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ABSTRACT

Context. The detection of exoplanets by direct imaging is very challenging. It requires an extreme adaptive-optics (AO) system and a
coronagraph as well as suitable observing strategies. In angular differential imaging, the signal-to-noise ratio is improved by combin-
ing several observations.
Aims. Due to the evolution of the observation conditions and of the AO correction, the quality of the observations may vary signifi-
cantly during the observing sequence. It is common practice to reject images of comparatively poor quality. We aim to decipher when
this selection should be performed and what its impact on detection performance is.
Methods. Rather than discarding a full image, we study the local fluctuations of the signal at each frame and derive weighting maps
for each frame. These fluctuations are modeled locally directly from the data through the spatio-temporal covariance of small image
patches. The weights derived from the temporal variances can be used to improve the robustness of the detection step and reduce
estimation errors of both the astrometry and photometry. The impact of bad frames can be analyzed by statistically characterizing
the detection and estimation performance.
Results. When used together with a modeling of the spatial covariances (PACO algorithm), these weights improve the robustness of
the detection method.
Conclusions. The spatio-temporal modeling of the background fluctuations provides a way to exploit all acquired frames. In the
case of bad frames, areas with larger fluctuations are discarded by a weighting strategy and do not corrupt the detection map or
the astrometric and photometric estimations. Other areas of better quality are preserved and are included to detect and characterize
sources.
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1. Introduction

Direct imaging from the Earth is a method of choice for the detec-
tion and characterization of exoplanets (Traub & Oppenheimer
2010). By confronting numerical models of estimated astrom-
etry and photometry (Vigan et al. 2010), direct imaging gives
access to quantitative physical properties on the detected sources
such as age, mass, and effective temperature (Chabrier et al. 2000;
Allard et al. 2003, 2007). The most efficient observation strategy
is based on angular differential imaging (ADI, see Marois et al.
2006) which consists of tracking the observation target over time
(the telescope pupil remaining stable while the whole field of
view rotates). A temporal sequence of images is thus acquired in
which the companions describe a predictable motion in time while
the speckle background remains quasi-static. This observation
method is used routinely on the main instruments dedicated to the
direct detection of exoplanets such as VLT/SPHERE (Beuzit et al.
2019; Chauvin et al. 2017), GEMINI/GPI (Macintosh et al. 2014;
Greenbaum et al. 2018), Keck/VORTEX (Howard et al. 2010;
Mawet et al. 2019), Magellan/MagAO (Morzinski et al. 2014;
Wagner et al. 2018), and Subaru/SCExAO (Jovanovic et al. 2015;
Currie et al. 2017). The recorded ADI images are then combined
by a data-processing algorithm to disentangle the signature of the
exoplanets from the speckles (Lafrenière et al. 2007; Marois et al.

2013, 2014; Soummer et al. 2012; Smith et al. 2009; Cantalloube
2016; Gonzalez et al. 2016, 2018; Flasseur et al. 2018a). The sta-
tistical modeling of the data plays a central role in these processing
algorithms to control the probability of false alarms and prevent
spurious detections (Mawet et al. 2014).

The main constraint of this method is due to the very high
contrast between the target star and the exoplanets (≥105 in
infrared). In addition, the detection performance and the achiev-
able contrast are strongly dependent on both the total parallactic
rotation of the field of view and the quality of the observations
often impacted by several artifacts. These artifacts can be spa-
tially localized (e.g., in case of defective pixels) or can impact
a larger fraction of the field of view in the form of large fluc-
tuations when a decentering of the coronagraph or a sudden
degradation of the adaptive optics (AO) correction occurs (e.g., a
low-wind effect, Sauvage et al. 2015; Milli et al. 2018). The lat-
ter two effects are especially problematic since the exoplanets
are most likely to be located close to the center of the field of
view which is the area most affected by the fluctuations.

To the best of our knowledge, there is no particular strat-
egy implemented in the state-of-the-art post-processing algo-
rithms to deal with the evolution of the local quality of the
acquired frames. Images presenting large fluctuations compared
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Fig. 1. Central region of SPHERE-IRDIS images of HIP 72192:
panel a: measured intensity for five selected frames showing strong
temporal fluctuations; panel b: map of the estimated temporal scaling
parameters σ̂k,` for the matching frames: ` = 1, 3, 8, 13 and 14.

to the others are simply flagged as “bad frames” and discarded
from the ADI stack, even if some areas of these images con-
tain useful information. In this paper, we present an exten-
sion of our recently proposed detection algorithm accounting
for the patch covariances of the background (PACO algorithm,
see Flasseur et al. 2018a). The proposed improvement is based
on the modeling of the temporal variations of the amplitude of
the background fluctuations jointly to the spatial covariances.
To improve the robustness of the method, we spatially weight
each temporal frame in a data-driven fashion based on its rela-
tive degree of fluctuation.

Section 2 describes our local modeling of the spatio-
temporal fluctuations and Sect. 3 details the extension of the
PACO algorithm. In Sect. 4, we use VLT/SPHERE-IRDIS
datasets to illustrate the performance of the proposed method
in terms of detection capability, achievable contrast, and astrom-
etry accuracy in comparison to two state-of-the-art algorithms
routinely used on ADI datasets, TLOCI (Marois et al. 2013,
2014) and KLIP (Soummer et al. 2012), both implemented in
the SpeCal software (Galicher et al. 2018) of the SPHERE data
center (Delorme et al. 2017). We show that by preventing the
suppression of bad frames, the automatic local weighting of the
images improves the achievable contrast on the whole field of
view.

2. Local modeling of spatio-temporal fluctuations

Even in the absence of sources in the field of view other than
the star masked out by the coronagraph, there are fluctuations
in images from an ADI sequence. There are several factors that
induce these fluctuations, in particular: (i) evolution of the point
spread function (PSF) due to changes in the observing conditions
and alterations of the quality of the adaptive optics correction;
(ii) photon and thermal noise on the camera as well as the erratic
response of some uncorrected bad pixels; (iii) partial decentering
of the coronagraph; (iv) and evolving noncommon-path aberra-
tions (uncorrected by the AO).

