduc-
tory discussion in Sect. 3) take very large values at some dates.
These aberrant values often impact exoplanet detection algo-
rithms. By learning the local covariance of the patches, these
large fluctuations are accounted for within our model (large pixel
variance). We show in Sect. 5 that these bad pixels do not lead
to false alarms.

3.3. Unbiased estimation of the background statistics

To account for the fact that observed patches {rθk ,t` }`=1:T do not
contain pure background but also, in the presence of an exo-
planet, the signal due to the exoplanet, estimation of the back-
ground statistics and of the exoplanet flux can be alternated,
starting from an initial guess of pure background. At the n-th
iteration, after a flux α̂(n) has been estimated for the exoplanet
assuming background statistics Ĉ(n) (as explained in Sect. 3.4),
the background statistics can be improved by computing

m̂(n + 1)
θk

= 1
T
∑T
`=1

(
rθk ,t` − α̂

(n)hθk (φt` )
)

Ŝ(n + 1)
θk

= 1
T
∑T
`=1

(
rθk ,t` − α̂

(n)hθk (φt` ) − m̂(n + 1)
θk

)
·
(
rθk ,t` − α̂

(n)hθk (φt` ) − m̂(n + 1)
θk

)t[
F̂(n + 1)
θk

]
ii =

[̂
S(n + 1)
θk

]
ii

ρ̂(n + 1) = ρ̂
(̂
S(n + 1)
θk

)
Ĉ(n + 1) = (1 − ρ̂(n + 1)) Ŝ(n + 1) + ρ̂(n + 1) F̂(n + 1).

(13)

4 We enforce ρ̂θk to be in the range [0, 1] by clipping values below zero
or larger than one.
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This iterative procedure is applied to provide unbiased estimates
of the flux of an exoplanet, after detection. Indeed, should the
contribution of the exoplanet not be subtracted prior to comput-
ing the statistics of the background, the mean would contain a
fraction of the PSF of the exoplanet (1/T th of the flux of the
exoplanet if the exoplanet is visible only in one of the patches
centered on pixel θk). The covariance would then encode that
there are significant variations in the background in the form of
an appearing and disappearing PSF. The subsequent estimation
of the source flux would be penalized by these errors on the mean
and covariance of the background. A few iterations of Eq. (13)
and exoplanet flux re-estimations corrects the statistics of the
background and prevents from biasing the estimation of the pho-
tometry by an erroneous statistical model of the background.

Experiments have shown that the unbiased estimation of the
flux of the exoplanet is not beneficial in the exoplanet detection
phase. While it improves the signal of the exoplanets, it changes
the distribution of the test in the absence of exoplanet, which
makes the setting of a detection threshold (see Appendix A
for details) more difficult. Therefore, we computed the back-
ground statistics m̂θk and Ĉθk based on Eqs. (7)–(12) to compute
a detection map (see Sect. 3.5), and alternate Eq. (13) with a
re-estimation of the flux for the photometric and astrometric es-
timations of a detected source (see Sects. 3.4 and 3.6).

3.4. Estimation of the flux of an exoplanet

Under our multivariate Gaussian model of the background, the
maximum likelihood estimator given in Eq. (3) for an assumed
initial location φ0 has a simple expression (see for example
Kay 1998b):

α̂ =

∑T
`=1 b`∑T
`=1 a`

, (14)

with

a` = hbφt`e
(φt` )

t · Ĉ−1
bφt`e
· hbφt`e

(φt` ) (15)

and

b` = hbφt`e
(φt` )

t · Ĉ−1
bφt`e
·
(
rbφt`e,t` − m̂bφt`e

)
, (16)

where we recall that hbφt`e
(φt` ) denotes the off-axis PSF for a

source at (subpixel) location φt` sampled over a patch of K pixels
and whose center is bφt`e, the nearest pixel to φt` .

The maximum likelihood estimator α̂ given in Eq. (14) de-
pends linearly on the data, hence its variance can be easily de-
rived. Noting that α̂= a/b with a =

∑T
`=1 a` and b =

∑T
`=1 b`, we

obtain:

Var{α̂}= Var{b}/a2 (17)

since a is deterministic. The variance of b is the sum of the vari-
ances of the b` terms since they are mutually independent (cor-
responding to different temporal frames). From its expression in
Eq. (16), the variance of b` is given by:

Var{b`}= hbφt`e
(φt` )

t · Ĉ−1
bφt`e
· Cov{rbφt`e,t` − m̂bφt`e

}

× Ĉ−1
bφt`e
· hbφt`e

(φt` ) . (18)

Our assumptions amount to approximating the distribution of the
term rbφt`e,t` − m̂bφt`e

by a centered Gaussian of covariance Ĉbφt`e
.

The variance of b` therefore simplifies to:

Var{b`} ≈ hbφt`e
(φt` )

t · Ĉ−1
bφt`e
· hbφt`e

(φt` ) = a`. (19)

Thus an estimator of the variance of b =
∑T
`=1 b` is

∑T
`=1 a` = a

and the standard deviation of α̂= b/a can be estimated by:

σ̂α = 1/
√

a . (20)

Obviously, the flux of the source is necessarily positive, we
denote by α̂+ the flux obtained under a positivity constraint5 (see
Thiébaut & Mugnier 2005; Mugnier et al. 2009):

α̂+ def
= arg max

α≥0
p f ({rθk ,t` − α hθk (Ft` (φ0))}k=1:N, `=1:T )

= max( α̂, 0) =
max

(∑T
`=1 b`, 0

)
∑T
`=1 a`

, (21)

We assume that, if positivity is imposed, the covariance of α̂+

can be approximated by σ̂α, in Eq. (20).

3.5. Detection of exoplanets

Under our multivariate Gaussian model of the background, the
generalized likelihood ratio test (Eq. (5)) takes the simplified
form

(GLRT)

(∑T
`=1 b`

)2∑T
`=1 a`

H1
≷
H0

η , (22)

with a` and b` defined according to Eqs. (15) and (16).
As discussed in Thiébaut & Mugnier (2005), Smith et al.

(2009) and Mugnier et al. (2009), it is beneficial to enforce a
positivity constraint on the flux α in the detection test, in other
words, to use the estimate α̂+ to derive the GLRT expression,
leading to

(GLRT+)

(
max

(∑T
`=1 b`, 0

))2∑T
`=1 a`

H1
≷
H0

η. (23)

As noted in Mugnier et al. (2009), the test (Eq. (23)) is equiva-
lent to the test

(S/N test)
∑T
`=1 b`√∑T
`=1 a`

=
α̂

σ̂α

H1
≷
H0

τ (24)

when η≥ 0 and with τ=
√
η. This test can be interpreted as the

S/N α̂/σ̂α of the estimation of the (unconstrained) flux of the
source α. We note that with our definition, the S/N is a signed
quantity that is negative whenever α̂ < 0.

The test (S/N test) in Eq. (24) is attractive because the test
value α̂/σ̂α linearly depends on the data. Under our Gaus-
sian model for the data, the S/N α̂/σ̂α is thus also Gaussian
distributed (with unit variance) which simplifies the statistical
analysis of the test in terms of false alarm rate or detection
probability. This analysis is carried out in the following.

In the hypothesis test (Eq. (4)), we considered an hypotheti-
cal initial location of the source φ0. To detect all sources within

5 The neg-log-likelihood is a quadratic function of α, the minimum
under positivity constraint is thus obtained by simple thresholding.
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the field of view and locate their positions, the test (S/N test)
should be evaluated at locations φ0 sampled over the field of
view. By refining the sampling of the field of view, the off-axis
PSFs hbφt`e

(φt` ) better matches the data and the estimate α̂ is more
accurate, at the cost of a larger computational effort. Sampling
of the field of view is discussed in Sect. 4.3.

3.6. Statistical guarantees

3.6.1. Distribution of the detection criterion

Figure 3 illustrates a S/N map α̂/σ̂α computed using the PACO
method on a VLT/SPHERE-IRDIS dataset (obtained on the
HIP 72192 star as described in more detail in Sect. 5) consist-
ing of 96 temporal frames in which the two real known faint
point sources are masked. Visual inspection of the S/N map (top
of Fig. 3) indicates that the detection criterion is stationary over
the field of view, even close to the coronagraphic mask. The em-
pirical distribution of the S/N values (bottom of Fig. 3) shows
that the S/N distribution can be considered as centered (since the
empirical mean is 0.01) and approximately reduced (since the
empirical standard deviation is 0.93) Gaussian. This distribution
passes successfully the Lilliefors normality test (Lilliefors 1967)
at the 5% significance level. The small discrepancy with theoret-
ical model may be due to the correlations in the data. However,
the hypothesis that the variance of the S/N under H0 is equal
to one is conservative in the sense that the probability of false
alarm is slightly overestimated. Owing to the homogeneous dis-
tribution of the S/N criterion across the field of view, this small
bias could be easily fixed by rescaling the S/N by a single factor
that is empirically estimated6.

