
HAL Id: ujm-02010043
https://ujm.hal.science/ujm-02010043

Submitted on 6 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Near-lossless Binarization of Word Embeddings
Julien Tissier, Christophe Gravier, Amaury Habrard

To cite this version:
Julien Tissier, Christophe Gravier, Amaury Habrard. Near-lossless Binarization of Word Embeddings.
33rd AAAI Conference on Artificial Intelligence (AAAI-19), Jan 2019, Honolulu, HI, United States.
�ujm-02010043�

https://ujm.hal.science/ujm-02010043
https://hal.archives-ouvertes.fr

Near-lossless Binarization of Word Embeddings

Julien Tissier and Christophe Gravier and Amaury Habrard
Univ. Lyon, UJM Saint-Etienne

CNRS, Lab Hubert Curien UMR 5516
42023, Saint-Etienne, France

firstname.lastname@univ-st-etienne.fr

Abstract

Word embeddings are commonly used as a starting point in
many NLP models to achieve state-of-the-art performances.
However, with a large vocabulary and many dimensions,
these floating-point representations are expensive both in
terms of memory and calculations which makes them unsuit-
able for use on low-resource devices. The method proposed
in this paper transforms real-valued embeddings into binary
embeddings while preserving semantic information, requir-
ing only 128 or 256 bits for each vector. This leads to a small
memory footprint and fast vector operations. The model is
based on an autoencoder architecture, which also allows to
reconstruct original vectors from the binary ones. Experimen-
tal results on semantic similarity, text classification and sen-
timent analysis tasks show that the binarization of word em-
beddings only leads to a loss of ∼2% in accuracy while vec-
tor size is reduced by 97%. Furthermore, a top-k benchmark
demonstrates that using these binary vectors is 30 times faster
than using real-valued vectors.

1 Introduction
Word embeddings models play a central role in many NLP
applications like document classification (Joulin et al. 2017;
Conneau et al. 2017) or sentiment analysis (Socher et al.
2013; Qian et al. 2017). The real-valued vector represen-
tation associated to each word of a vocabulary V reflects
its semantic and syntactic information extracted from the
language (Bengio et al. 2003). They are usually created
from a large corpus by moving closer the vectors of words
co-occurring together (Mikolov et al. 2013) or factorizing
the matrix containing co-occurrences statistics (Pennington,
Socher, and Manning 2014), and commonly require several
gigabytes of memory space. For example, with a vocabulary
of 2 million words and 300-dimensional vectors, storing the
word embedding require 2.4 gigabytes (with real values en-
coded with 32-bit float).

Motivation Storing and running such models on embed-
ded devices like cell phones is not feasible in practice, due to
their limited memory and low computing power for floating-
point arithmetic. In general, NLP applications running on

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

smartphones send data to large computing servers that per-
form the calculations and return the results. The method de-
scribed in this paper aims to reduce the size of the word
embeddings models so that the computations can be done
locally on the embedded device. The benefits are twofold:

1. the embedded device can run NLP applications offline;

2. privacy is preserved since no user data is send to servers.

A solution to reduce the size is to binarize the model; ei-
ther the learning parameters (Hubara et al. 2016) or the vec-
tor representations (Joulin et al. 2017). This paper stands in
the second category. Associating binary codes to words al-
lows one to speed up calculations as the vector operations
can be done with bitwise operators instead of floating-point
arithmetic, e.g. computing the distance between two binary
vectors only requires a XOR and a popcount() 1 oper-
ations (which are both performed with a single CPU cy-
cle due to hardware optimizations in modern processors)
while it requiresO(n) floating-point multiplications and ad-
ditions for n-dimensional real-valued vectors. To take ad-
vantage of fast CPU optimized bitwise operations, the size
of binary vectors has to be in adequacy with register sizes
(64, 128 or 256 bits). When this criteria is met, the compu-
tations are much faster (Norouzi, Punjani, and Fleet 2012;
Subercaze, Gravier, and Laforest 2015). Nevertheless, map-
ping words to binary codes is not enough as the vectors are
then used in NLP applications. They also need to encode
semantic and syntactic information; the objective then be-
comes to find binary vectors that preserve the language as-
pects and are small enough to fit in CPU registers.

Contributions This paper solves the problem of produc-
ing binary word vectors from real-valued embeddings while
preserving semantic information. Our model is based on an
autoencoder architecture which transforms any real-valued
vectors to binary vectors of any size (more specifically 64,
128 or 256 bits) and allows one to reconstruct original vec-
tors from the binary ones. Our binary vectors use 37.5 times
less memory and perform a top-k query 30 times faster than
real-valued vectors, with only an accuracy loss of ∼2% on
several NLP tasks. Entire source code to generate and eval-
uate binary vectors is available online 2.

1popcount(n) returns the number of bits set to 1 in n.
2
https://github.com/tca19/near-lossless-binarization

ar
X

iv
:1

80
3.