In Fig. 1a, we illustrate the temporal evolution of the inten-
sity measured with the SPHERE-IRDIS instrument. We selected
some frames from an observation of HIP 72192 (out of T = 96
temporal frames acquired under the 2015-06-11 – 095.C-0389
ESO program with a total apparent rotation of the field of view of
17.3◦) that displayed particularly strong fluctuations due to dif-
ficult observing conditions. Since these fluctuations are mostly
located around the coronagraph, we show a zoom on the central
region of the images corresponding to a field of 2.8×2.8 arcsec2.

The fluctuations are spatially structured and their magnitude
varies from one image to the other in the ADI sequence.

In Flasseur et al. (2018a), we modeled the statistical distri-
bution of the patch rθk ,t` : the small window made of a few tens
of pixels centered at angular location θk in the `-th frame. This
patch with K pixels was described as the possible superimposi-
tion of the signal of point-source (if present) and a background
patch f θk ,t` , considered as a random realization of a multivari-
ate Gaussian N(mk,Ck), with spatially variant mean mk ∈ R

K

and covariance Ck ∈ R
K×K . At any given location θk, the back-

ground fluctuations captured through the covariance matrix Ck
were considered stationary (i.e., not evolving with time).

To account for the presence of “bad” frames with stronger
background fluctuations than the other frames, we consider
in this paper that the background patch f θk ,t` is a ran-
dom realization of a Gaussian scale mixture (GSM; see e.g.
Wainwright & Simoncelli 2000), also known as a compound-
Gaussian model (see e.g. Conte et al. 1995):

f θk ,t` = mk + σk,` uk,` , (1)

where σk,` > 0 is a scalar (random or deterministic) variable that
acts as a scaling parameter and the vectors uk,` ∼ N(0,Ck) are
independent centered Gaussian random vectors.

Gaussian scale mixtures cover a wide range of distribu-
tions; in particular heavy-tailed distributions like gamma dis-
tribution, Student’s distribution, or the generalized Laplacian.
They can account for the presence of outliers in the data,
such as large deviations. They have been introduced in image
processing to model the distribution of wavelet coefficients
(see Wainwright & Simoncelli 2000; Portilla et al. 2003) and are
widely used to model heterogeneous clutter in synthetic aperture
radar; see for example Conte et al. (1995), Gini & Greco (2002),
Wang et al. (2006), Pascal et al. (2008).

Rather than directly handling the GSM distribution, we esti-
mate the scale parameter σk,` for the patch centered on θk
that is extracted from frame t`, and consider that f θk ,t` is dis-
tributed according to N(mk, σ

2
k,`Ck). This corresponds to con-

sidering parameter σk,` as a deterministic nuisance parameter;
see Pascal et al. (2008).

Figure 1b displays maps of the estimated scaling factors σ̂2
k,`

for the five frames shown in Fig. 1a. In these maps, large val-
ues of the scaling factors match the areas in which the intensities
are much larger than the average. The variations observed within
the field of view indicate that temporal fluctuations are spatially
nonstationary: abnormally large fluctuations occur only in some
areas and cannot be compensated for by a factor common to the
whole image. By closer visual inspection, the scaling factors can
be seen to vary over very small distances. This indicates why
methods based on linear combinations of template on-axis PSFs
(TLOCI) or modes (KLIP) fail to capture such small-scale varia-
tions, even when a local fitting based on annuli or angular sectors
is performed.

An analysis of the empirical distribution of intensities in a
patch, in the absence of a source, is carried out in Fig. 2. Three
cases are compared: (i) patches extracted at a location θk close
to the coronagraph, selected to highlight temporal fluctuations
(first two rows of the figure); (ii) patches extracted at a location
θk farther from the coronagraph, showing only moderate tempo-
ral fluctuations (following two rows); and (iii) patches extracted
all over the field of view (last row). The temporal collection of
patches {rθk ,t` }`=1:T is considered in each case. The empirical dis-
tribution of the intensities of the centered patches {rθk ,t`−m̂k}`=1:T

is displayed in the left column. Based on a local estimate Ĉk

A2, page 2 of 13

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935859&pdf_id=1


O. Flasseur et al.: Robust ADI by local weighting

Fig. 2. Temporal evolution and empirical distribution of the intensities within a patch: (a)–(b) in patches extracted at a location θk close to the
coronagraph; (c)–(d) in patches extracted at a location θk farther from the coronagraph; (e) in all the patches from the field of view. Rows a and
c: values within the patches for ten specific frames: t1, t3, t8, t13, t14, t25, t40, t54, t63 and t69. Rows b, d, and e: empirical histograms computed over
all frames t1 to t69 and, in dashed line, a standard Gaussian. The first column corresponds to centered patches {rθk ,t` − m̂k}`=1:T . The second column
corresponds to centered patches, after whitening the spatial correlations. The last column corresponds to centered patches that have been both
whitened for the spatial correlations and equalized with the temporal scaling factors.

of the spatial covariance matrix, the distribution of spatially
whitened and centered patches is then displayed on the cen-
tral column. The Cholesky factor1 L̂k (i.e., the lower-triangular
matrix such that L̂kL̂t

k = Ĉ−1
k ) is used to obtain the collection

of spatially whitened patches {L̂t
k(rθk ,t` − m̂k)}`=1:T . The empir-

ical distribution of that collection is plotted. The right column

1 We note that in practice it is more efficient first to compute a
Cholesky factorization and then invert the Cholesky factor using a ded-
icated routine for triangular matrix inversion, if available.

displays the distribution of patch intensities when both a spatial
whitening and a time-specific scaling is performed. The empiri-
cal distribution of the collection { 1

σ̂k,`
L̂t

k(rθk ,t`−m̂k)}`=1:T is plotted
in this latter case.