Under the hypothesisH0, the S/N follows a centered and re-
duced Gaussian law whatever the angular separation. It is thus
possible to apply a unique threshold τ to the S/N maps and ob-
tain a consistent detection performance at all angular separations
(i.e., a constant false alarm rate). The accordance between the S/N
and a Gaussian distribution makes it possible to directly assess
the false alarm rate, probability of detection, photometric and as-
trometric accuracies without post-processing and/or resorting to
Monte Carlo methods (injection of fake exoplanets in the data)
in contrast to several state-of-the-art methods (Lafreniere et al.
2007; Cantalloube et al. 2015; Ruffio et al. 2017).

3.6.2. Probabilities of false alarm and of true detection

The probability of false alarm (PFA) is the probability that the
test (Eq. (24)) yieldsH1 whileH0 is actually true:

PFA(τ) = Pr( α̂/σ̂α > τ | H0)

=

∫ +∞

τ

1
√

2 π
exp

(
−

x2

2

)
dx = 1 − Φ(τ), (25)

where Φ is the cumulative distribution function of the standard
normal distribution. The conventional contrast at 5σ ensures a
probability of false alarm equal to PFA(5) = 2.87× 10−7.

The probability of detection (PD) is the probability that the
test (Eq. (24)) decides correctly for a detection

PD(τ, α) = Pr(α̂/σ̂α > τ | H1)

=

∫ +∞

τ

1
√

2 π
exp

− [
x − α/σ̂α

]2

2

 dx

= 1 − Φ(τ − α/σ̂α). (26)

6 No such correction was performed in the following results.

Fig. 3. S/N map in absence of object (the two real known faint point
sources denoted FPS1 and FPS2 are masked) and its corresponding em-
pirical distribution using the HIP 72192 dataset described in Sect. 5 at
λ2 = 2.251 µm.

The minimum amplitude α such that the probability of de-
tection be at least equal to some prescribed value PD when the
detection threshold τ is set according to a given PFA level can
be computed by inverting and combining Eqs. (25) and (26):

α=
(
Φ−1(1 − PFA) − Φ−1(1 − PD)

)
× σ̂α. (27)

For example, at τ= 5, a probability of detection of 50% is
achieved for α= 5 σ̂α and a probability of detection of 80% for
α= 5.84 σ̂α. Figure 4 illustrates the S/N distribution under the
two hypothesis as well as the probabilities of false alarm and of
detection.
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Fig. 4. S/N distribution underH0 (in blue) andH1 (in red). The hatched
area is equal to the probability of false alarm (PFA) while the filled area
is equal to the probability of detection (PD).

3.6.3. Astrometric accuracy

An (asymptotically) unbiased estimator of the position of the
source is provided by the maximum likelihood position which
is the solution of a non-convex optimization problem. In prac-
tice, this problem can be solved by exhaustive search at a finite
resolution refined by a local optimization as for example pro-
posed by Soulez et al. (2007) in digital lensless microscopy for
the detection of parametric objects spread in a volume. The as-
trometric accuracy, that is, the accuracy on the spatial location
of the detected objects can be statistically predicted using the
Cramér-Rao lower bounds (CRLBs) which represents the min-
imal variance of any unbiased estimator. The CRLBs are ob-
tained from the diagonal of the inverse of Fisher information
matrix (Kendall et al. 1948). Using a parametric model of the
off-axis PSF h and noting again that the collection of patches
{rθk ,tl }l=1:T located at the angular position θk is described by a
multi-variate Gaussian process N(· |mθk ,Cθk ), it is possible to
derive the CRLBs from the observed intensity model given in
Eq. (1). In the following, Ω= {α, x0, y0} (with φ0 = {x0, y0} the
angular position of an exoplanet at time t0) denotes the vector of
parameters from which the CRLBs are computed. For a given
angular position θk, the Fisher information matrix IF

θk
can be

expressed as

[IF
θk

(Ω)]i, j =
∂αhθk (Ω)
∂Ωi

t

· C−1
θk
·
∂αhθk (Ω)
∂Ω j

, (28)

in which the term αhθk represents the off-axis PSF (an isotropic
Gaussian can typically be used as a continuous model to
compute the derivatives). It follows that the standard devi-
ation δθk on the estimation of the parameter vector Ω is
given by

[δθk ]i =

√
[IF
θk

(Ω)−1]i,i (29)

For simplicity, we denote by δ= {δα, δx0 , δy0 } the spatial
maps (obtained for all angular positions θk of the field of view)
representing the accuracy on the parameters Ω= {α, x0, y0}.
Appendix B gives the analytical expression of δ as a function of
the Fisher information matrix terms. We note that δα is not de-
pendent on α while δx0 and δy0 are proportional to α−1. Figure 5
gives a view of δα, δx0 and δy0 as well as the correlation coef-
ficients ραx0 , ραy0 and ρx0y0 between estimated parameters ob-
tained on the HIP 72192 dataset at λ1 = 2.110 µm. As expected,
the estimation error of Ω = {α, x0, y0} increases near the host
star. The figure also emphasizes that the Cramér-Rao bounds
{δα, δx0 , δy0 } decrease quickly with the angular separation. More-
over, a small estimation error on one of the three parameters

has little impact on the estimation of the other two parameters
(low absolute correlation coefficients) except for certain local-
ized areas of the field of view. The resulting Cramér-Rao bounds
can be usefully considered to evaluate the error on the esti-
mated parameters. For example, for the two real faint point
sources located around the HIP 72192 star (their positions are
symbolized by a circle in Fig. 5, the products α · δx0 and
α · δy0 are closed to 0.7× 10−5 pixel. It means that at a contrast
α= 10−5, the sources can be located with an accuracy of about
0.7 pixel.

4. Implementation details of PACO

This section is devoted to the description of the implementa-
tion of the PACO algorithm presented in Sect. 3. A simpli-
fied and faster version for the detection step is also described.
This fast version can be useful to conduct pre-analyses in large
surveys.

4.1. Optimal patches size

The patches considered in the PACO algorithm define the
characteristic size of the areas in which the statistics of the
background fluctuations are modeled. Since the core of the off-
axis PSF is close to circular symmetry, circular patches are
used. Their size obeys a trade-off: on the one hand, the larger
the patches, the more energy from the source is contained in the
patches which improves the S/N; on the other hand, learning the
covariance of larger patches requires more samples (i.e., more
temporal frames).

In practice, since the sources to be detected are faint com-
pared to the level of stellar speckles and their temporal fluctua-
tions, only the core of the off-axis PSF is necessary to perform
the detection and a patch size corresponding to twice the off-
axis PSF full width at half maximum (FWHM) appears to be a
good compromise. A more precise (and automatic) determina-
tion of the optimal size of the patches with respect to number
of time frames and the structure of the background correlations
can be carried out by Monte Carlo simulations. False planets are
randomly injected into the data and receiver operating charac-
teristic (ROC) curves representing the detection probabilities as
a function of the false alarm rate are constructed for different
patch sizes. The patch size maximizing the area under the ROC
curve is then adopted. Figure 6 gives ROC curves for three patch
sizes and shows that the choice K = 49 pixels per patch maxi-
mizes the area under the curve and is therefore the best com-
promise for performing the detection on the HIP 7192 dataset
(with 4.5 pixels FWHM) for fake injected exoplanets of flux
α ∈

[
10−6; 10−5

]
. The number of pixels per patch K needs to be

determined only once for a given instrument since the FWHM
of the off-axis PSF varies only marginally from one observation
to another.

4.2. The PACO algorithm: detailed implementation

As explained in Sect. 3, within the PACO pipeline, the detection
and estimation steps are performed by two very similar schemes.
First, the detection is performed on the whole field of view us-
ing the PACO detection procedure. This step produces a map
of S/N which is statistically grounded and which can be directly
thresholded at a controlled false alarm rate. The estimated flux
is however biased by the presence of the exoplanet in the collec-
tion of patches used to model the background fluctuations. Thus,
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Fig. 5. Upper line: minimal standard deviation (Cramér-Rao lower bounds) δ= {δα, δx0 , δy0 } on the estimated parameters Ω= {α, x0, y0} (δx0 and
δy0 are normalized by the inverse of the flux α of the exoplanet and expressed in pixels unit). Middle line: magnification of the area near the host
star. Lower line: coefficients of correlation ρ= {ραx0 , ραy0 , ρx0y0 } between the estimated parameters Ω= {α, x0, y0}. The computation is performed
on the HIP 72192 dataset at λ1 = 2.110 µm. The positions of the two real faint point sources in the dataset (which are not visible on these maps
because it does not act of detection maps) are represented by a circle.

a different procedure named PACO estimation is launched in
a second step on each detected source in order to refine the flux
estimation. This latter procedure provides unbiased flux esti-
mates (i.e., no a posteriori Monte Carlo-based bias correction is
necessary).

