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ABSTRACT

Context. Exoplanet detection and characterization by direct imaging both rely on sophisticated instruments (adaptive optics and coro-
nagraph) and adequate data processing methods. Angular and spectral differential imaging (ASDI) combines observations at different
times and a range of wavelengths in order to separate the residual signal from the host star and the signal of interest corresponding to
off-axis sources.
Aims. Very high contrast detection is only possible with an accurate modeling of those two components, in particular of the back-
ground due to stellar leakages of the host star masked out by the coronagraph. Beyond the detection of point-like sources in the field
of view, it is also essential to characterize the detection in terms of statistical significance and astrometry and to estimate the source
spectrum.
Methods. We extend our recent method PACO, based on local learning of patch covariances, in order to capture the spectral and tem-
poral fluctuations of background structures. From this statistical modeling, we build a detection algorithm and a spectrum estimation
method: PACO ASDI. The modeling of spectral correlations proves useful both in reducing detection artifacts and obtaining accurate
statistical guarantees (detection thresholds and photometry confidence intervals).
Results. An analysis of several ASDI datasets from the VLT/SPHERE-IFS instrument shows that PACO ASDI produces very clean
detection maps, for which setting a detection threshold is statistically reliable. Compared to other algorithms used routinely to exploit
the scientific results of SPHERE-IFS, sensitivity is improved and many false detections can be avoided. Spectrally smoothed spectra
are also produced by PACO ASDI. The analysis of datasets with injected fake planets validates the recovered spectra and the computed
confidence intervals.
Conclusions. PACO ASDI is a high-contrast processing algorithm accounting for the spatio-spectral correlations of the data to pro-
duce statistically-grounded detection maps and reliable spectral estimations. Point source detections, photometric and astrometric
characterizations are fully automatized.

Key words. techniques: image processing – techniques: high angular resolution – methods: statistical – methods: data analysis

1. Introduction

While most exoplanet detections (Schneider et al. 2011) have
been obtained using indirect methods (Santos 2008), such as
transit photometry or radial velocity techniques (Lovis & Fischer
2010), direct imaging (Traub & Oppenheimer 2010) appears to
be a method of choice for the detection and characterization
of young and massive exoplanets. To date, only a few exo-
planets (over the 4300 known ones) have been successfully
detected (Marois et al. 2008; Lagrange et al. 2009; Nielsen et al.
2012; Bailey et al. 2013; Macintosh et al. 2015; Chauvin et al.
2017; Keppler et al. 2018, see also Bowler 2016; Pueyo 2018;
Nielsen et al. 2019 for recent reviews on direct imaging) since
the emergence of this technique in the early 2000s. This can
be explained by the difficulty in detecting the very faint sig-
nature of the exoplanets (typical levels of contrast with the
host star are between 10−5 and 10−6 in the near infrared). The
use of a coronagraph to mask out the host star jointly with an
extreme adaptive optics system is mandatory for reaching these
challenging contrasts. Exoplanet hunting facilities dedicated to
direct observations such as VLT/SPHERE (Beuzit et al. 2008,

2019), GEMINI/GPI (Macintosh et al. 2014), Subaru/SCExAO
(Jovanovic et al. 2015), Keck/VORTEX (Howard et al. 2010),
and Magellan/MagAO (Morzinski et al. 2014) are equipped with
these cutting-edge optical systems.

Several observation strategies can be used for direct imag-
ing. The most popular observation mode is angular differential
imaging (ADI, Marois et al. 2006). It consists of tracking the
target star and maintaining the telescope pupil stable over time
while the field of view rotates. Such observational sequence pro-
duces 3D datasets (2D + time) in which the speckles (struc-
tured background resulting from instrumental aberrations) are
quasi-static, while the signature of the companions describes an
apparent circular motion along around its host star. Spectral dif-
ferential imaging (SDI, Racine et al. 1999) consists of record-
ing simultaneously images in several spectral channels using an
integral field spectrograph (IFS). Reduced 3D datacubes (2D +
spectral) are obtained by mapping raw observations of the IFS
cameras into a multi-spectral cube (Pavlov et al. 2008). In the
reduced datacubes, the stellar speckles that are due to diffraction
are very similar from one wavelength to the other, apart from
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their chromatic scaling (Perrin et al. 2003). After compensating
for this scaling, speckles are aligned and can be combined to
cancel out thus revealing the presence of off-axis sources whose
positions are achromatic. A natural extension of ADI and SDI is
to use them simultaneously.

This hybrid observation mode called angular and spectral
differential imaging (ASDI) produces 4D datasets (2D + time +
spectral), combining the properties of both ADI and SDI. Using
ASDI datasets such as the ones obtained with the VLT/SPHERE-
IFS instrument brings a spectral diversity (Macintosh et al. 2014;
Gerard et al. 2019) compared to simple ADI. The discrimination
between the signal from off-axis sources and the background
signal due to stellar speckles is thus improved. In addition,
ASDI datasets allow both the detection and the characteriza-
tion of the detected exoplanets (Beuzit et al. 2019). Such a char-
acterization is performed by fitting orbit models and exoplanet
atmospheric models to the estimated astrometry and photome-
try (Vigan et al. 2010). Physical information such as age, effec-
tive temperature, composition or surface gravity can be derived
for the detected exoplanets (Müller et al. 2018; Cheetham et al.
2019; Mawet et al. 2019; Claudi et al. 2019; Mesa et al. 2019a).