Simply removing the temporal mean does not lead to inde-
pendent and identically distributed normal residuals, as can be
observed in the left column of Fig. 2. The variance of the resid-
uals is much larger near the coronagraph than farther away, a
behavior that is generally addressed by introducing a radial scal-
ing of the residuals (Mawet et al. 2014). Locally modeling the
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spatial correlations provides a good approximation of the distri-
bution of the patches in most locations θk, but fails in regions
with large temporal heterogeneity: the distribution in that case
is then better described by a GSM; see the central column of
Fig. 2b. The presence of frames with larger fluctuations leads to
an over-estimation of the variances in Ĉk, which in turn leads to
whitened samples with a variance that is less than one (Fig. 2e).
When both a local modeling of the spatial covariance and a time-
specific local scaling factor are considered, the empirical distri-
butions are well modeled: after whitening, they closely match
a standard Gaussian in all cases (near the coronagraph, farther
from the coronagraph, and on average over the whole field of
view). Our modeling and the local patch-whitening transform
that derives from the GSM model can be seen as an extension
of the radial-scaling strategy that is refined in several ways: (i)
locality (vs. identical processing of an annulus), (ii) modeling of
spatial correlations (vs. uncorrelated noise assumption), and (iii)
modeling of time fluctuations (vs. constant correction).

3. Adaptation of the PACO algorithm

3.1. Estimation of the statistics of the background

Estimating, at each spatial location, the mean background m, the
spatial covariance C, and the scale parameters σ1 to σT is very
close to the problem of covariance structure estimation in radar
under a compound-Gaussian clutter model (Pascal et al. 2008).
There are two differences: (i) in radar the signal and covariance
matrices are complex-valued; and (ii) the mean value is zero.

We derive in Appendix A the expression of the maximum
likelihood estimates for the scale parameters, the local mean and
the local covariance. The expression of each estimator depends
on the others and so a fixed point is sought to obtain the joint esti-
mator of the local background statistics. Based on the alternat-
ing application of formulas (A.2)–(A.4), an iterative algorithm is
obtained. The algorithm is detailed in boxes 1 and 2.

Up to the centering, on accounting for the nonzero mean, the
obtained fixed-point algorithm matches the estimator derived in
Conte et al. (2002) in the context of clutter with a deterministic
texture, and also the approximate maximum likelihood estima-
tor derived in Gini & Greco (2002) under a stochastic model of
texture. The convergence of the fixed-point algorithm has been
established in Pascal et al. (2008) in the real-valued case as well
as in the complex-valued case.

Since our estimates are based on small sample sizes, we
include a shrinkage procedure similar to that proposed in
Chen et al. (2010) and Flasseur et al. (2018a). To account for the
weighting of the samples, we compute an effective number of
frames T̃ =

(∑
` 1/σ̂2

`

)2
/
(∑

` 1/σ̂4
`

)
that corresponds to the vari-

ance reduction reached when performing weighted means with
the weights 1/σ̂2

` . This effective number of frames is used to
compute the shrinkage factor in Algorithm 3. This shrinkage
operation can either be applied at each iteration (during step 4 of
Algorithm 1) or after the alternating updates have converged. We
tested both approaches and found that they converged to solu-
tions leading to similar detection performances. Applying the
shrinkage at each iteration ensures that matrix Ĉ never becomes
singular or ill-conditioned.

Figure 3 illustrates the fast convergence of the alternating
scheme. Each graphic corresponds to a different location θk in
the field of view, depicted by a red dot. From left to right, they
correspond respectively to a region with good temporal stationar-
ity, medium temporal stationarity, and low temporal stationarity

Algorithm 1: Local background statistics estimation
Input: {r1, . . . , rT } (stack of T spatial patches)

(each patch has K pixels)
Output: m̂ (mean patch)
Output: Ĉ (K × K spatial covariance)
Output: {σ̂1, . . . , σ̂T } (scale parameters)

Ĉ← I (initialize at identity matrix)
for ` ← 1 to T do

ŵ` ← 1/T (initialize with uniform weights)
m̂←

∑T
`=1 ŵ` · r` (sample mean)

do
. Step 1: Estimate scale parameters
{σ̂1, . . . , σ̂T } ← Alg2({r1, . . . , rT }, m̂, Ĉ)

. Step 2: Update temporal weights
for ` ← 1 to T do

ŵ(old)
`
← ŵ`

ŵ` ←
1/σ̂2

`∑T
`′=1 1/σ̂2

`′

. Step 3: Update the mean patch
m̂←

∑T
`=1 ŵ` · r` (weighted mean)

. Step 4: Update the covariance
Ŝ← 1

T
∑T
`=1

1
σ̂2
`

(r` − m̂)(r` − m̂)t (sample cov.)

T̃ ← 1/
∑T
`=1 ŵ

2
` (effective number of frames)

Ĉ←Alg3(̂S, T̃ ) (shrinkage covariance estimator)
while max`

∣∣∣ŵ` − ŵ(old)
`

∣∣∣ ≥ ε;
Algorithm 2: Estimate scale parameters

Input: {r1, . . . , rT } (stack of T spatial patches)
Input: m̂ (estimated mean patch)
Input: Ĉ (K × K estimated spatial covariance)
Output: {σ̂1, . . . , σ̂T } (scale parameters)

L̂← chol(Ĉ−1) (Cholesky factorization)
for ` ← 1 to T do

r̆` ← L̂t(r` − m̂) (whitened patch)
µ̂← 1

K
∑K

i=1[r̆`]i (mean value)
σ̂2
` ←

1
K

∑K
i=1([r̆`]i − µ̂)2 (scale parameter)

(close to the coronagraph). The convergence of Algorithm 1 is
assessed based on 1000 random initializations of the weights
ŵ` (following a uniform distribution on [0,1]). The vector of
weights at convergence when starting from a constant vector of
weights (∀`, ŵ` = 1/T ) is used as a reference. At each itera-
tion, the Euclidean distance to the reference vector of weights
is reported, with normalization by the largest distance of all the
random draws. Very fast convergence is observed to a unique
solution, in all random trials. This empirical evidence indicates
that the algorithm also converges when the shrinkage step is
included at each iteration.