Algorithm 1 summarizes the PACO detection procedure as
described more formally in Sect. 3. Step 1 consists of form-
ing the collection of patches P` on which the statistics of the
background must be learned. These patches are all centered at
the same position φt` where the source would be at time t`,
assuming it was initially at position φ0. In Step 2, the back-
ground statistics, i.e. the empirical mean m̂ and the regular-
ized covariance Ĉ, are computed based on Eqs. (7)–(12). Step
3 then forms the numerator and denominator of the test statis-
tics by accumulating values a` and b` defined by Eqs. (15)
and (16). In Algorithm 1, the background statistics are com-
puted assuming no exoplanet is present (i.e., hypothesisH0) and
are thus biased. This is especially notable when the apparent

motion of the exoplanet over time is limited and the source flux is
large.

Since the data analysis of large surveys is a crucial issue
in astronomy, we also propose a simplified and faster version
of the PACO detection procedure which is summarized by
Algorithm 2. Compared to applying Algorithm 1 to a given set
of assumed initial source positions to compute a map of the de-
tection criterion, the fast version has a computational burden re-
duced by a factor at least equal to the number T of temporal
frames. The acceleration relies on the precomputation of terms
that appear multiple times in the sums of Eqs. (15) and (16)
when considering all possible source locations. Computations
of the background statistics are thus recycled. The S/N map
is obtained in a second step by interpolating the precomputed
terms denoted by c and d in Algorithm 2 in order to align the
field of view at all times according to the transform Ft` which
is, in general, a rotation. Such interpolations result in a low-
pass filtering of the criterion map which slightly degrades the
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Fig. 6. Influence of patch size: ROC curves for K = {13, 49, 113} pixels
in each patch. The ROC curves are obtained by inserting fake exoplanets
of flux α ∈

[
10−6; 10−5

]
on the HIP 72192 dataset at λ1 = 2.110 µm.

Algorithm 1: PACO detection – Computation of the S/N
values at initial 2D angular positions G of an unresolved
source.

Input: Set G of initial 2D angular positions.
Input: Spatio-temporal dataset {rθk ,t` }k=1:N, `=1:T .
Output: S/N map at all initial positions in G.

forall φ0 ∈ G do
a← 0
b← 0
for `= 1 : T do

. Step 1. Extract the relevant patches:
φt` =Ft` (φ0)
P` ← {rbφt`e,t`′ }`

′=1:T

. Step 2. Learn the background statistics from the
patches inP`:
{m̂bφt`e

, Ĉbφt`e
} (Eqs. (7)–(12))

. Step 3. Update a and b:
w← Ĉ−1

bφt`e
· hbφt`e

(φt` )
a← a + wt · hbφt`e

(φt` ) (Eq. (15))
b← b +wt · (rbφt`e,t` − m̂bφt`e

) (Eq. (16))

S/N (φ0)← b/
√

a (Eq. (24))

detection performance of PACO (see Sect. 5). The complexity
of the fast version given in Algorithm 2 is dominated by the
pre-calculation step (Step 1). Denoting by N the number of an-
gular positions φ0 to process, this step requires N ×T products
of vectors with K elements as well as the resolution of N lin-
ear systems of size K ×K. For example, the application of this
fast algorithm requires approximately two minutes to process a
dataset made of 96 temporal frames of size 1024× 1024 pixels
versus approximately three hours for the complete algorithm us-
ing a basic parallelization done in Matlab

TM
on 24 cores (pro-

cessor Intel Xeon E5–46170 at 2.90 GHz and K = 49 pixels per
patch).

Once the detection step is performed by Algorithm 1 or
Algorithm 2, the potential detections obtained by thresholding

the S/N map at level τ should be photometrically characterized
using the statistically unbiased PACO estimation procedure
summarized in Algorithm 3. As discussed in Sect. 3.2, this can
be done by alternating between an estimation of the flux of the
exoplanet and of the statistics of the background7. The result-
ing estimate α̂ for a source located at φt` =Ft` (φ0) on the frame
t` (`= 1:T ) corresponds to the minimum of the following cost
function:

Algorithm 2: fast PACO detection – Fast computation
of the S/N values at initial 2D angular positions G of an
unresolved source.

Input: Uniform grid G of 2D angular positions.
Input: Spatio-temporal dataset {rθk ,t` }k=1:N, `=1:T .
Output: S/N map at all initial positions in G.

. Step 1. Precompute terms:
forall φ0 ∈ G do

. Step 1a. Build the collection of patches centered
at φ0:
P ← {rbφ0e,t` }`=1:T

. Step 1b. Learn the corresponding background
statistics and pre-compute terms:{
m̂bφ0e, Ĉbφ0e

}
(Eqs. (7)–(12))

wbφ0e ← Ĉ−1
bφ0e
· hbφ0e(φ0)

cbφ0e ← wt
bφ0e
· hbφ0e(φ0)

for `= 1 : T do
dbφ0e,t` ← wt

bφ0e
· (rbφ0e,t` − m̂bφ0e)

. Step 2. Compute the S/N values:
forall φ0 ∈ G do

a← 0
b← 0
for ` = 1 : T do

φt` =Ft` (φ0)
a← a + cbφt`e

(φt` ) (interpolation of c)
b← b + dbφt`e,t` (φt` ) (interpolation of d)

S/N (φ0)← b/
√

a (Eq. (24))

C (α) =

T∑
`=1

{
T log(det(Ĉφt`

(α)))

+ tr
(
Ĉ−1
φt`

(α) ·
(
W �

T∑
`′=1

uφt` ,t`′ (α) · ut
φt` ,t`′

(α)
))}

, (30)

in which Wi, j = 1 if i = j, Wi, j = 1−ρ̂ elsewhere, {i, j} ∈ J1; KK2, �
stands for entrywise multiplication (i.e., Hadamard product), and
uθk ,t` (α) = rθk ,t` − α · hθk ,t` − m̂θk (α). The expression of C (α)
in Eq. (30) comes from the co-log-likelihood under a Gaussian
assumption, where matrix W is introduced in order to bias the
covariance estimate toward a diagonal covariance (i.e., in order
to replace the maximum likelihood covariance estimate given by
the sample covariance with the shrinkage estimator described in
Sect. 3.2).

Figure 7 illustrates the cost function C (α) that is mini-
mized by our alternating estimation scheme. This cost function is
unimodal in the tested range of contrasts (from 5× 10−6 to 10−1)

7 A joint estimation of the flux of the exoplanet and of the background
statistics could also be performed by hierarchical optimization.

A138, page 10 of 27

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201832745&pdf_id=6


O. Flasseur et al.: PACO: Exoplanet detection based on PAtch COvariances

Fig. 7. Normalized cost function C obtained with Eq. (30) for injected
fake exoplanet with different fluxes αGT . The dashed lines indicate the
values found by the proposed alternate scheme in Eqs. (13).

Algorithm 3: PACO estimation – Unbiased estimation
of the flux α̂+ of an unresolved source at initial 2D angular
position φ0.

Input: 2D angular position φ0 of source at t0.
Input: Spatio-temporal dataset {rθk ,t` }k=1:N, `=1:T .
Input: Optional initial estimate α̂+ ≥ 0, α̂+ = 0 by default.
Input: Relative precision ε ∈ (0, 1).
Output: Estimated flux α̂+ of the source.

B Alternated estimation of α̂+, m̂(α̂+) and Ĉ(α̂+):
α̂+

old ← +∞

while |̂α+ − α̂+
old|> ε α̂

+ do
a← 0
b← 0
for `= 1 : T do

. Step 1 Build the collection of patches:
φt` =Ft` (φ0)
P ← {rbφt`e,t`′ − α̂

+ hbφt`e
(φt`′)}`′ = 1:T

. Step 2 Learn the background statistics:{
m̂bφt`e

(α̂+), Ĉbφt`e
(α̂+)

}
(Eqs. (13))

. Step 3 Update the flux terms α̂+:

w← Ĉ−1
bφt`e

(α̂+) · hbφt`e
(φt` )

a← a + wt · hbφt`e
(φt` )

b← b + wt · (rbφt`e,t` − m̂bφt`e
(α̂+))

α̂+
old ← α̂+

α̂+ ← max(b, 0)/a (Eq. (14))

indicating that PACO estimation procedure would also cor-
rectly characterize exoplanets having a rather high flux. The
minimum of the cost function is located near the correct value
(α̂/αGT = 1) with a discrepancy in agreement with the standard
deviation σ̂α. MinimizingC (α) therefore yields an unbiased esti-
mator of the flux. In practice, to minimize C (α), we followed the
alternating scheme in Eqs. (13) which is easily implementable
and converges within a few iterations (see Sect. 5.3). Our
method for an unbiased estimation of the flux is summarized in
Algorithm 3.

Jointly to the refining of the flux estimation, the source lo-
cation is also improved by testing subpixel locations on a re-
fined grid around the location provided by PACO detection.
The step size of this refined grid can be set according to the
Cramér-Rao lower bound established in Sect. 3.6.3 so that the
grid bias is negligible compared to the theoretical localization
standard deviation.