09
06

5v
3

 [
cs

.C
L

]
 1

5
N

ov
 2

01
8

2 Related work
Dimensionality reduction Classic dimensionality reduc-
tion techniques (Raunak 2017) can be used to produce
smaller embeddings. Although the number of dimensions
can be halved, the produced vectors still require floating-
point operations when they are used. Another method (Ling,
Song, and Roth 2016) limits the precision of each dimension
to 4 or 8 bits, but the size of the vectors is not aligned with
CPU register sizes. Other approaches (Shu and Nakayama
2018; Chen, Min, and Sun 2018) only store a small set of
basis vectors which are then used as linear combinations to
produce a vector for each word. The memory size is largely
reduced (∼98%) because they do not store the whole em-
beddings matrix, but the vectors are still real-valued and do
not benefit from the aforementionned calculation gains.

Binary word vectors A naive approach to produce binary
word embeddings is to map each value x of a pre-trained
real-valued embedding to 0 if x < 0 and 1 otherwise. This
method does not require any training step but suffers from
an important drawback: the binary vectors have the same
dimension as the original ones. To produce vectors of 64,
128 or 256 bits, one has to retrain real-valued embedding
with these dimensions, and then apply the naive binarization.
The results of subsection 5.4 show that it is slower and less
efficient than the proposed method that directly transforms
vectors with the appropriate binary size.

Semantic hashing is one way to find compact binary codes
in order to well approximate nearest neighbor search in the
original space. NASH (Shen et al. 2018) finds a binary code
to each document for fast information retrieval, using an
end-to-end neural architecture. Locality sensitive hashing
(Charikar 2002) uses random projections to produce binary
codes that approximates the cosine similarity of the corre-
sponding orginal vectors. However, these methods generally
fail to fully preserve semantic similarities (Xu et al. 2015).

Faruqui et al. (2015) propose to binarize real-valued vec-
tors by first increasing the vector size to create sparse vec-
tors, and then applying the naive binarization function. Al-
though this method preserves the semantic similarities, the
produced vectors are not really small and does not fit in CPU
registers. Fasttext.zip (Joulin et al. 2016) binarizes word vec-
tors by clustering them and concatenating the binary codes
of the k closest centroids for each word. The binary vec-
tors are then used in a document classification task but this
method does not produce generic binary vectors that could
be used in other tasks as the vocabulary size is drastically
reduced to around 1000 words.

Although binary vectors can speed up vector computa-
tions, some NLP applications only work with real-valued
vectors (Ma and Hovy 2016); being able to reconstruct real-
valued vectors from the binary ones is therefore required for
such applications. As a consequence, one can store the bi-
nary embeddings and compute on the fly real-valued vectors
only for the words it needs instead of storing the real-valued
vectors of all words, reducing the required memory space
(e.g. for 1M words and 128-bit vectors, storing binary codes
and the reconstruction matrix requires 16.1MB vs. 1.2GB
for real-valued vectors).

3 Binarizing word vectors with autoencoder
3.1 Autoencoder architecture
Let V be a vocabulary of words, and X ∈ R|V|×m a
(|V|×m) matrix whose rows arem-dimensional real-valued
vectors representing the embedding of each word. Our main
objective is to transform each row xi into a binary repre-
sentation bi of dimension n with n � k ×m where k cor-
responds to the encoding size of real-valued numbers (e.g.
32 bits for standard single-precision floating-point format)
while preserving the semantic information contained in xi.
The proposed method achieves this objective by using an au-
toencoder model composed of two parts: an encoder that bi-
narizes the word vector x to Φ(x) and a decoder that recon-
structs a real-valued vector from Φ(x). The binarized vector
is therefore the latent representation of the autoencoder. Fig-
ure 1 summarizes this architecture.

0.31 0.10 -0.01 -0.34 0.38x . . .

0 1 0. . .

0.28 0.07 0.03 -0.33 0.39. . .

Φ(x)

ŷ

Figure 1: Autoencoder architecture used to binarize word
vectors and reconstruct a real-valued representation. The
model can learn any vector size for Φ(x).

Encoding to binary vectors Let W be a n × m matrix.
We define the binarized vector bi of xi as:

bi = Φ(xi) = h(W · xTi) (1)

where h(.) is an element-wise function that outputs a bit
given a real value such as the Heaviside step function. The
dimension of W is (n ×m) i.e. the desired binary size and
the size of the original real-valued vector. Therefore our
model can be used to generate binary vectors of any size
independently of the original size of the real-valued vector.

Reconstructing a real-valued vector The generated rep-
resentation Φ(xi) is then used to compute a reconstructed
vector ŷi as:

ŷi = f(WT · Φ(xi) + c) (2)

where c is a m-dimensional bias vector. The function f is
an element-wise non-linear function. The hyperbolic tangent
function is used as the f function in the model to be able
to reconstruct the vectors as close as possible to the original
embeddingsX whose values are within the [-1,1] range. Pre-
trained vectors are clipped to be within the the [-1,1] range.
This preprocess step does not alter the quality of the pre-
trained vectors (semantic similarity score stays the same) as
most of the vector values are already within this range.

3.2 Objective function
The reconstruction loss `rec for a vector xi is defined as the
mean squared error of xi − ŷi:

`rec(xi) =
1

m

m∑
k=0

(xik − ŷik)2 (3)

where xik (resp. ŷik) represents attribute number k of vec-
tor xi (resp. ŷi). The autoencoder is trained to minimize this
loss for all word vectors. We noticed that this model pro-
duced good reconstructed vectors but poor semantically re-
lated binary codes as it is solely trained to minimize the re-
construction loss. The learned matrix W was discarding too
much similarity information from the original space in favor
of the reconstruction.