3.2. Robust computation of a detection map

The PACO algorithm, introduced in Flasseur et al. (2018a), pro-
duces a detection map based on a hypothesis test evaluated at
each pixel of the field of view. The ADI sequence of images is
processed at the scale of image patches. The size of the patches
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Fig. 3. Illustration of the convergence of Algorithm 1: 1000 random initializations of the weights {ŵ`}`=1:T converge to the same solution as that
obtained by initializing with constant weights. Convergence at three locations θk depicted on the field of view is shown, covering three different
cases: small dispersion of the value of scaling parameters (left), medium dispersion (center), and large dispersion close to the coronagraph (right).

Algorithm 3: Shrinkage covariance estimator

Input: Ŝ (K × K sample covariance matrix)
Input: T̃ (effective number of frames)
Output: Ĉ (covariance matrix estimate)

ρ̂←
tr(̂S2)+tr2 (̂S)−2

∑K
i=1 [̂S]2

ii

(T̃+1)
(

tr(̂S2)−
∑K

i=1 [̂S]2
ii

) (shrinkage factor)

for i← 1 to K do
[Ĉ]i,i ← [̂S]i,i (copy diagonal)
for j← i + 1 to K do

[Ĉ]i, j ← (1 − ρ̂)[̂S]i, j (shrink off-diagonal)
[Ĉ] j,i ← (1 − ρ̂)[̂S] j,i (shrink off-diagonal)

is selected to capture the core of the off-axis PSF, for example a
disk of K = 49 pixels for SPHERE-IRDIS in K1-K2 observing
mode. If a point source object is located at angular position φ0 in
some reference frame, then its angular location φ` in the image at
time t` can be deduced from the telescope pointing information
by accounting for the rotation of the whole field of view during
ADI acquisitions. Source detection is based on the analysis of
the collection {rbφ`e,t` }`=1:T of the T patches formed by tracking
the source through its apparent motion: each patch is extracted
at the expected location, rounded to the closest pixel bφ`e, of the
point source with reference coordinate φ0.

During the detection phase, we assume that the observations
are dominated by the background signal due to stellar leakages
and by the noise so that background statistics can be computed
directly from the data (off-axis point sources are considered neg-
ligible at that step). The local statistics of the background are
then computed with Algorithm 1, for each location bφ`e, based
on the collections {rbφ`e,t}t=1:T of observed patches all centered
at that same location bφ`e. Once the mean m̂bφ`e, spatial covari-
ance Ĉbφ`e and scaling factor2 σ̂bφ`e,` have been estimated for all
locations bφ`e corresponding to the trajectory of a hypothetical
point source with reference location φ0, the likelihood of two
hypotheses can be compared:


H0 : {rbφ`e,`}`=1:T = { f bφ`e,`}`=1:T

(background only)
H1 : {rbφ`e,`}`=1:T = α {hbφ`e(φ`)}`=1:T + { f bφ`e,`}`=1:T ,

(background + source),
(2)

2 Only the scaling factor at time t` is necessary for the detection.

where α is the flux of the point source and hbφ`e(φ`) is a patch of
the off-axis PSF extracted around the integer location bφ`e, for a
point source located at the subpixel location φ`.

Under the assumption that each of the T background patches
of the collection { f bφ`e,`}`=1:T is an independent realization,
each distributed according to its local GSM model, the co-log-
likelihood of the data under hypothesisH0 is:

− log p({rbφ`e,`}`=1:T |H0) = T K
2 log 2π +

T∑
`=1

1
2 log det(σ̂2

bφ`e,`
Ĉbφ`e)

+

T∑
`=1

1
2

(
rbφ`e,` − m̂bφ`e

)t

× (σ̂2
bφ`e,`

Ĉbφ`e)
−1

(
rbφ`e,` − m̂bφ`e

)
. (3)

The co-log-likelihood of the data under hypothesisH1 cannot be
directly evaluated because the flux α of the point source is not
known beforehand. It can however be estimated in the maximum
likelihood sense; see Eq. (14) in Flasseur et al. (2018a):

α̂ = arg minα − log p({rbφ`e,`}`=1:T |H1, α) =

∑T
`=1 b`∑T
`=1 a`

, (4)

with

a` =
1

σ̂2
bφ`e,`

hbφ`e(φ`)
t · Ĉ−1

bφ`e
· hbφ`e(φ`), (5)

and

b` =
1

σ̂2
bφ`e,`

hbφ`e(φ`)
t · Ĉ−1

bφ`e
·
(
rbφ`e,t` − m̂bφ`e

)
. (6)

The co-log-likelihood of the data under hypothesis H1, for a
source flux α̂, is then:

− log p({rbφ`e,`}`=1:T |H1, α̂) = T K
2 log 2π +

T∑
`=1

1
2 log det(σ̂2

bφ`e,`
Ĉbφ`e)

+

T∑
`=1

1
2 ut
bφ`e,`

(σ̂2
bφ`e,`

Ĉbφ`e)
−1ubφ`e,`, (7)

with ubφ`e,` = rbφ`e,` − α̂hbφ`e(φ`) − m̂bφ`e.
After some simplifications, the generalized likelihood ratio

test (GLRT) is obtained; see Kay (1998) and Flasseur et al.
(2018a):

2 log
p({rbφ`e,`}`=1:T |H1, α̂)

p({rbφ`e,`}`=1:T |H0)
=

(∑T
`=1 b`

)2∑T
`=1 a`

H1
≷
H0

η . (8)

A2, page 5 of 13

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935859&pdf_id=3


A&A 634, A2 (2020)

10-6

10-5

10-4

10-3

-4 -3 -2 -1 0 1 2 3 4
10-6

10-5

10-4

10-3

-4 -3 -2 -1 0 1 2 3 4

Fig. 4. Detection map computed on a SPHERE-IRDIS ADI dataset of
HIP 72192. The two faint point sources in the field of view, FPS1 and
FPS2, are marked by black dots. There are no other detectable sources
in the field of view. Left column: standard PACO algorithm, right col-
umn: proposed extension to improve robustness. Bottom row: solid line
showing the empirical distribution of the S/N values of the detection
maps, excluding areas FPS1 and FPS2. The dashed line corresponds to
a standard normal distribution.