4.3. Sampling of possible exoplanet locations

The physical position φ of an unresolved source may not ex-
actly correspond to a sample of the data, i.e., a pixel θk. To deal
with this, in PACO, we consider patches centered at the nearest
pixel bφt`e of the source position φt` = Ft` (φ0) in frame t` when
it is assumed to be initially at φ0. This means that patches are
not exactly centered at the source position φt` with a potential
loss of optimality. However, we expect that this loss be small be-
cause the pixel size is usually chosen to be much smaller than
the diffraction limit (Beuzit et al. 2008). There is another issue
related to the sampling because the detection is carried out on
maps with necessarily a finite resolution for the assumed ini-
tial position φ0. One can expect a negative bias for the S/N:
the further the detected position in the criterion map to the ac-
tual source position, the worse the value of the criterion. The
faintest sources may be undetected because of this bias. Fortu-
nately, the direct model in Eq. (1) assumed by PACO does not
impose any finite precision for the source position φt` in each
frame, so detection maps can be computed at a resolution small
enough to avoid the problem. To limit the computational burden,
one would however like to use a somewhat coarse sampling for
the detection map. There is a trade-off to find and, in this section,
we attempted to evaluate the S/N bias caused by a given sam-
pling of the detection map. We assumed that the detection map
is computed for initial positions on an uniformly sampled gridGs
defined by:

Gs = {φ= (∆/s) (i1, i2) | (i1, i2) ∈ Z2, φ ∈ Θ} , (31)

where (i1, i2) stand for the two components of 2D angular posi-
tions, ∆ is the pixel size in the data, s is a chosen sub-sampling
factor and Θ is the angular area where to perform the detection.

The ratio E(S/N(Gs(φ0) | φ0))/E(S/N(φ0 | φ0)) informs about
the fraction of S/N lost due to the sampling grid Gs under con-
sideration, with Gs(φ0) = arg minφ∈Gs

‖φ − φ0‖
2. The expected

value of the S/N under the H1 hypothesis at any angular posi-
tion θ = Gs(φ0) knowing that the exoplanet is initially located
at φ0

E(S/N(θ | φ0)) =

α

∑T
`=1 hbθt`e

(θt` )
t · Ĉ−1

bθt`e
· hbθt`e

(
Ft` (φ0)

)√∑T
`=1 hbθt`e

(θt` )t · Ĉ−1
bθt`e
· hbθt`e

(θt` )
· (32)

In practice, this expectation ratio is evaluated in the most
unfavorable case for the considered grid, that is to say
when the exoplanet is exactly located between two ad-
jacent grid nodes. Figure 8 gives a map of the ratio
E(S/N(Gs(φ0) | φ0))/E(S/N(φ0 | φ0)) for a uniform grid with sam-
pling size ∆/s for s ∈ {1/4, 1/2, 1, 2, 4} and ∆ the pixel size of
the data. We note that values of s smaller than one correspond
to a downsampling of the data pixels, while values greater than
one correspond to an upsampling of the pixels. Figure 8 em-
phasizes that the choice s = 1 (corresponding to a calculation of
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Fig. 8. Effect of the sampling grid on S/N: ratio E(S/N(Gs(φ0) | φ0)/E(S/N(φ0 | φ0)) for s ∈ {1/4, 1/2, 1, 2, 4} computed on the HIP 72192 dataset at
λ1 = 2.110 µm. It informs about the maximum expected reduction in S/N if the exoplanet is not exactly centered on a pixel of the sampling grid.

the detection criteria in each pixel of the data) generates val-
ues of the ratio E(S/N(Gs(φ0) | φ0))/E(S/N(φ0 | φ0)) between 0.91
and 0.97. The maximum loss is less than 10% on the S/N values
when the exoplanet is exactly located between two pixels. The
choice s = 4 ensures a maximum loss on the value of the S/N
lower than 0.7% at any point of the field of view at the price of a
computational cost of the algorithm multiplied by a factor 16. On
the opposite, the choice s = 1/2, reduces the computational cost
of the algorithm by a factor of four at the price of a maximum
potential loss between 10 and 30% (depending on the position
in the field of view) on the S/N values if the exoplanet is located
exactly between two pixels defined by the sampling grid under
consideration. Table 2 summarizes the impact of the choice of
the sampling factor s on the maximum expected S/N reduction
and the computation time.

5. Performance on VLT/SPHERE-IRDIS data

The performance of PACO is evaluated on three datasets
acquired at the VLT by the SPHERE-IRDIS instrument8 us-
ing the dual band filters K1 and K2. Two of these datasets

8 The PACO framework is general and can be applied to ADI datasets
from different instruments. Additional materials will be available on the
webpage of the first author.

Table 2. Influence of the sampling factor s on the S/N and on the com-
putation time.

Sampling factor s Max. S/N reduction Time

1/4 80% 1/16
1/2 30% 1/4
1 9% 1
2 3% 4
4 ≤1% 16

Notes. The computation time as well as the maximum expected reduc-
tion in the S/N are given for values of s ∈ {1/4, 1/2, 1, 2, 4}. The experi-
ments are conducted on the HIP 72192 dataset at λ1 = 2.110 µm with the
PACO detection Algorithm 1. The computation time (last column) is
given relatively to the time required to process the considered dataset
with the original sampling grid (i.e., for s = 1) which, in our experi-
ments, is approximately three hours (see Sect. 4.2).

are derived from observations of the HD 131399 system lo-
cated in the Upper Centaurus Lupus association (De Zeeuw et al.
1999; Rizzuto et al. 2011; Pecaut & Mamajek 2013). The cen-
ter young star of A1V-type forms a triple system with two
other K- and G-type stars located at a projected distance of
about 3 arcsec (Dommanget & Nys 2002; Houk & Smith-Moore
1988) from the central star. An exoplanet candidate has been
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Fig. 9. S/N maps computed with the PACO, TLOCI and KLIP algorithms on the HD 131399 (2015) dataset at λ1 = 2.110 µm. A common threshold
at S/N = 5 is applied to defined the detections. A known faint source is present in the field of view. It is identified by a pink circle.

recently detected at a projected distance of about 0.83 arcsec
from the central star (Wagner et al. 2016). However, more recent
observations made it possible to refine the reconstruction of the
spectrum of the candidate companion and its astrometry. This
new information proved to be incompatible with the bound exo-
planet hypothesis. It has been shown that it is more likely to be
a background brown dwarf (Nielsen et al. 2017). Both datasets
provide observations up to about 5.5 arcsec. To illustrate the per-
formance of the PACO algorithm, we display a region approx-
imately 1.7 arcsec of radius, centered around the star A of the
triple system, in order to limit the impact of the other two stars
of the system. The dataset from the first epoch (2015 – ESO
program 095.C-0389) was acquired under average observational
conditions and we selected 92 temporal frames taken with a de-
tector integration time of 16 s (total exposure of 24 min) associ-
ated with a total apparent rotation of the field of view of 36.71◦.
The dataset from the second period (2016 – DDT program
296.C-5036) was acquired under good observational conditions,
but it only consists in 56 selected temporal frames taken with a
detector integration time of 32 s (total exposure of 30 min) asso-
ciated with a total apparent rotation of the field of view of 39.51◦.
In order to also illustrate the performance of the PACO algorithm
on the whole field of view offered by the VLT/SHPERE-IRDIS
instrument, we also consider a dataset from the observation of
the A0-type star HIP 72192 (HD 129791) hosting two confirmed
faint point sources. The considered epoch was acquired under
average observational conditions under the 2015 – ESO pro-
gram 095.C-0389 and consists in 96 temporal frames taken with
a detector integration time of 16 s (total exposure of 24 min)
associated with a total apparent rotation of the field of view
of 17.28◦.

The performances of the PACO algorithm are compared in
terms of detection maps and contrast curves obtained with the
two current cutting-edge algorithms TLOCI (Marois et al. 2013)
and KLIP (PCA; Soummer et al. 2012) implemented in the
SpeCal pipeline reduction tool (Galicher et al. 2018) whose prin-
ciples were briefly described in Sect. 2. The SpeCal pipeline also
offers the possibility to apply an unsharp filter after the speckle
removal algorithm to improve the visual quality of the reduction
map, reduce the pollution of the stellar leakages and artificially
increase the S/N of the detected point source objects. We note
that it is expected that this post-processing partially deteriorates

the statistical properties of the resulting detection maps. The per-
formances of PACO are compared to the processing standard
algorithms TLOCI and KLIP both with and without unsharp fil-
tering. As explained in Sect. 4.2, with PACO no post-processing
is applied on the data nor on the reduction maps other than the
conventional data reduction pipeline described in Sect. 3. We
also compared PACO in terms of detection capabilities with the
recent and emerging algorithm LLSG (Gonzalez et al. 2016) us-
ing the VIP reduction pipeline (Gonzalez et al. 2017). The pa-
rameters of the different algorithms used are manually tuned to
provide the best results.