This problem is solved by adding a regularization term in
the objective function defined as:

`reg =
1

2
||WTW − I||2 (4)

This term tends to minimize the correlations between the
different features of the latent binary representation which
is an essential concept in our context. Since the model aims
to produce small-size binary embeddings, it needs to encode
as much information as possible across all the dimensions
of the binary code, therefore minimizing the correlation be-
tween the different binary features is crucial to avoid dupli-
cate information. This regularization has the effect of pre-
serving the information contained in the real-valued embed-
dings, so vectors that are close in the original space are also
close in the binary space.

The balance between the influence of the reconstruction
loss and the regularization loss is achieved with the λreg pa-
rameter. The global objective function to minimize is:

L =
∑
xi∈X

`rec(xi) + λreg `reg (5)

Note here that the same parameter matrixW is both used for
the encoder and for the decoder. This is actually motivated
by the fact that the function h(·) involved in the tranforma-
tion function Φ(·) is non-differentiable, so it is not possible
to compute a gradient for the encoding step. It is assumed
that ∂Φ(xi)

∂W = 0. However, the weights of W used in the
encoding step can still be updated thanks to the informa-
tion provided by the decoder (∂(xi−ŷi)

2

∂W). The autoencoder
is then trained with stochastic gradient descent (SGD) with
momentum set to 0.95.

The objective function is both non-convex and non-
smooth. Despite the fact that proving a general convergence
is a hard problem, we have observed in practice that the reg-
ularization plays an important role and allows our model to
converge to a local optimum (without the regularization, our
model oscillates and binary vectors keep changing).

4 Experimental setup
Several tasks have been run to measure the performance of
the binary and reconstructed vectors (semantic similarity,
word analogy, document classification, sentiment analysis,
question classification) and another task to evaluate the com-
putation efficiency of binary vectors (top-K queries).

Pre-trained embeddings Our model produces binary
vectors from several pre-trained embeddings: dict2vec
(Tissier, Gravier, and Habrard 2017) which contains 2.3M
words and has been trained on the full English Wikipedia
corpus; fasttext (Bojanowski et al. 2017) which con-
tains 1M words and has also been trained on the English
Wikipedia corpus; and GloVe (Pennington, Socher, and
Manning 2014) which contains 400k words and has been
trained on both English Wikipedia and Gigaword 5 corpora.
All vectors have 300 dimensions. The learning hyperparam-
eters used are the ones from their respective paper. Since the
three embeddings are based on different methods (deriva-
tion of skip-gram for dict2vec and fasttext, matrix
factorization for GloVe), this demonstrates that the model
is general and works for all kinds of pre-trained vectors.

Training settings Binary vectors of 4 different sizes are
produced: 64, 128, 256 and 512 bits. The optimal hyperpa-
rameters are found using a grid search and selected to min-
imize the reconstruction loss and the regularization loss de-
scribed in Section 3. The model uses a batch size of 75, 10
epochs for dict2vec and fasttext, and 5 epochs for GloVe (the
autoencoder converges faster due to the smaller vocabulary)
and a learning rate of 0.001. The regularization hyperparam-
eter λreg depends on the starting vectors and the binary vec-
tor size. It varies from 1 to 4 in the experiments but its influ-
ence on the performance is small (∼2% variation).

Semantic word similarity Both binary and reconstructed
vectors are evaluated with the standard method which con-
sists in computing the Spearman’s rank correlation coeffi-
cient between the similarity scores attributed by humans to
pairs of words and the scores computed with the word vec-
tors of these pairs. The score of real-valued vectors is the
cosine similarity and the score of binary vectors is the Sokal
& Michener similarity function (Sokal 1958) defined as:

sim(v1, v2) =
n11 + n00

n
(6)

where n11 (resp. n00) is the number of bits in v1 and v2 that
are both set to 1 (resp. set to 0) simultaneously and n is the
vector size. The similarity datasets used are MEN (Bruni,
Tran, and Baroni 2014), RW (Luong, Socher, and Man-
ning 2013), SimLex (Hill, Reichart, and Korhonen 2015),
SimVerb (Gerz et al. 2016) and WordSim (Finkelstein et al.
2001).

Word analogy This evaluation follows the standard pro-
tocol used by Mikolov et al. (2013). The task consists in
finding the word d in questions like “a is to b as c is to d”.
The evaluation first computes the vector vb − va + vc and
then look at its closest neighbours. If the closest one is the
vector associated to d, then the analogy is correct. The task
reports the fraction of correctly guessed analogies among all
analogies. For binary vectors, we replace the addition with
the OR bitwise operator and the subtraction with the AND
NOT operator because adding or subtracting bits do not re-
ally make sense in the binary space (like subtracting the bit
1 to the bit 0). The dataset is separated in 2: one consists
of analogies about countries and currencies (semantic), the
other one about english grammar (syntactic).