Only a positive flux α makes sense for a source. The estimate α̂
should then be replaced by the estimate α̂+ = max(α̂, 0) obtained
under a positivity constraint. The GLRT can then be recast, for
η ≥ 0, into the form:

S/N test :
∑T
`=1 b`√∑T
`=1 a`

=
α̂

σ̂α

H1
≷
H0

τ , (9)

with τ =
√
η, which corresponds to comparing the signal-

to-noise ratio (S/N) of the flux estimate to a threshold; see
Mugnier et al. (2009) and Flasseur et al. (2018a). The S/N test
defined in (9) has the attractive property of being an affine
transformation of the observations. Under our GSM model, and
thanks to the normalization by the scaling factors σ̂bφ`e,`, the ratio
α̂/σ̂α is distributed according to a standard normal distribution.
This simplifies the setting of a detection threshold τ: τ = 5 leads
to a probability of false alarms equal to 2.87 × 10−7, that is, the
probability of a Gaussian random variable being greater than five
standard deviations.

Figure 4 illustrates that the ratio α̂/σ̂α is indeed distributed
like a standard normal distribution. Two detection maps are
shown for the star HIP 72192. The left part of the figure
corresponds to the results of PACO algorithm, as presented
in Flasseur et al. (2018a). The corresponding detection map is
stationary. When representing the empirical distribution of S/N
values in the field of view (after excluding the two areas corre-
sponding to two sources), a good match with a Gaussian distribu-
tion is obtained, albeit with a standard deviation slightly below
a value of 1. The right-hand part of the figure gives the detec-
tion map produced by the extension of PACO introduced in this
paper. While both maps are quite similar, it can be noted that
time-dependent scaling factors lead to a spatially more stationary
map and an improved match to the standard Gaussian distribu-
tion. The impact of producing maps with a variance of less than
one in the absence of a source with the standard PACO algorithm
is to be overly conservative: some detections may be missed at
a given false alarm rate while they would be correctly detected

Fig. 5. Contrast curves at 5σ for TLOCI, KLIP, PACO, and the pro-
posed robust extension of PACO, for HIP 72192 (SPHERE-IRDIS,
λ = 2.110 µm). The five triangles and five squares correspond to Monte-
Carlo injections (see text).

with the robust version of PACO. We illustrate such behavior in
Sect. 4.

The detection map is produced by computing the S/N for
each reference location φ0 on a grid. The computational com-
plexity can be significantly reduced by pre-computing terms that
can then be shared to evaluate the S/N at several locations. Such
an approach, named “fast PACO” in Flasseur et al. (2018a), can
also be adapted to our GSM model, provided that the background
statistics are computed using the algorithm outlined in Sect. 3.1
and that the formulas are updated to include the scaling fac-
tors σ̂k,` according to Eqs. (5), (6), and (9). Compared to the
original fast PACO algorithm, these changes lead to an increase
of the computation time by an order of magnitude, correspond-
ing to the typical number of iterations to reach a fixed point in
the step that estimates the local background statistics (about ten
iterations).

3.3. Robust estimation of photometry and astrometry

In Appendix B, we prove that the GSM model considered in this
paper leads to robust estimates of the background statistics and
of the flux of a point source in the sense that the estimates remain
bounded when a frame takes arbitrarily large values. This con-
trasts with other data-processing methods in ADI that generally
lead to incorrect flux estimates if bad frames with large values
are present in the dataset3.

Similarly to the approach in Flasseur et al. (2018a), when
characterizing a source found above the detection threshold in
the detection map, the source flux is to be re-estimated jointly
with the background statistics in order to prevent any self-
subtraction that would bias the estimation. In practice, this
joint estimation is performed by alternating (i) a re-estimation
of the local background statistics using the residuals {rbφ`e,` −
α̂hbφ`e(φ`)}`=1:T , where α̂ is the current flux estimate, and (ii)
a re-estimation of the source flux with the updated background
statistics by applying Eq. (4).

3 TLOCI computes medians rather than averages at some steps to
improve the robustness. However, such a strategy is generally not suf-
ficient to overcome the presence of large fluctuations on several time
frames since some steps include a linear processing of the data.
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Fig. 6. Comparison of contrast maps for HIP 72192 (SPHERE-IRDIS). Top row: largest contrast between the host star and a point source that
would theoretically lead to a probability of detection greater than or equal to 50% at the detection threshold τ = 5. Three methods are compared:
the standard PACO algorithm applied on the whole ADI stack (left), PACO applied to the subset of the ADI stack obtained by removing the eight
frames with the largest fluctuations (center), and the proposed robust extension of PACO applied on the whole stack (right). The bottom row gives
the gain in contrast with respect to PACO algorithm.

The accurate astrometric estimation of the source is obtained
by evaluating the S/N, with the unbiased flux estimate, over a
refined subpixel grid around the detected location.

Once a source has been characterized both in terms of
astrometry and photometry, its contribution to the data can be
subtracted and the detection map updated accordingly, similarly
to source extraction with the CLEAN algorithm; see a more
detailed description in Flasseur et al. (2018b).