5.1. Detection maps

Figure 9 shows S/N maps computed with PACO, TLOCI
and KLIP algorithms on the HD 131399 (2015) dataset at
λ1 = 2.110 µm. When setting a threshold of S/N≥ 5 on PACO
detection map, only one detection is obtained and this detec-
tion corresponds to the faint point source already detected by
the other authors. Setting the same threshold on the S/N de-
tection maps produced by TLOCI and KLIP algorithms lead to
several false detections. In the case of TLOCI, there are seven
S/N values larger than that of the real source, leading to seven
false detections. An eighth false detection is obtained due to a
local maximum above the threshold S/N = 5. With the KLIP al-
gorithm, there are two detections corresponding to local maxima
above the threshold S/N = 5 but these are all false detections lo-
cated close to the coronographic mask. The faint point source
is not detected with an S/N larger than five and would be de-
tected only by lowering the threshold below S/N = 4.3. By limit-
ing the amount of signal subtraction, PACO achieves the largest
S/N value for the real faint point source (S/N = 8.6, to compare
with TLOCI: S/N = 6.5 and KLIP: S/N = 4.3). The second local
maxima derived from the PACO S/N is at S/N = 3.6, which illus-
trates the ability of PACO to distinguish without ambiguity the
faint point source. Moreover, in the absence of sources, the S/N
map is stationary and false alarms are well controlled: the PFA
when the S/N threshold τ is fixed at five is close to the theoretical
value of 2.87× 10−7: no false alarm are obtained at this thresh-
old in the region of interest. It can be observed that both TLOCI
and KLIP have nonstationary detection maps in the absence of
source and the probability of false alarms at the S/N threshold
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Table 3. Angular separation and contrast of the injected fake sources on
the HIP 72192 dataset at λ1 = 2.110 µm.

Separation (′′) Mean[α] Min[α] Max[α]

0.40 3.9× 10−5 2.5× 10−5 6.1× 10−5

1.58 2.8× 10−6 1.8× 10−6 4.3× 10−6

2.75 2.7× 10−6 2.1× 10−6 4.4× 10−6

3.93 2.6× 10−6 1.9× 10−6 3.7× 10−6

5.12 2.5× 10−6 1.6× 10−6 3.9× 10−6

Notes. Fluxes have been chosen so that the difficulty of detecting each
source be approximately the same at all angular separation.

of five is much larger than the theoretical value of 2.87× 10−7.
Hence, the detection threshold must be set manually on these
detection maps to prevent false detections, or the numerous
false detections must be discarded by analyzing follow-up
observations.

In order to better evaluate the performance of PACO, we
also turned to the injection of fake exoplanets on the HIP 72192
dataset at different angular separations. We have injected 30 fake
companions spread on five angular separations at competitive
levels of contrast as summarized in Table 3. The considered
level of injection approximately corresponds to a detection at
mean S/N = 5 using PACO detection Algorithm 1. As dis-
cussed previously, the dataset also contains two real faint point
sources. Figure 10 shows S/N maps computed with the PACO,
TLOCI, KLIP and LLSG algorithms. For TLOCI and KLIP,
post-processing by unsharp filtering is also considered. For
LLSG, since the resulting S/N depends on the threshold used
during the decomposition, the S/N is not statistically grounded.
As a result, we have multiplied the signed S/N by a factor 25
to be in a range comparable to the other methods. For this
algorithm, we have also performed the detection by discard-
ing a centered circular area of 1 arcsec of radius since the
detection seems to be very difficult near the host star. For
each reduction map, the S/N of the 60 largest local max-
ima is given in decreasing order on the same figure. As ex-
pected, the S/N maps from PACO are stationary, robust to de-
fective pixels (which have led to aberrant data on a wider
scale than one pixel in the science images) and to strong stel-
lar leakages on some frames due to a small decentering of the
coronagraph.

The S/N maps derived from PACO are statistically grounded,
allowing to be directly interpreted in terms of PFA without
resorting to injections of fake companions via Monte Carlo sim-
ulations. It is clearly not the case for TLOCI which seems very
sensitive to defective pixels and to large stellar leakages. KLIP
performs better than TLOCI but it also produces nonstation-
ary detection maps, particularly on the northeastern area. This
area has been identified with PACO as an area where the de-
tection of exoplanets is more difficult (see the contrast map on
the last row, first column, in Fig. 14). Since PACO locally learns
the background fluctuations, the aberrant data or the larger stel-
lar leakages can also be learned locally as typical background
fluctuations and are not interpreted in the detection stage as the
signature of an exoplanet. The unsharp filtering applied on the
detection maps from TLOCI and KLIP improves their visual
quality since areas with large S/N values due to the stellar leak-
ages are largely attenuated, but the detection performance of
these algorithms are not significantly improved by this post-
processing. LLSG outperforms KLIP far from the host star
but the detection maps from LLSG are clearly not statistically

grounded since the LLSG decomposition is also coupled with an
entry-wise thresholding. As a result, the S/N derived from LLSG
depends on the choice of the threshold used during the decompo-
sition. A high threshold eliminates a large part of the noise (with
the risk of also eliminating faint signals from exoplanets) and ar-
tificially increases the S/N of the detected objects. Moreover, the
detection of exoplanets near the host star seems to be very dif-
ficult based on the LLSG results since the signatures from fake
exoplanets are visible but are at the level of false alarms and can-
not be easily retrieved by a visual inspection. Finally, only PACO
detects with S/N ≥ 5 the faintest real point source in the field of
view.

Additional detection results are presented in Appendix C
where fake exoplanets with a higher flux α are injected in the
data at the same locations. These complementary results illus-
trate that, with larger fluxes, all algorithms detect more sources.
At these larger fluxes, PACO detects the fake planets with sig-
nificantly larger S/N values than the other algorithms and the
gap between the last true detection and the first false alarm is
improved.

Figure 11 summarizes the performance of the tested algo-
rithms on the HIP 72192 dataset via receiver operating char-
acteristics (ROC). ROC curves represent the true positive rate
(TPR) as a function of the false detection rate. Since the false
detection rate cannot be easily assessed, the TPR is represented
as a function of the number of false detections (represented
in log scale). As discussed in Gonzalez et al. (2017), this type
of representation is very useful to evaluate and compare the
performance of exoplanet hunter algorithms. This figure high-
lights that PACO is the only tested algorithm able to detect both
the injected fake exoplanets and the real faint sources without
false alarms, thereby outperforming TLOCI, KLIP and LLSG
algorithms.

Figure 12 gives the S/N maps computed with the fast version
of PACO on the HD 131399 (2015) and HIP 72192 datasets at
λ1 = 2.110 µm without injected fake exoplanet. It can be noted
that the PACO Algorithm 1 and its fast version (Algorithm 2)
lead to very similar detection maps. A low-pass effect is ob-
served on maps derived from fast PACO due to the approxima-
tions made (see Sect. 4.2). Although the real faint point sources
present in the data are detected with slightly lower values of S/N
(reduction in S/N less than 5%) with the fast PACO algorithm,
they remain detectable without ambiguity for a conventional de-
tection threshold of τ= 5.

5.2. Contrast curves and detection statistics

This section is devoted to the quantitative evaluation of the per-
formance of PACO via contrast curves and contrast maps. For a
given probability of false alarm PFA (hence, a given detection
threshold τ), the contrast represents the minimum flux (normal-
ized to the host star flux) that a source must have to be detected
by the algorithm with a probability of detection PD. Throughout
this section, we consider a target probability of false alarm of
2.87× 10−7 reached when thresholding the S/N detection maps
at τ = 5. The resulting contrast is conventionally referred as
“contrast at 5σ” in the literature. Since the statistical distribu-
tion of the S/N is well controlled with PACO (see discussion
in Sect. 3.6.1), the probability of false alarm and probability of
detection can be predicted at each location φ0 based on the lo-
cal statistics m̂ and Ĉ using Eq. (27). The resulting contrast is
however a lower bound since it would only be achievable with
exact knowledge of the local statistics m̂ and Ĉ. Given that these
local mean and covariance must be estimated in the presence
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Fig. 10. S/N maps computed with the PACO, TLOCI, KLIP and LLSG algorithms. For TLOCI and KLIP, an unsharp filtering applied to S/N maps
as post-processing is also considered. For LLSG, the resulting signed S/N is multiplied by a factor of 25 to fall within a comparable range than the
other methods. For this latest algorithm, detection is in addition performed by discarding a centered circular area of 1 arcsec in radius. The first 32
detections are marked on each S/N map using square patterns. The 60 first detections are plotted as bar charts below each S/N map, ordered by
decreasing S/N values, with true detections in pink (true background sources) or blue (injected fake sources), and false detections in red. Circles
indicate the location of the real and injected faint point sources. PACO is the only algorithm capable of detecting correctly all sources without any
false detection.

of a source, the actual achievable contrast is higher (i.e., worse).
Hence, theoretical curves/maps are referred to as “PACO oracle”
(achievable should an oracle provide the background statistics
m̂ and Ĉ, even in Monte Carlo sithe presence of a source).
To assess the actual detection performance of the algorithm,
we computed, based on Monte Carlo simulations, the contrast

required to detect sources with a probability of detection of 50%
when applying a threshold at τ = 5. These contrasts are referred
to simply as “PACO” in the curves displayed in the following
figures.