Table 1: Spearman’s rank correlation similarity and word analogy scores for binary vectors (bin) of 64, 128, 256 and 512 bits,
reconstructed real-valued vectors from the binary codes (rec) and binary vectors produced with Local Sensitive Hashing (LSH).
For each dataset, scores of original real-valued vectors are also reported (raw column).

dict2vec fasttext GloVe

raw 64 128 256 512 raw 64 128 256 512 raw 64 128 256 512

MEN 74.6 80.7 73.7
bin - 66.1 71.3 70.3 71.3 - 57.9 72.0 75.9 76.3 - 46.1 63.3 69.4 72.7
rec - 64.5 69.6 67.8 64.7 - 45.8 56.2 62.3 59.3 - 43.6 50.5 68.5 72.2

LSH - 47.7 56.2 62.6 67.8 - 47.7 60.7 70.0 75.0 - 50.8 62.0 64.9 71.0
RW 50.5 53.8 41.2

bin - 36.5 42.0 45.6 45.6 - 36.8 44.7 52.7 52.7 - 25.1 34.3 40.7 40.2
rec - 35.7 41.6 44.6 39.3 - 28.9 31.6 45.7 44.1 - 24.8 29.2 36.4 40.5

LSH - 26.4 37.2 41.7 46.2 - 34.5 40.3 47.5 46.5 - 26.3 33.0 35.8 38.3
SimLex 45.2 44.1 37.1

bin - 32.0 38.1 44.8 42.9 - 25.1 38.0 44.6 43.0 - 20.5 31.4 37.2 36.8
rec - 30.4 37.9 42.4 39.3 - 19.2 30.0 40.5 34.0 - 19.6 19.1 34.2 38.2

LSH - 29.6 35.9 40.2 39.5 - 28.7 32.0 38.6 41.1 - 24.7 30.5 33.1 34.6
SimVerb 41.7 35.6 22.7

bin - 25.3 36.6 38.4 35.5 - 19.2 26.7 33.7 35.1 - 7.8 18.7 22.9 23.0
rec - 23.7 35.4 37.5 29.4 - 12.8 18.2 25.6 25.3 - 8.0 12.4 22.1 24.7

LSH - 22.0 27.5 31.6 36.9 - 20.5 23.3 30.7 30.2 - 14.6 17.4 18.8 20.7
WS353 72.5 69.7 60.9

bin - 63.7 71.6 69.6 66.6 - 50.3 69.1 70.0 70.3 - 30.1 44.9 56.6 60.3
rec - 61.4 69.0 67.4 58.8 - 36.5 53.6 64.0 53.6 - 26.5 42.2 56.5 62.0

LSH - 45.5 56.9 64.9 65.5 - 46.7 53.2 58.6 63.8 - 41.1 44.4 50.5 57.8

Sem. analogy 59.6 37.6 77.4
bin - 2.6 12.0 26.7 30.1 - 2.3 7.5 18.0 25.0 - 8.5 26.7 53.4 65.3
rec - 2.6 10.2 22.8 30.9 - 1.8 5.0 14.6 15.2 - 7.7 23.0 49.1 62.8

LSH - 0.8 4.6 14.9 29.9 - 0.8 6.4 13.0 20.4 - 6.1 25.9 47.9 59.3
Syn. analogy 54.0 87.4 67.0

bin - 3.5 16.7 34.8 36.2 - 8.0 34.5 57.3 64.7 - 7.3 23.9 46.3 52.4
rec - 3.6 16.1 31.2 37.5 - 4.6 14.6 50.8 53.1 - 7.3 21.7 44.6 54.0

LSH - 1.7 7.8 23.4 35.8 - 4.0 21.5 46.2 65.7 - 5.6 21.6 39.1 52.3

Document/Question classification and sentiment analy-
sis The evaluation follows the same protocol as described
in the literature (Zhang, Zhao, and LeCun 2015; Joulin et al.
2017) which consists in predicting the assigned label given
the bag-of-words representation of a text. A single hidden
layer neural network where the input weights have been ini-
tialized with the binary or reconstructed vectors is used. The
input weights are fixed during training so that the classifica-
tion accuracy only depends on the vectors used to initialize
the neural network. The datasets used are AG-News and DB-
pedia for document classication, Yahoo Answers for ques-
tion classification and Amazon and Yelp reviews (both po-
larity and full) for the sentiment analysis task. Each dataset
is split into a training and a test file and the same training and
test files are used for all word embedding models. Accuracy
results are reported in Table 2.

Top-K queries performances A top-K query consists in
finding the K closest vectors given a single word vector
query. The closest vectors are the ones with the highest simi-
larity with the query vector (Sokal & Michener similarity for
binary vectors, cosine similarity for real-valued ones). The
top-K vectors are found by performing a linear scan across
all vectors. Two execution times are measured for both bi-
nary and real-valued vectors: the time it takes to get the re-
sults once the vectors are loaded in memory and the time it
takes to load the vectors and perform the query.