4. Characterization of detection, and astrometric
and photometric performances

The maximum achievable contrast between the host star and an
off-axis point source is important information to characterize the
overall performance of the instrument including the data pro-
cessing. Reliable evaluations of the detection limit (expressed
in contrast) typically require the injection of a fake source at
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Fig. 7. Comparison of PACO (left) and the robust extension of PACO introduced in this paper (right) on the SPHERE-IRDIS ADI dataset with
30 fake point sources injected in addition to the two known faint point sources (same level of contrast as presented in Flasseur et al. 2018a). The
detection maps are given together with the S/N values of the 60 first detections. The six fake sources closest to the host star are denoted by digits
1© to 6©. The two real sources are indicated in pink. The increase in S/N brought by the robust approach is given as a percentage on the detection
map.

different locations of the field of view and for different values
of contrast. This Monte-Carlo simulation approach is compu-
tationally very costly, and therefore other methods to evaluate
contrast are followed. These other methods are based on a sta-
tistical modeling and lead to predictions that are valid only to
the extent that the statistical model itself is valid. It was shown
in Flasseur et al. (2018b) that contrast curves produced by ref-
erence algorithms like TLOCI and KLIP were over-optimistic
due to a coarse statistical model of the residues. Contrast curves
obtained with PACO are closer to the performance achieved by
Monte-Carlo, however we pointed out in Flasseur et al. (2018a)
that they only provided a lower bound, which was not reached in
practice when the statistics of the background were learnt, in the
detection step, on patches that contained both the background
and the source(s).

Figure 5 presents contrast curves computed on a SPHERE-
IRDIS ADI dataset (at λ = 2.110 µm) of HIP 72192. Four con-
trast curves are reported, corresponding to TLOCI, KLIP, PACO,
and our robust extension of PACO. Contrast curves of TLOCI
and KLIP should be analyzed with caution because they were
computed based on a threshold at 5σ that does not correspond
to a probability of false alarm of 2.87 × 10−7 since the residu-
als are not Gaussian distributed. Due to the nonstationarity of
TLOCI and KLIP S/N maps, a spatially variant threshold should
be used to reach a constant false-alarm rate and compute reliable
contrast values. For PACO and robust PACO, we give both the
theoretical contrast curve and the results of Monte-Carlo simu-
lations computed for five different angular separations (triangles
for PACO, squares for robust PACO). The theoretical contrast
curves, corresponding to fluxes α such that P(α̂/σ̂α ≥ 5) = 50%,
are obtained by computing 5σ̂α, that is, 5/

√∑
` a`, at each point

of the field of view, with intensities expressed relative to the
intensity of the host star. PACO and robust PACO achieve bet-
ter contrast than TLOCI and KLIP. The discrepancy between the
theoretical contrast and the Monte-Carlo simulations is reduced
with robust PACO compared to PACO. Moreover, the contrast is
clearly improved at small separations.

Figure 6 gives the 2D contrast maps for three detection meth-
ods, on the same ADI dataset as that studied in Fig. 5. From left
to right are displayed contrast maps of the standard PACO algo-
rithm, PACO algorithm after manually removing the eight frames

that display the largest fluctuations of the series, and the pro-
posed robust extension of PACO. The gains in contrast obtained
with respect to standard PACO are given on the bottom row of
the figure. Manually removing the bad frames has two effects:
(i) an improvement of the contrast in the area impacted by the large
fluctuations of the bad frames, and (ii) a slight degradation of the
contrast in the rest of the field of view due to the reduction of the
size of the ADI dataset. By locally adapting the scaling factors,
robust PACO improves the contrast everywhere. Even in regions
that are not affected by strong temporal heterogeneity, it is benefi-
cial to account for fluctuations of the scaling factors. As expected,
the gain is the largest in the area affected by the strongest fluctu-
ations. There, the gain in contrast reaches 80%.

Standard PACO and its robust extension are also com-
pared on the same SPHERE-IRDIS dataset as introduced in
Flasseur et al. (2018a). In this dataset, 30 fake point sources
were injected in addition to the two known faint point sources,
at contrasts such that they could all be detected without a false
alarm (see Table 3 of Flasseur et al. (2018a) for the correspond-
ing levels of contrast). Figure 7 gives the detection maps pro-
duced by PACO and robust PACO. We refer the reader to Fig. 10
in Flasseur et al. (2018a) for a comparison with other detec-
tion methods. By including time-specific scaling factors, robust
PACO improves the S/N of all sources. The largest increase
occurs close to the host star where the S/N is improved by more
than 100% for two point sources.

Figure 8 compares TLOCI, KLIP, standard PACO, and
robust PACO algorithms on an ADI stack of HD 95086 (T =
52 temporal frames acquired under the 2015-05-05 – 095.C-
0298(A) ESO program with a total apparent rotation of the
field of view of 18.2◦). The HD 95086 hosts an exoplanet of
5MJ in mass (HD 95086 b) discovered (Rameau et al. 2013a)
and confirmed (Rameau et al. 2013b) by direct imaging with the
SPHERE instrument. In addition, six known background point
sources are in the field of view. Figure 8 shows that both the
PACO method and its robust extension achieve better detection
performance than reference algorithms; in particular, the S/N
values are larger for all sources (except for the background star 2
which poses no detection problem in itself: it is so bright that it
is visible directly in a single image of the ADI dataset). With
PACO and robust PACO, it is possible to detect without any
false alarm the seven known sources by thresholding the S/N
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Fig. 8. Maps of S/N from TLOCI, KLIP, PACO, and the robust extension of PACO introduced in this paper on an ADI dataset of HD 95086.
Seven circular insets show a zoom of the S/N maps around the known point sources. The S/N maps of these insets are evaluated on a subpixel grid
(four nodes per pixel) for PACO and robust PACO. True detections are marked by straight circles, the missed detections (S/N < 5) are marked by
dashed circles, and false alarms are identified by red squares.
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Fig. 9. Left: contrast that would be obtained for HIP 72192 under ideal
observation conditions (i.e., as good as that of the best image, during the
entire ADI acquisition). Right: gain in contrast compared to the actual
contrast, computed by accounting for temporal fluctuations of the scale
of the residuals.

maps at τ = 5. In comparison, S/N maps from TLOCI and KLIP
present several artifacts due to the presence of outliers in the
datasets, preventing an automatic analysis of these maps. The
robust extension of PACO increases the detection confidence of
all sources present in the field of view, especially for the ones
with the smallest angular separations, such as the exoplanet HD
95086 b (S/N = 6.1 with PACO vs. 8.5 with robust PACO).