We first illustrate that the lower bound on the achievable con-
trast (as reached by “PACO oracle”) obtained using Eq. (27)
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Fig. 11. ROC curves showing the true positive rate (fraction of sources
correctly detected) as a function of the number of false alarms (i.e.,
false detections) for each detection map. Values displayed on each curve
correspond to the detection threshold used.

are correct. Figure 13 displays the contrast curve as a func-
tion of the angular separation on the HIP 131399 (2015) dataset
at λ2 = 2.251 µm. The theoretical contrast map for PACO ora-
cle as obtained from Eq. (27) is radially averaged to obtain a
curve of contrast as a function of the angular separation be-
tween the source and the host star. Two curves are drawn cor-
responding to probabilities of detection equal to 50% and 80%.
Superimposed to these curves, Monte Carlo simulation results
show the contrast necessary to achieve the targeted probabil-
ities of detection in “oracle mode”, that is, when the statis-
tics of the background are computed on data with no injected
source. These contrasts are in good match with the theoreti-
cal curves which validates the use of (Eq. (27)) to compute
this contrast lower-bound. Figure 14 gives the maps of con-
trast for a probability of detection PD = 50% obtained with
PACO oracle on the HD 131399 (2015), HD 131399 (2016)
and HIP 72192 datasets, at λ1 = 2.110 µm and λ2 = 2.251 µm.
As expected, this contrast improves when the angular separa-
tion increases since the stellar leakages decrease farther from
the star. Figure 14 emphasizes that some local areas are less fa-
vorable than others for the detection of low-flux exoplanets, be-
cause the spatial structures of the background fluctuations may
be mis-interpreted as low-flux sources. For example, the con-
trast is locally higher in the northeastern area of the HIP 72192
dataset at λ1 = 2.110 µm. This explains the difficulties of cur-
rent algorithms in this area as emphasized in Sect. 5.1. While
other algorithms suffer from an increased false detection rate
in these areas (due to a lack of local adaptivity of the meth-
ods), PACO has a constant false alarm rate. Only the probabil-
ity of detection is decreased is these more difficult regions, as
expected.

We now investigate the actual performance of PACO (i.e.,
without oracle knowledge of the background statistics). The
statistics of the background are impacted by the presence of the
exoplanet which decreases the S/N (and hence increases the re-
quired contrast to achieve the same probability of detection than
in oracle mode). Figure 15 shows contrast curves derived from
PACO oracle (i.e., using Eq. (27)) and PACO (as obtained by
Monte Carlo, i.e., actual contrasts). It emphasizes that PACO or-
acle gives a reliable approximation of the achievable contrast far
from the host star (at angular separations larger than 2 arcsec).
At smaller angular separations, PACO oracle over-estimates the

achievable contrast because it neglects the impact of the source
signal when computing background statistics. At these small
angular separations, the motion of the source is limited which
makes background contamination by the source non-negligible.
In these cases, resorting to Monte Carlo simulations is thus
necessary to obtain an accurate estimation of the achievable
contrast. Superimposed to these curves, we give the contrast
curves provided by TLOCI and KLIP algorithms. These latter
curves must however be analyzed with care. S/N maps computed
on the dataset in which we injected fake sources (Fig. 10) in-
deed illustrated that thresholding at S/N = 5 the detection maps
of TLOCI and KLIP leads to numerous false alarms (many
more than expected if the detection map were distributed ac-
cording to a standard Gaussian distribution in the absence of
source). The contrast curves provided therefore correspond to
a different probability of false alarm rate that is not constant
in the field of view and that is very favorable to these algo-
rithms. These curves therefore cannot be directly compared to
those drawn for PACO. The actual difference between the min-
imal contrast for source detection with PACO and TLOCI or
KLIP would be much larger should the same false alarm rate be
considered.

5.3. Photometric accuracy

This section is devoted to the analysis of the capability of PACO
to correctly estimate the flux α of a detected source. As ex-
plained in Sects. 3.2 and 4.2, the estimation pipeline of PACO
is very similar to the PACO algorithm used for detection. The
main difference lies in the joint estimation of the flux of the
source and the background statistics to prevent from under-
estimating the flux of the source. To evaluate the photometric
performance of PACO at different angular separations, we per-
formed the following numerical experiment: we injected fake
exoplanets with contrast decreasing with the angular separation
(see Table 3). For each angular separation, 50 different injec-
tions (at different known locations in the field of view) were per-
formed and each time the flux was estimated at those known
locations using PACO estimation Algorithm 3. Table 4 reports
the mean estimated flux 〈α̂〉, the bias and the photometric stan-
dard deviation relative to the source flux. It shows that the bias
is negligible compared to the standard deviation, at all angu-
lar separations. Additional results are given in Appendix C, il-
lustrating that the standard deviation depends on the source lo-
cation (some areas are more favorable than others) but not on
the source amplitude, as expected from the theoretical study,
see Eq. (20).

Figure 16 gives the estimated flux α̂ as the function of the
number of iteration with the PACO estimationAlgorithm 3 for
the three known faint point sources. They show that the iterative
estimation scheme converges within a few iterations. Figure 17
gives the local maps of the estimated flux at λ1 = 2.110 µm for
the two real faint sources around the HIP 72192 star as well as
for the known point source of the HD 131399 (2015) dataset.
The estimated flux is compared to the estimated flux obtained
without performing an alternate estimation between the flux and
the statistics of the background. For the two considered cases,
the estimation is performed with a sampling corresponding to
the data pixel grid (i.e., sampling factor s = 1) and with a sub-
pixel sampling (sampling factor s = 4). The flux of the objects
(and the S/N values) are also significantly under-estimated if the
estimation of the flux is not alternated with the estimation of the
background statistics. This shows that both (i) the location re-
finement and (ii) the joint estimation of the source flux and of
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Fig. 12. S/N maps computed with the fast version of PACO on the HD 131399 (2015) and HIP 72196 dataset at λ1 = 2.110 µm. Detections over
the S/N threshold of five are shown, they correspond to known background faint point sources.

Fig. 13. Contrast curves obtained with PACO: comparison between
predictive contrast map from PACO derived from Eq. (27) (denoted
as “PACO (oracle)”) radially averaged and Monte Carlo simulations
(denoted as “PACO (oracle Monte Carlo)”) by injection of fake exo-
planets on the HD 131399 (2015) dataset at λ2 = 2.251 µm. The two
cases are considered with absence of exoplanet during the learning of
the statistics of the background (oracle mode).

the background statistics are required to obtain an accurate esti-
mate of fluxes.

6. Conclusion

This paper presents a new method (PACO) dedicated to ex-
oplanet detection in angular differential imaging. PACO dif-
fers from the existing methods in its local modeling of the

background statistics that captures together the average speckles
and the spatial correlations. The decision in favor of the pres-
ence or absence of an exoplanet is made by a binary hypothe-
ses test. Since no image subtraction is performed, photometry is
well preserved by the method. PACO is completely parameter-
free, from the computation of a detection map to its thresholding
to extract meaningful detections and the estimation of fluxes of
the detected sources. We believe that this is a significant advan-
tage to obtain consistent performances and deploy the method in
large exoplanet surveys.

PACO is statistically grounded so that the false alarm rate,
the probability of detection and the contrast can be assessed
without necessarily resorting to Monte Carlo methods. Since
the performance of the detection and estimation method is the-
oretically well understood, it paves the way to the co-design of
the next generation of instruments for exoplanet detection, the
instrumental design and/or observation planning being easily re-
lated to detection performances through the predicted contrast
and photometric or astrometric accuracies.

We showed using three datasets from the VLT/SPHERE-
IRDIS instrument that the proposed method achieves significantly
better detection performance than current cutting-edge algo-
rithms such as TLOCI and KLIP-PCA as well as the recent and
emerging algorithm LLSG. The detection maps are robust to de-
fective pixels and other aberrant data points arising during the
SPHERE observations or data pre-processing pipeline. The detec-
tion maps obtained using PACO also have a stationary behavior
even in the vicinity of the host star. A joint processing of data from
different wavelengths can further improve the detection maps
and push down the detection limit but requires some refinements
that will be developed in a future paper.
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Fig. 14. Contrast maps for a probability of detection PD = 50% obtained with PACO for HD 131399 (2015), HD 131399 (2016) and HIP 72192
datasets at λ1 = 2.110 µm and λ2 = 2.251 µm.
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Fig. 15. Contrast curves derived from PACO, TLOCI and KLIP for a probability of detection PD ∈ {50%; 80%} at λ1 = 2.110 µm and λ2 = 2.251 µm
for the HD 131399 (2015), HD 131399 (2016) and HIP 72192 datasets respectively. Contrast curves as provided by KLIP and TLOCI do not
correspond to a 5σ false alarm rate contrarily to the contrast curves of PACO. The achievable contrasts are thus significantly over-optimistic for
KLIP and TLOCI, see discussion in the text (Sect. 5.2).

Table 4. Photometric accuracy evaluated by Monte Carlo simulation
with 50 injections of fake sources for each angular separation, on the
HIP 72192 dataset at λ1 = 2.110 µm.