5 Results and binary vectors analysis
5.1 Binary embeddings performances
Semantic word similarity Table 1 reports the Spearman’s
rank correlation scores obtained with the binarized vec-
tors (bin) and the scores of the original real-valued vec-
tors (raw) whose size is 9600 bits (300 dimensions, 32-bit
floating-point values). The best scores for binarized vectors
are reached with 256 or 512 bits. For fasttext and GloVe, the
results are very close to the scores obtained with the raw vec-
tors (absolute difference smaller than 1 point). For dict2vec,
the deviation is larger (between 3 and 5 points) but still in
the same order of magnitude.

Binarizing word vectors can lead to better scores com-
pared to the original real-valued ones (the raw column). For
instance, the 512-bit version of fasttext on WS353 (70.3
against 69.7) or the 256-bit version of GloVe on SimVerb
(22.9 against 22.7). Moreover, the 64-bit version of dict2vect
is better than the real-valued GloVe embedding (which uses
9600 bits of information per vector, so the binary codes
are 150 times smaller) on SimVerb (25.3 against 22.7)
and WS353 (63.7 against 60.9). This demonstrates that the
method can produce rich semantically related small binary
codes but more generally, that binary vectors can have the
same semantic information as the real-valued vectors.

The average semantic correlation scores (aggregated with
the Fisher’s transformation) of binary and original vectors

Table 2: Document classification (top), question classification (middle) and sentiment analysis (bottom) accuracies for binary
vectors (bin) of 64, 128, 256 and 512 bits, reconstructed real-valued vectors (rec) and binary vectors produced with Local
Sensitive Hashing (LSH). For each dataset, scores of original real-valued vectors are also reported (raw column).

dict2vec fasttext GloVe

raw 64 128 256 512 raw 64 128 256 512 raw 64 128 256 512

AG-News 89.0 86.9 89.5
bin - 85.3 85.9 87.7 87.8 - 84.5 85.9 87.3 87.7 - 84.0 87.2 88.5 88.5
rec - 85.2 86.3 87.9 87.2 - 82.8 84.3 87.7 87.3 - 83.9 87.7 88.6 89.2

LSH - 78.8 82.6 86.1 88.1 - 77.5 83.3 86.1 88.8 - 83.5 86.6 88.4 88.6
DBpedia 97.6 95.0 97.2

bin - 94.1 96.1 97.0 97.3 - 91.7 95.1 96.6 97.3 - 90.9 95.0 96.8 97.2
rec - 94.0 95.9 96.8 96.6 - 89.5 92.6 96.4 96.0 - 91.2 95.2 96.8 97.0

LSH - 89.6 94.2 96.5 97.4 - 87.4 93.8 96.2 97.2 - 90.4 94.2 96.3 97.2

Yahoo Ans 68.1 67.2 68.1
bin - 60.7 63.8 66.0 66.8 - 60.4 63.9 66.4 67.8 - 57.5 62.5 66.4 66.1
rec - 60.8 63.8 65.9 66.0 - 60.0 62.9 66.3 66.8 - 58.4 64.3 66.7 67.0

LSH - 52.3 59.9 64.5 67.1 - 52.2 59.5 64.9 66.9 - 56.8 62.0 65.3 67.0
Amazon Full 47.5 49.0 47.1

bin - 39.9 43.9 46.8 47.7 - 39.0 43.9 47.9 49.8 - 37.4 42.6 46.7 47.8
rec - 40.1 44.0 46.8 46.2 - 39.1 43.8 48.1 48.5 - 39.8 45.3 47.1 47.3

LSH - 38.3 42.5 45.6 48.1 - 38.6 42.7 47.3 49.5 - 37.9 43.0 45.9 48.6
Amazon Pol 84.2 85.6 83.8

bin - 76.3 80.7 83.2 83.8 - 75.1 80.2 84.5 85.8 - 73.1 78.9 83.2 84.4
rec - 76.6 80.8 83.2 82.4 - 75.1 80.2 84.7 84.8 - 76.6 80.2 83.6 83.7

LSH - 74.3 79.0 81.9 84.5 - 73.8 78.5 83.4 85.7 - 74.7 79.1 82.1 85.0
Yelp Full 52.5 52.1 52.7

bin - 45.1 48.7 51.6 52.0 - 44.2 49.7 53.0 54.6 - 42.7 48.4 51.8 53.2
rec - 45.3 48.8 51.6 50.9 - 43.5 47.8 53.0 53.1 - 43.4 50.3 52.3 52.8

LSH - 43.0 47.7 51.0 53.1 - 44.3 47.6 52.4 54.3 - 43.6 48.2 51.5 53.4
Yelp Pol 87.8 88.0 87.9

bin - 80.8 84.5 86.6 87.6 - 80.1 84.5 88.1 89.5 - 77.8 84.2 86.9 88.7
rec - 80.9 84.5 86.6 86.1 - 79.6 84.0 88.2 88.5 - 78.6 85.7 87.5 87.7

LSH - 77.9 82.8 86.1 88.0 - 80.3 82.2 87.2 89.8 - 79.0 83.1 86.6 88.6

(whose size is 9600 bits per vector) are plotted in Figure 2.
The 512-bit version of GloVe is on par with the real-valued
version. However the performance loss is greater for fast-
text and dict2vec vectors. These embeddings contain 1M of
words for fasttext, and 2.3M for dict2vec, whereas GloVe
only contains 400k words. As the binary space has a finite
size depending on the binary vector size, it becomes harder
for the autoencoder to find a distribution of the binary vec-
tors that preserves the semantic similarity when the number
of vectors increases.