The presence of frames of poorer quality in an ADI stack
degrades the detection performance with respect to an ADI stack
of constant quality. It may be useful to the astronomers who
planned the observations to compare the contrast achieved given
the observation conditions experienced to the contrast that would
have been reached should the conditions have been as good
as that of the best frames. Such a difference in contrast can
be assessed by computing a “best case” contrast where σ̂2

bφ`e,`

in the computation of a` in Eq. (5) is replaced by min`′ σ̂2
bφ`e,`′

(i.e., the smallest scaling factor at that location bφ`e). Figure 9
shows the “best case” contrast for HIP 72192. Compared to the
actual contrast predicted based on the estimated time-specific
scaling factors, the “best case” contrast is about 25% better in
most of the field of view, and close to 70–80% in the region most
impacted by large temporal fluctuations. If the aim of the obser-
vations was to characterize a faint point source that falls in that
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Fig. 10. Theoretical accuracy (minimal standard deviation given by the Cramér-Rao lower bounds) δx0 on the estimated astrometric location x0
from PACO and its robust extension presented in this paper around the HIP 72192 star. Here, δx0 maps are multiplied by the flux α of the exoplanet
(expressed in arcsec× flux). The gain (in percent) brought by the robust approach is given on the right. The six fake sources closest to the host star
are denoted by digits 1© to 6©.
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Fig. 11. Theoretical accuracy (minimal standard deviation given by the Cramér-Rao lower bounds) δy0 on the estimated astrometric location y0
from PACO and its robust extension presented in this paper around the HIP 72192 star. Here, δy0 maps are multiplied by the flux α of the exoplanet
(expressed in arcsec× flux). The gain (in percent) brought by the robust approach is given on the right. The six fake sources closest to the host star
are denoted by digits 1© to 6©.

area, it might be worth considering re-observing in the hope of
experiencing better conditions and getting closer to the best-case
contrast.

The astrometric and photometric accuracies can be charac-
terized over the whole field of view by computing the Cramér-
Rao lower bounds of the vector p of parameters (the 2D angular

location φ0 and the flux α) that characterize a point source. The
Cramér-Rao lower bound is a good estimate of the covariance of
the maximum likelihood estimator when the number of samples
is large enough (Kendall et al. 1948). We follow the approach of
Flasseur et al. (2018a): the Fisher information matrix IF on the
vector p is given by
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[
IF(p)

]
i, j

=

T∑
`=1

1
σ̂2
bφ0e,`

∂
[
α hbφ0e(φ0)

]
∂pi

t

Ĉ−1
bφ0e

∂
[
α hbφ0e(φ0)

]
∂pi

, (10)

where i and j vary in value between 1 and 3 (p1 and p2 rep-
resent the two components of the 2D location φ0 and p3 corre-
sponds to the flux α). The product α hθk models the signal of a
point source of flux α. As in Flasseur et al. (2018a), we use a
continuous model of the off-axis PSF (an isotropic Gaussian can
be used) to simplify the computation of the spatial derivatives.
The standard deviations δi for each of the three parameters are
obtained from the diagonal of the inverse of Fisher information
matrix:[
δ(p)

]
i
=

√[
IF(p)−1

]
i,i
. (11)

Figures 10 and 11 give the astrometric Cramér-Rao lower
bounds on the whole field of view obtained with PACO and
robust PACO. They show that the patch weighting included in
the robust approach improves the estimation accuracies on the
whole field of view, especially in the presence of high stellar
leakages (more than 50% improvement near the coronagraph).

5. Conclusion

Most data-processing techniques for point-source detection and
characterization in ADI datasets are not robust: the presence of
images with poor AO correction can considerably degrade their
performance. It is therefore necessary to detect and eliminate
these frames in a preprocessing step. In contrast, the approach
described in this paper models the temporal variations of the
amplitude of the background fluctuations jointly to the spatial
correlations using a Gaussian scale mixture model. Since these
fluctuations are accounted for, the estimations are robust to large
fluctuations. Rather than discarding full images, we use a local
modeling in order to spatially adapt the processing and give a
very small statistical weight only to the areas subject to large
fluctuations. That way, the proposed robust PACO processing
makes the most of the available data.

The robust variant of the PACO algorithm introduced in this
paper leads to improved detection performances, in particular at
close separations where the stellar residuals dominate. Interest-
ingly, it is also possible to estimate the achievable contrast not
only by taking into account the actual image quality of the ADI
dataset, but also the contrast that would have been reached if the
AO correction had been as good as the best correction in the ADI
time series. This information can be highly valuable in order to
plan subsequent re-observations.

Coronagraphic observations obtained with integral field
spectrographs could also benefit from a modeling of the spatial
and temporal fluctuations. We will investigate in a future work
how to include a modeling of the spectral correlations for these
instruments.
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Appendix A: Estimation of the local statistics of the
background

Let {rθk ,t` }`=1:T be a collection of 2D patches centered at location
θk. Under our model, the `-th patch of the collection is distributed
under H0 according to a normal distribution with mean mk and
spatial covariance Ck,` = σ2

k,`Ck. In this Appendix, we derive the
expression of the maximum likelihood estimators m̂k, σ̂2

k,` and

Ŝk of mk, σ2
k,` and Ck , respectively. In the paper, the notation Ĉk

is kept to denote the shrinkage estimator obtained by reducing
the value of off-diagonal elements of the maximum likelihood
estimator Ŝk.

Under the assumption that each patch is an independent real-
ization of our model of the background, the co-log-likelihoodL
of the collection is given by:

L = − log p
(
{rθk ,t` }`=1:T

∣∣∣ mk, {σ
2
k,`}`=1:T , Ck

)
∝

T∑
`=1

log det
(
σ2

k,`Ck

)
+

T∑
`=1

1
σ2

k,`

r̄t
θk ,t`C

−1
k r̄θk ,t` + const.,

(A.1)

with r̄θk ,t` = rθk ,t` − mk. The maximum likelihood estimators cor-
respond to the location of the minimum of (A.1), where the gra-
dient of the co-log-likelihood is equal to zero.