Separation (′′) 〈 α̂ 〉 ± σ |〈 α̂ 〉 − α| σ/α

0.40 (3.9± 0.6) × 10−5 0.0 × 10−5 15%
1.58 (2.8± 0.6) × 10−6 0.0 × 10−6 21%
2.75 (2.7± 0.5) × 10−6 0.0 × 10−6 18%
3.93 (2.6± 0.4) × 10−6 0.0 × 10−6 15%
5.12 (2.5± 0.4) × 10−6 0.0 × 10−6 16%

Notes. Column 2: Mean estimated flux and 1σ confidence range.
Column 3: Bias. Column 4: Relative error.

Fig. 16. Estimated flux as the function of the number of iterations of
PACO estimationAlgorithm 3 for the three known faint point sources
(FPS) of the HIP 72192 and HD 131399 (2015) datasets.
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Fig. 17. Local S/N maps and estimated flux at λ1 = 2.110 µm around the known real faint point sources (FPS1 and FPS2) located around the
HIP 72192 star and the known real faint point source (FPS3) located around the HD 131399 system. Panel a: S/N of detection derived from
PACO detection Algorithm 1. Panel b: estimated flux derived from PACO detection Algorithm 1. Panel c: estimated flux derived from PACO
estimation algorithm alternating between the estimation of the flux and the computation of the background statistics. Panels e, d, f: Respectively
correspond to panels a, b, c computed on a subpixel grid with a sampling factor s = 4. The superimposed white grid represents the original
sampling grid (sampling factor s = 1).
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Appendix A: Estimation of the local patch
covariance

Several estimators of the covariance have been considered to
characterize the multivariate Gaussian model of a background
patch, at a given location θk. There are two aspects that must be
considered when selecting an appropriate estimator: (i) observed
patches not only contain the background, but possibly also sig-
nal from an exoplanet, and (ii) there are few observations (the
number of time frames T is typically between a few tens and a
hundred) compared to the number of parameters to estimate in
the covariance matrix (K(K+1)/2∼ 103 parameters, with K ∼ 50
the number of pixels in a patch). In this appendix, we discuss and
compare several alternatives to address these two issues.

The problem of the superimposition of background and ex-
oplanet signals can be handled by several ways, given that, be-
cause of the apparent motion of the field of view, an exoplanet is
not visible at the same location throughout the temporal stack. A
first strategy consists in discarding patches where an hypotheti-
cal exoplanet located at φ0 would be visible. A second strategy
is to discard patches that are the most correlated with the off-axis
PSF (i.e., patches that most likely contain an exoplanet). Another
solution is to use robust estimators in which the exoplanet signal
being considered as an outlier (as in LLSG, see Gonzalez et al.
2016). A finer solution consists in jointly estimating the flux of
the exoplanet and the statistics of the background.

All these methods have been compared and we found the last
approach to be the most successful. Approach 1 has a signifi-
cant drawback: by excluding (during the learning of background
statistics) all patches that are later considered in the exoplanet
detection test (Eq. (24)), the test becomes much noisier. Ap-
proach 2 is more satisfactory in this respect, but does not com-
pletely solve the problem: estimation of the flux of an exoplanet
is biased due to the errors in the estimation of parameters cmk
and bCk. Approach 3 based on robust estimators can be imple-
mented in several ways. We considered replacing the sample
mean by the median and a two-step estimation of the covari-
ance, where, in the second step, patches rθk leading to large Ma-
halanobis distances

(
rθk − m̂θk

)t
· Ĉ−1

θk
·
(
rθk − m̂θk

)
were discarded

in the computation of the covariance matrix. Only the last ap-
proach based on a joint estimation of the exoplanet flux and the
background statistics led to truly unbiased estimates of the pho-
tometry in our numerical experiments.

The second aspect, namely, the lack of observations on
which to base the estimation of the covariance, requires the use
of estimators with controlled variance. Indeed, the sample co-
variance estimator Ŝθk defined in Eq. (8) has a variance that is
too large. When the number of time frames T is smaller than the
number K of pixels in a patch, Ŝθk is moreover rank-deficient and
cannot be inverted to compute the detection criterion or to esti-
mate the flux of an exoplanet. This problem can be overcome by
introducing a regularization or by combining two estimators. A
classical regularization consists of adding a fraction of identity
matrix I to ensure that the covariance matrix is invertible:

Ĉ(reg)
θk

= Ŝθk + ε I (A.1)

where ε should be set small enough to introduce a negligible
bias. This regularized estimator can be shown to correspond to
the minimizer:

Ĉ(reg)
θk

= arg min
C
{log det C + tr(C−1Ŝθk ) + ε tr(C−1)} , (A.2)

which is a maximum a posteriori estimator with a (conjugate)
prior defined as an inverse matrix gamma distribution: p(C) ∝
exp

(
−ε tr

(
C−1)).

Another family of estimator is formed by shrinkage esti-
mators that combine two (or more) estimators to balance their
properties. A typical choice consists of a first estimator that is
unbiased but that suffers from a large variance, and a second es-
timator with much smaller variance but larger bias (reduced de-
grees of freedom). Following the work of Ledoit & Wolf (2004)
and Chen et al. (2010), we considered the combination of the
sample covariance matrix Ŝθk and the diagonal matrix F̂θk whose
diagonal entries are the empirical variances (see Eqs. (10) and
(11)). The shrinkage estimator is then defined by the convex
combination of Eq. (7) that we recall here:

Ĉ = (1 − ρ̂) Ŝ + ρ̂ F̂. (A.3)

If the samples based on which the estimators Ŝ and F̂ are com-
puted are distributed according to a multivariate distribution with
covariance Σ, then the optimal value ρ? that minimizes the ex-
pected risk E[‖Ĉ − Σ‖2F] is given by

ρO =
E
(
tr

((
Σ − Ŝ

)
·
(
F̂ − Ŝ

)))
E
(
‖̂S − F̂‖2F

) (A.4)

=

∑
i, j Var

([̂
S
]
i j
)
−

∑
i, j Cov

([̂
S
]
i j,

[
F̂
]
i j
)

E
(
‖̂S − F̂‖2F

) · (A.5)

where the subscript O in ρO is used to emphasize that this value
of ρ can be computed only provided that an oracle provides
the underlying covariance Σ. The specific form of estimators Ŝ
and F̂ and the Gaussian assumption lead to the simplified form
for ρO:

ρO =
tr(Σ2) + tr2(Σ) − 2

∑K
i=1[Σ]2

ii

(T + 1) tr(Σ2) + tr2(Σ) − (T + 2)
∑K

i=1[Σ]2
ii

, (A.6)

which is an extension of the result given in Chen et al. (2010) to
our estimator F̂. This expression cannot be applied in practice,
however. An approximate value ρ̂ is obtained by replacing the
unknown covariance matrix Σ by a previous estimate. This is
the principle of the oracle-approximating shrinkage estimator of
Chen et al. (2010). The following recursion can be applied ρ̂ j+1 =

tr(Σ̂ jŜ) + tr2(Σ̂ j) − 2
∑K

i=1[Σ̂ j]ii [̂S]ii

(T + 1) tr(Σ̂ jŜ) + tr2(Σ̂ j) − (T + 2)
∑K

i=1[Σ̂ j]ii [̂S]ii

Σ̂ j+1 = (1 − ρ̂ j+1) Ŝ + ρ̂ j+1 F̂
.

(A.7)

This sequence converges to a fixed point that is either ρ̂ = 1 or
the more useful value

ρ̂ =
tr(̂S2) + tr2 (̂S) − 2

∑K
i=1 [̂S]2

ii

(T + 1)(tr(̂S2) −
∑K

i=1 [̂S]2
ii),

(A.8)

which is also given in Eq. (12).
Figure A.1 compares the S/N maps computed with PACO con-

sidering different regularization schemes. It shows that the shrink-
age estimation of the covariance matrices achieves better perfor-
mance than a simple regularization by adding a fraction of identity
matrix. This may be due to the local and automatic adaptation of
the strength of the regularization to the data. The shrinkage esti-
mation of the covariance matrices is also applied considering the
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Fig. A.1. S/N maps computed with the PACO algorithm. Left: S/N map obtained with the PACO detection Algorithm 1. Covariance matrices are
regularized by adding the fraction ε = 10−6 of identity matrix (see Eq. (A.1)). Middle: S/N map obtained with the PACO detection Algorithm 1.
Covariance matrices are estimated using the shrinkage principle (see Eqs. (A.3) and (A.8)). Right: S/N map obtained with the PACO estimation
Algorithm 3. Covariance matrices are estimated using the shrinkage principle (see Eqs. (A.3) and (A.8)). The first 32 detections are marked on
the maps using square patterns. The 60 first detections are plotted as bar charts below each S/N map, ordered by decreasing S/N values, with true
detections in pink (true background sources) or blue (injected fake sources), and false detections in red. Circles indicate the location of all faint
point sources.

two algorithms derived from the general PACO principle: Algo-
rithm 1 preferentially used during the detection step and Algo-
rithm 3 preferentially used during the estimation step. It shows
that the unbiased estimation of the flux of the exoplanet using Al-
gorithm 3 is not beneficial in the exoplanet detection phase. In-
deed, it improves the signal of the exoplanets, but it also changes
the distribution of the test in the absence of exoplanet, which
makes more difficult the setting of a detection threshold since the
S/N does not follow a standard normal distribution.