Word Analogy Table 1 reports the word analogy accura-
cies of binary vectors for both semantic and syntactic analo-
gies. Although the best scores are also obtained with larger
binary codes (512 bits), the scores are lower than the real-
valued vectors. This can be explained by the fact that the
task of word analogy is not suited to evaluate binary vectors.
With real-valued vectors, the analogies are found with vec-
tor addition and subtraction in the Rd space. In the binary
space (where each value is either 0 or 1), adding or sub-
tracting vectors does not make sense (like subtracting the bit
1 from the bit 0) resulting in poor accuracies for the word
analogies with the binary vectors.

Text classification The accuracies obtained on the differ-
ent datasets of the document classification task for both bi-
narized vectors (bin) and original vectors (raw) are provided

in Table 2. For this task, the binarized vectors achieve the
best scores with 512 bits in general. Similarly to the seman-
tic similarity task, the binary vectors are sometimes better
than the original vectors. This is especially true for the fast-
text binarized vectors where the accuracies goes from 95.0
to 97.3 on DBpedia, or goes from 49.0 to 49.8 on Amazon
Full reviews.

Smaller sizes of binary vectors lead to better compression
rates but cause a slight decrease in performance. The 256-
bit vectors of GloVe are 37.5 times smaller than the origi-
nal vectors (whose size is 9600 bits) but have an accuracy
drop between 0.4% and 2.5% depending on the dataset. The
64-bit vectors of dict2vec (compression rate of 150) have a
loss of accuracy of about 4% on AG-News and DBpedia,
about 11% on Yahoo answers and about 16% on Amazon
Full reviews. The two latter datasets are the bigger ones with
3M training samples for Amazon Full reviews and 1.4M for
Yahoo answers while AG-News and DBpedia respectively
contain 120k and 560k training samples. As the dataset be-
comes larger, the information required to correctly classify
the documents also increases, so is the accuracy loss on these
datasets when small binary vectors are used. Overall, this ex-
periments show once again that our binary embeddings are
competitive in comparison with real-valued ones.

Figure 2: Fisher’s transformed average semantic correlation scores for different binary vector size for all type of embeddings.
The raw baseline indicates the score obtained with real-valued embeddings.

5.2 Reconstructed vectors performances
Table 1 and Table 2 also respectively report the scores ob-
tained on semantic word similarity and analogy and text
classification tasks using the reconstructed (rec) vectors.

On the semantic similarity task, fasttext and dict2vec
mostly best operate using 256-bit binary vectors while
GloVe requires larger binary vectors (512-bit) to recon-
struct good real-valued vectors. For most datasets, the re-
constructed vectors from the binarized GloVe 512-bit repre-
sentations outperforms the original real-valued vectors: 38.2
against 37.1 on SimLex, 24.7 against 22.7 on SimVerb and
62.0 against 60.9 on WS353. For dict2vec and fasttext, bi-
narizing and then reconstructing real-valued vectors from
the binary ones causes a loss of performance compared to
the original word vectors: between -4.8% (WS353) and -
11.7% (RW) for dict2vec; between -8.2% (WS353) and -
28.1% (SimVerb) for fasttext. The performance loss of re-
constructed vectors is larger for fasttext than for dict2vec
due to their different embedding scheme. Fasttext also en-
codes additional morphological information in the word vec-
tor space by considering that a word is the sum of its sub-
words, which is harder to reconstruct after a dimension re-
duction (the binarization).

On NLP application tasks like document classification or
sentiment analysis (Table 2), the results are very consis-
tent: the reconstructed vectors exhibit close performances
to the binary representations, which in turn exhibit (almost)
equal performances to the original vectors – whatever the
initial embedding model. Although the pairwise word se-
mantic similarity is not perfectly preserved in reconstructed
vectors, the document classification task only needs vectors
close enough for those of the same category but not neces-
sarily very accurate within a category. This makes the binary
or reconstructed vectors good for a real use case NLP task.
The optimal number of bits required to recontruct good real-
valued vector is the same as for the semantic similarity task
(256 bits for dict2vec/fasttext, 512 for GloVe).

5.3 Speed improvements in top-K queries
The execution time (in milliseconds) of top-K queries
benchmarks for GloVe vectors are reported in Table 3. The
first three rows (Top 1, Top 10, Top 50) indicate the time

used by the program to perform the query after the vectors
are loaded i.e. the time to linearly scan all the vectors, com-
pute the similarity with the query vector and select the K
highest values. Finding the closest 10 words with 256-bit
vectors is 30 times faster compared to using real-valued vec-
tors and can be up to 36 times faster with the 64-bit vectors.

Having faster computations is not the only interest of bi-
nary vectors. Since they take less space in memory, they are
also much faster to load. The last line in Table 3 indicates
the time needed to load the vectors from a file and perform
a top-10 query. It takes 310 milliseconds to load the 256-bit
binary vectors and run the query whereas it take 23.5 sec-
onds for the real-valued ones, which is 75 times slower.