From the condition ∂L
∂σ2

k,`

∣∣∣∣∣
σ2

k,`=σ̂
2
k,`

= 0, we get:

K
σ̂2

k,`

−
1
σ̂4

k,`

r̄t
θk ,t`C

−1
k r̄θk ,t` = 0,

which leads to

σ̂2
k,` =

1
K

r̄t
θk ,t`C

−1
k r̄θk ,t` . (A.2)

The variance at time t` around pixel k is therefore estimated by
computing the sample variance of a spatially whitened version
of the `-th patch.

From the condition ∇mkL

∣∣∣
mk=m̂k

= 0, we get:

−2
T∑
`=1

1
σ2

k,`

C−1
k (rθk ,t` − m̂k) = 0.

Since C−1
k is not singular, we obtain:

m̂k =

∑T
`=1

1
σ2

k,`
rθk ,t`∑T

`=1
1
σ2

k,`

· (A.3)

The mean background in patches around the k-th pixel corre-
sponds to a weighted average where a patch at time t` with large
variance is given a small weight.

From the condition ∇CkL

∣∣∣
Ck=Ŝk

= 0, we derive:

T · Ŝ−1
k − Ŝ−1

k

 T∑
`=1

1
σ2

k,`

r̄θk ,t` r̄
t
θk ,t`

 Ŝ−1
k = 0,

which gives:

Ŝk =
1
T

T∑
`=1

1
σ2

k,`

r̄θk ,t` r̄
t
θk ,t` . (A.4)

The spatial covariance estimator corresponds to the sample
covariance upon a proper rescaling by a factor 1/σk,` of resid-
ual patches r̄θk ,t` .

Appendix B: Proof of the robustness of the
estimators

In this appendix, we show that our estimators are robust in the
sense that, should the patch rθk ,t`? be replaced by a scaled version
r′θk ,t`?

= η · rθk ,t`? with an arbitrarily large factor η, at a given

frame `?, the estimators of the background statistics m̂′k and Ŝ′k as
well as the flux estimator α̂′ computed on the collection with the
scaled patch remain bounded. In fact, when η grows to infinity,
we show that the patch r′θk ,t`?

gets completely discarded in the
estimation of the flux.

Since the estimators m̂k, Ĉk and σ̂2
k,` are defined implicitly

through a fixed-point procedure, directly proving the robustness
is difficult. Instead, we show that when η approaches infinity, the
following estimates correspond to a fixed point:



σ̂2
k,`
′ = σ̃2

k,` when ` , `?

σ̂2
k,`?
′ → ∞

m̂′k = m̃k

Ŝ′k = T−1
T S̃k + K

T

rθk ,t`? rt
θk ,t`?

rt
θk ,t`?

(̂S′k)−1 rθk ,t`?
,

(B.1)

where σ̃2
k,`, m̃k and S̃k correspond to the estimators computed

on the collection {rθk ,t` }`,`? of the patches with the `?-th frame
removed.

Starting with the initial values given in (B.1), the application
of Eq. (A.2) leaves the estimated variances σ̂2

k,`
′ unchanged for

all ` different from `?. For `?, σ̂2
k,`
′ ∼
η→∞

η2σ̂2
k,` which tends to

infinity when η approaches infinity.
From Eq. (A.3), we see that the patch r′θk ,t`?

with associated
infinite variance σ̂2

k,`
′ has zero weight: 1

σ̂2
k,`?
′ r′θk ,t`?

∼
η→∞

1
η σ̂2

k,`
rθk ,t`? ,

so that lim
η→∞

1
σ̂2

k,`?
′ rθk ,t`? ′ = 0. The mean patch then corresponds to

that obtained on the collection of patches with the `?-th patch
excluded.

The approximations σ̂2
k,`?
′ ∼

η→∞

η2

K rt
θk ,t`?

(̂S′k)−1rθk ,t`? and

r̄′θk ,`?
∼

η→∞
η rθk ,`? together with the update of the sample covari-

ance estimate (A.4) lead to Ŝ′k = T−1
T S̃k + K

T

rθk ,t`? rt
θk ,t`?

rt
θk ,t`?

(̂S′k)−1 rθk ,t`?
.

In conclusion, the set of parameters defined in (B.1) is a
fixed-point. Moreover, neither the mean background patch m̂′k
nor the spatial covariance Ŝ′k depend on η (i.e., they both remain
bounded when η→ ∞). It remains to show the robustness of the
flux estimator α̂ of a source.

If the scaled patch is not in the collection of all patches
that contain the PSF of the source, then its influence is lim-
ited since we have just shown that the background statistics
are robustly estimated. In the case of the superimposition of a
scaled background and of the source of interest (as is the case
when a poor correction of the AO leads to large stellar leak-
ages at some locations of the field of view), the estimated flux
becomes:

α̂(φt` ) =

T∑̀
=1

1
σ̂2′

k,`
hbφt` e

(φt` )
t · Ĉ−1

bφt` e
·
(
r′bφt` e,t` − m̂bφt` e

)
T∑̀
=1

1
σ̂2′

k,`
hbφt` e

(φt` )t · Ĉ−1
bφt` e
· hbφt` e

(φt` )
· (B.2)
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Therefore, when η becomes large, the term(
r′
bφt`?

e,t`?
− m̂bφt`?

e

)
/σ̂2′

k,`? tends to zero and we obtain:

α̂(φt` ) ≈

∑
`,`?

1
σ̂2′

k,`
hbφt` e

(φt` )
t · Ĉ−1

bφt` e
·
(
r′bφt` e,t` − m̂bφt` e

)
∑
`,`?

1
σ̂2′

k,`
hbφt` e

(φt` )t · Ĉ−1
bφt` e
· hbφt` e

(φt` )
, (B.3)

which indicates that the scaled frame r′
bφt`?

e,t`?
tends to be

completely discarded when the scaling factor η is large. Esti-
mation of the photometry and of the astrometry is therefore
robust to the presence of a frame with an arbitrarily large
background.
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