Even a hand-tuned threshold does not improve the limit de-
tection contrast, the increase of the probability of false alarm
exceeding the improvement of the detection probability.

Appendix B: Fast computation of the CRLBs

In this appendix, we briefly detail how to compute efficiently
a map of the CRLBs for the parameters Ω= {α, x0, y0} (see
Eq. (29)). The fast computation is based on the closed-form ex-
pression of the inverse of Fisher information matrix

IF =


IF
α,α IF

α,x0
IF
α,y0

IF
x0,α

IF
x0,x0

IF
x0,y0

IF
y0,α

IF
y0,x0

IF
y0,y0

 , (B.1)

leads, for the estimated vector Ω= {α, x0, y0}, to the respective
CRLBs

σ2
α =

IF
x0,x0

IF
y0,y0
−

(
IF

x0,y0

)2

D
, (B.2)

σ2
x0

=
IF
α,αIF

y0,y0
−

(
IF
α,y0

)2

D
, (B.3)

σ2
y0

=
IF
α,αIF

x0,x0
−

(
IF
α,y0

)2

D
, (B.4)

where

D = IF
α,αIF

x0,x0
IF
y0,y0

+ 2 IF
α,x0

IF
α,y0

IF
x0,y0
− IF

α,α

(
IF

x0,y0

)2

− IF
y0,y0

(
IF
α,x0

)2
− IF

x0,x0

(
IF
α,y0

)2
(B.5)

is the determinant of IF.
The minimal standard deviations are given by

δ=
{√

σ2
α,

√
σ2

x0
,
√
σ2
y0

}
. The correlation coefficients between

parameters are obtained by

ρα,x0 =
IF
α,y0

IF
x0,y0
− IF

α,x0
IF
y0,y0√(

IF
x0,x0

IF
y0,y0
−

(
IF

x0,y0

)2
) (

IF
α,αIF

y0,y0
−

(
IF
α,y0

)2
) , (B.6)

ρα,y0 =
IF
α,x0

IF
x0,y0
− IF

α,y0
IF

x0,x0√(
IF

x0,x0
IF
y0,y0
−

(
IF

x0,y0

)2
) (

IF
α,αIF

x0,x0
−

(
IF
α,x0

)2
) , (B.7)

ρx0,y0 =
IF
α,y0

IF
α,x0
− IF

α,αIF
x0,y0√(

IF
α,αIF

y0,y0
−

(
IF
α,y0

)2
) (

IF
α,αIF

x0,x0
−

(
IF
α,x0

)2
) , (B.8)

Appendix C: Additional results on fake exoplanet
injections on the HIP 72192 dataset

This appendix presents additional detection results obtained on
the HIP 72192 dataset at λ1 = 2.110 µm. The injections are per-
formed at higher fluxes than those considering in Sect. 5.1.
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We have considered two higher levels of brightness for the
30 injected fake exoplanets as summarized in Table C.1. We note
that even at the highest level of brightness (level 3), the consid-
ered fluxes remain realistic and challenging since the contrast
between fake companions and the host star is less than 5× 10−6

far from the host star.
Figures C.1 and C.2 show S/N maps computed with the

PACO, TLOCI, KLIP and LLSG algorithms for the two new
levels of injection reported in Table C.1. Figure C.3 presents the
corresponding ROC curves. As expected, the performance of the
state-of-the-art algorithms increase when the flux of the injected
fake exoplanets increases. TLOCI and LLSG lead to very simi-
lar detection capabilities. KLIP (PCA) outperforms TLOCI since
it is significantly less sensitive to false detections. However the
detection remains difficult near the host star with these meth-
ods. As a result, the detection of 75% of the faint point sources
at the highest level of brightness (level 3) forced to reduce the
detection threshold to 3.8 leading to approximately 100 false de-
tections with TLOCI and KLIP. PACO is the only method able to
detect the 30 fake and two true sources without any false alarm.

As in Sect. 5.3 we have performed Monte Carlo pho-
tometric estimation of 50 injections at the considered angu-
lar distances using the mean flux given in Table C.1 for the
two additional levels of contrast using the PACO algorithm.
Table C.2 gives the mean estimated flux, the estimation bias
and the ratio between the empirical standard deviation and the
mean estimated flux. PACO also provides a statistical unbiased
photometric estimation even for high levels of flux, which

Table C.1. Angular separation and contrast of the injected fake sources
on the HIP 72192 dataset for the two additional levels of injection at
λ1 = 2.110 µm.

Separation (′′) Mean[α] Min[α] Max[α]

Level 2
0.40 5.8× 10−5 3.6× 10−5 8.4× 10−5

1.58 4.2× 10−6 3.1× 10−6 5.8× 10−6

2.75 3.8× 10−6 3.0× 10−6 5.5× 10−6

3.93 3.5× 10−6 2.7× 10−6 4.5× 10−6

5.12 3.4× 10−6 2.4× 10−6 5.1× 10−6

Level 3
0.40 8.6× 10−5 5.2× 10−5 1.0× 10−4

1.58 5.6× 10−6 4.1× 10−6 6.5× 10−6

2.75 4.8× 10−6 4.0× 10−6 6.7× 10−6

3.93 4.4× 10−6 3.6× 10−6 5.3× 10−6

5.12 4.3× 10−6 3.3× 10−6 6.3× 10−6

Notes. Fluxes have been chosen so that the difficulty of detecting each
source be approximately the same at all angular separations.

results into a high contamination of the collection of patches by
the point source itself during the computation of the background
statistics. As the standard deviation of the estimated flux does
not depends on the flux of the point source, the confidence in the
estimation improves when the flux of the point source increases.
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Fig. C.1. S/N maps computed with the PACO, TLOCI, KLIP and LLSG algorithms considering the injection level 2. For TLOCI and KLIP, an
unsharp filtering applied to S/N maps as post-processing is also considered. For LLSG, the resulting signed S/N is multiplied by a factor of 25
to fall within a comparable range than the other methods. For this latest algorithm, detection is in addition performed by discarding a centered
circular area of 1 arcsec in radius. The first 32 detections are marked on each S/N map using square patterns. The 60 first detections are plotted as
bar charts below each S/N map, ordered by decreasing S/N values, with true detections in pink (true background sources) or blue (injected fake
sources), and false detections in red. Circles indicate the location of the real and injected faint point sources. PACO is the only algorithm capable
of detecting correctly all sources without any false detection.
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Fig. C.2. S/N maps computed with the PACO, TLOCI, KLIP and LLSG algorithms considering the injection level 3. For TLOCI and KLIP, an
unsharp filtering applied to S/N maps as post-processing is also considered. For LLSG, the resulting signed S/N is multiplied by a factor of 25
to fall within a comparable range than the other methods. For this latest algorithm, detection is in addition performed by discarding a centered
circular area of 1 arcsec in radius. The first 32 detections are marked on each S/N map using square patterns. The 60 first detections are plotted as
bar charts below each S/N map, ordered by decreasing S/N values, with true detections in pink (true background sources) or blue (injected fake
sources), and false detections in red. Circles indicate the location of the real and injected faint point sources. PACO is the only algorithm capable
of detecting correctly all sources without any false detection.
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Fig. C.3. ROC curves showing the true positive rate (fraction
of sources correctly detected) as a function of the number of
false alarms (i.e., false detections) for each detection maps on the
HIP 72192 dataset at λ1 = 2.110 µm considering the levels 2 and
3 of injection. Values displayed on each curve correspond to the
detection threshold used.

Table C.2. Photometric accuracy evaluated by Monte Carlo simulation with 50 injections of fake sources for each angular separation, on the
HIP 72192 dataset at λ1 = 2.110 µm for the two additional levels of injection.

Separation (′′) 〈α̂〉 ± σ
∣∣∣∣〈α̂〉 − α∣∣∣∣ σ/α

Level 2
0.40 (5.8± 0.6)× 10−5 0.0× 10−5 10%
1.58 (4.2± 0.6)× 10−6 0.0× 10−6 14%
2.75 (3.8± 0.5)× 10−6 0.0× 10−6 13%
3.93 (3.5± 0.4)× 10−6 0.0× 10−6 11%
5.12 (3.4± 0.4)× 10−6 0.0× 10−6 12%

Level 3
0.40 (8.6± 0.6)× 10−5 0.0× 10−5 7%
1.58 (5.6± 0.6)× 10−6 0.0× 10−6 11%
2.75 (4.8± 0.5)× 10−6 0.0× 10−6 10%
3.93 (4.4± 0.4)× 10−6 0.0× 10−6 9%
5.12 (4.3± 0.4)× 10−6 0.0× 10−6 9%

Notes. Column 2: Mean estimated flux and 1σ confidence range. Column 3: Bias. Column 4: Relative error.
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