Table 3: Execution time (in ms) to run a top-K query on
binary and real-valued vectors.

Execution time (ms) 64-bit 128-bit 256-bit 512-bit Real-valued

Top 1 2.71 2.87 3.23 4.28 97.89
Top 10 2.72 2.89 3.25 4.29 98.08
Top 50 2.75 2.91 3.27 4.32 98.44

Loading + Top 10 160 213 310 500 23500

5.4 Comparison with the naive approach
A naive approach to produce binary vectors is to map neg-
ative values of pre-trained word embeddings to 0 and posi-
tive values to 1. Unfortunately the binary vectors produced
with this method have the same number of dimensions as the
original vectors and since most pre-trained vectors are not
available in 64, 128 or 256 dimensions, the binary vectors
are not aligned with CPU registers (see Section 1) which is
an important requirement to achieve fast vector operations.

To produce aligned vectors with the naive method, one
has first to train real-valued embeddings with 64, 128 or
256 dimensions and then apply a naive binarization func-
tion to all vector values. First, this process is slower than our
method. It requires 8 hours while we only need 13 minutes.
Second, binary vectors produced with the naive binarization
perform worse compared to those produced with the pro-
posed method. The Fisher’s average semantic score is 44.7
and 49.6 for the naive 64 and 128 bits vectors while the 64
and 128 bits dict2vec vectors achieve 46.5 and 54.1.

5.5 Comparison with other binarization methods
We used the Locality Sensitive Hashing method to produce
binary vectors of 64, 128, 256 and 512 bits from the same
real-valued vectors as us and have evaluated them on the
same tasks (Table 1 and 2). For the word similarity and anal-
ogy tasks, our vectors are always better (e.g. 70.3 vs. 63.8 for
fasttext 512-bit on WS353, 34.8 vs. 23.4 for dict2vec 256-bit
on Syn. analogy) except for GloVe 64-bit and some fasttext
64-bit vectors. For the classification task, our 512-bit vectors
are on par with the LSH ones, but our 128 and 256 bits vec-
tors have better performances than the respective LSH ones.
Our model is better suited when the compression is higher
and gives the best size to performance ratio.

We also used the Faruqui method (2015) to produce bi-
nary vectors. Faruqui’s vectors are mostly sparse (90% of
bits set to 0) but not very small to be computationally in-
teresting: dimension is set to 3000-bit, so they do not fit in
registers. They are also have poorer performance than our
binary vectors: 0.560 for their average score on semantic
similarity while we achieve 0.575 with our 256-bit vectors.

5.6 Qualitative analysis of binary embeddings
Evolution of word vector similarity The semantic word
similarity task rely on specific datasets. They contain pairs
of words and a value assigned by humans (e.g. com-
puter/keyboard - 0.762)). This value represents the semantic
similarity between the two words and is assumed to be the
ground truth that word embeddings should encode. The co-
sine similarity of the pre-trained vectors of the words of one
pair does not always match the value associated to this pair,
but binarizing the vectors helps to move closer the vector
similarity to the value, making the embedding closer to the
human judgment. Some pairs are reported in Table 4.

Table 4: Semantic similarity for some pairs of words, evalu-
ated by human or computed with binary/real-valued vectors.

Words Human judgment Binary Cosine

dollar – buck 0.92 0.56 0.13
seafood – sea 0.75 0.62 0.24

money – salary 0.79 0.58 0.41
car – automobile 0.98 0.69 0.60

Visualization of activated dimensions in binary vectors
In Figure 3, the 50 most similar (top) and the 50 least similar
(bottom) 512-bit binary vectors of some words are plotted.
Each pixel is either red or white depending on whether it
is 1 or 0. Some vertical stripes are clearly visible in the top
area: similar word vectors have the same bits enabled for cer-
tain dimensions and therefore share the same color of pixel
for those dimensions. This is especially true for the clos-
est words of “automobile”. In the bottom area, no vertical
patterns are visible because two non-similar binary vectors
do not have the same enabled bits. This visualization shows
that the binarized vectors have semantic properties similar
to real-valued embeddings.

queen

automobile

jupiter

man

Figure 3: Representation of the activated bits in some binary
vectors for the words queen, automobile, jupiter and man.
For each word, its 50 closest neighbors (top) and its 50 fur-
thest neighbors (bottom) are plotted. Red pixels represent
the bits set to 1 and white pixels the bits set to 0.

6 Conclusion
This article presents a new encoder/decoder architecture for
transforming real-valued vectors into binary vectors of any
size. This is particularly suitable when the size of the bi-
nary vectors corresponds to the CPU cache sizes as it allows
a significant increase in vector operation computing speed.
Our method has the advantage of being simple yet powerful
and allows to keep semantic information in binary vectors.

Our binary embeddings exhibit almost the same perfor-
mances as the original real-valued vectors on both semantic
similarity and document classification tasks. Furthermore,
since the binary representations are smaller (a 256-bit bi-
nary code is 37.5 smaller than a traditional 300-dimensional
word vector), it allows one to run a top-K query 30 times
faster than with real-valued vectors since the binary distance
is much faster to compute than a regular cosine distance.
Additionally, it is possible to recontruct real-valued vectors
from the binary representations using the model decoder.

References
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A neural probabilistic language model. Journal of machine
learning research 3(Feb):1137–1155.
Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017.
Enriching word vectors with subword information. Transac-
tions of the Association of Computational Linguistics 5:135–
146.

Bruni, E.; Tran, N.-K.; and Baroni, M. 2014. Multimodal
distributional semantics. J. Artif. Intell. Res.(JAIR) 49(1-47).
Charikar, M. S. 2002. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth an-
nual ACM symposium on Theory of computing, 380–388.
ACM.
Chen, T.; Min, M. R.; and Sun, Y. 2018. Learning k-way
d-dimensional discrete codes for compact embedding rep-
resentations. In Dy, J., and Krause, A., eds., Proceedings
of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
854–863. Stockholmsmssan, Stockholm Sweden: PMLR.
Conneau, A.; Schwenk, H.; Barrault, L.; and Lecun, Y. 2017.
Very deep convolutional networks for text classification. In
Proceedings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics: Vol-
ume 1, Long Papers, 1107–1116. Valencia, Spain: Associa-
tion for Computational Linguistics.
Faruqui, M.; Tsvetkov, Y.; Yogatama, D.; Dyer, C.; and
Smith, N. 2015. Sparse overcomplete word vector repre-
sentations. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 1491–1500. Beijing, China: As-
sociation for Computational Linguistics.
Finkelstein, L.; Gabrilovich, E.; Matias, Y.; Rivlin, E.;
Solan, Z.; Wolfman, G.; and Ruppin, E. 2001. Placing
search in context: The concept revisited. In Proceedings of
the 10th international conference on World Wide Web, 406–
414. ACM.
Gerz, D.; Vulić, I.; Hill, F.; Reichart, R.; and Korhonen, A.
2016. Simverb-3500: A large-scale evaluation set of verb
similarity. In Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing, 2173–2182.
Austin, Texas: Association for Computational Linguistics.
Hill, F.; Reichart, R.; and Korhonen, A. 2015. Simlex-999:
Evaluating semantic models with (genuine) similarity esti-
mation. Computational Linguistics 41(4):665–695.
Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks. In Advances
in neural information processing systems, 4107–4115.
Joulin, A.; Grave, E.; Bojanowski, P.; Douze, M.; Jégou, H.;
and Mikolov, T. 2016. Fasttext. zip: Compressing text clas-
sification models. arXiv preprint arXiv:1612.03651.
Joulin, A.; Grave, E.; Bojanowski, P.; and Mikolov, T. 2017.
Bag of tricks for efficient text classification. In Proceed-
ings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short
Papers, 427–431. Valencia, Spain: Association for Compu-
tational Linguistics.
Ling, S.; Song, Y.; and Roth, D. 2016. Word embeddings
with limited memory. In Association of Computational Lin-
guistics.
Luong, M.-T.; Socher, R.; and Manning, C. D. 2013. Bet-
ter word representations with recursive neural networks for
morphology. In CoNLL, 104–113.

Ma, X., and Hovy, E. 2016. End-to-end sequence labeling
via bi-directional lstm-cnns-crf. In Proceedings of the 54th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), 1064–1074. Association
for Computational Linguistics.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Norouzi, M.; Punjani, A.; and Fleet, D. J. 2012. Fast search
in hamming space with multi-index hashing. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on, 3108–3115. IEEE.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural lan-
guage processing (EMNLP), 1532–1543.
Qian, Q.; Huang, M.; Lei, J.; and Zhu, X. 2017. Linguis-
tically regularized lstm for sentiment classification. In Pro-
ceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1679–
1689. Vancouver, Canada: Association for Computational
Linguistics.
Raunak, V. 2017. Effective dimensionality reduction for
word embeddings. NIPS 2017, workshop on Learning with
Limited Labeled Data.
Shen, D.; Su, Q.; Chapfuwa, P.; Wang, W.; Wang, G.; Henao,
R.; and Carin, L. 2018. Nash: Toward end-to-end neural ar-
chitecture for generative semantic hashing. In Proceedings
of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), 2041–2050.
Association for Computational Linguistics.
Shu, R., and Nakayama, H. 2018. Compressing word em-
beddings via deep compositional code learning. In Interna-
tional Conference on Learning Representations.
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning,
C. D.; Ng, A.; and Potts, C. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods
in natural language processing, 1631–1642.
Sokal, R. R. 1958. A statistical method for evaluating sys-
tematic relationship. University of Kansas science bulletin
28:1409–1438.
Subercaze, J.; Gravier, C.; and Laforest, F. 2015. On metric
embedding for boosting semantic similarity computations.
In Association of Computational Linguistics.
Tissier, J.; Gravier, C.; and Habrard, A. 2017. Dict2vec:
Learning word embeddings using lexical dictionaries. In
Conference on Empirical Methods in Natural Language
Processing (EMNLP 2017), 254–263.
Xu, J.; Wang, P.; Tian, G.; Xu, B.; Zhao, J.; Wang, F.; and
Hao, H. 2015. Convolutional neural networks for text hash-
ing. In IJCAI, 1369–1375.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In Advances
in neural information processing systems, 649–657.