Whatever the observation mode, the recorded images are
combined by a post-processing method in order to cancel out
as much as possible the stellar speckles which largely domi-
nate the exoplanet signal. Current state-of-the-art detection algo-
rithms applied in direct imaging can be split into two families:
algorithms specifically designed to work in SDI mode and algo-
rithms initially designed to work in ADI mode which were later
adapted to also work in ASDI mode.

There are few methods specific to SDI. They are mainly based
on physical modeling of the stellar point spread function (PSF).
The PeX algorithm (Thiébaut et al. 2016; Devaney & Thiébaut
2017) derives a model of the chromatic dependence of the speck-
les based on diffraction theory. The MEDUSAE method (Ygouf
2012; Cantalloube 2016; Cantalloube et al. 2018) uses an analytic
model of the coronagraphic PSF and performs speckle modeling
by an inverse problem approach that estimates phase aberrations
from the measurements. It also includes an object restoration step
via a deconvolution procedure combined with suitable regulariza-
tion penalties.

There is a much larger variety of ADI processing meth-
ods. Several of them are derived from the LOCI algorithm
(Lafrenière et al. 2007) in which a stellar PSF image is cre-
ated by combining images selected in a library of data acquired
under experimental conditions similar to those of the observa-
tion of interest. The combined images are selected and weighted
in order to minimize the residual noise inside annular regions
of the images. This combined image is then subtracted from
the recorded images to attenuate the speckles and enhance the
exoplanet signal. Several adaptations of this general princi-
ple have been proposed in the literature, such as the ALOCI
(Currie et al. 2012a,b), TLOCI (Marois et al. 2013, 2014), or
MLOCI (Wahhaj et al. 2015) algorithms. Among these, the
TLOCI algorithm has become one of the gold-standard methods
to process ADI datasets. It differs from the standard LOCI algo-
rithm on the construction of the reference stellar PSF. Instead
of only minimizing the residual noise, TLOCI also maximizes
the exoplanet throughput. Another group of methods models
the fluctuations of the stellar speckles (i.e., the on-axis PSF)
by a low-dimensional subspace. The exoplanet signal is thus
captured on the subspace orthogonal to the subspace that cap-
tures fluctuations of the stellar speckles. The data are projected
on an orthogonal basis created by principal components analy-
sis (PCA). This is the principle behind the widely used KLIP

algorithm (Soummer et al. 2012; Absil et al. 2013) which builds
a basis of the subspace capturing the stellar PSF by perform-
ing a Karhunen-Loève transform that is, a PCA1 of the images
from the reference library. To obtain a model of the stellar PSF
to subtract in order to attenuate the speckles, the science data is
projected onto a predetermined number of modes. Interestingly,
as demonstrated by Savransky (2015), the (A,M,T)LOCI- and
KLIP-type methods can be seen as two closely related instances
of the general class of algorithms called Blind Source Separa-
tion (BSS). The LLSG method (Gonzalez et al. 2016) is also
based on subspace approaches since it decomposes the datasets
into low-rank, sparse and Gaussian components. Other ADI
processing methods are based on a statistical framework. For
example, the MOODS method (Smith et al. 2009) performs a
joint estimation of the exoplanet amplitude and of the stellar
speckles. The ANDROMEDA algorithm (Mugnier et al. 2009;
Cantalloube et al. 2015) forms differences in temporal images to
suppress stellar speckles and performs the detection of differ-
ential off-axis PSFs. A generalized likelihood ratio test is then
evaluated to perform the detection. A matched filter approach
can also be used on the PCA residuals to perform the detec-
tion (Ruffio et al. 2017). All these algorithms based on a sta-
tistical framework encompass the estimation of the exoplanet
throughput and detection confidences through a maximum like-
lihood approach under a white and Gaussian hypothesis which
is a rather crude assumption for this kind of data. The PACO
algorithm (Flasseur et al. 2018a) is also based on a maximum
likelihood approach but with a more consistent statistical model
self-calibrated on the data and accounting for the spatial covari-
ances of the speckles at the scale of small patches. Recently,
some works have also applied deep learning techniques to direct
imaging (Gonzalez et al. 2018; Yip et al. 2019).

Most of these algorithms are subject to different limitations.
Generally, they are not fully unsupervised so that the tuning of
several parameters is often mandatory to reach the best perfor-
mance of the method. Such tuning is time-consuming and should
ideally be repeated for each dataset since it depends on the
dataset properties (considered spectral bands, number of tem-
poral and spectral frames, quality of the observations, amount
of parallactic rotation, etc.). For both SDI and ASDI process-
ing, the recorded images at wavelength λ are scaled by a factor
λref/λ, where λref is a reference wavelength, so that the on-axis
PSF and the speckle field are approximately aligned throughout
the ASDI stack (reduced chromatic variations). Due to the differ-
ence between the scaling factor applied respectively to the short-
est and the longest wavelengths, only a central area of the field
of view is covered by all rescaled images. Some source detection
techniques process only that area common to all wavelengths.
This leads to a drastic reduction of the field of view (typically
25% to 50%), which limits the ability to detect sources. In addi-
tion, all ADI and ASDI processing methods are subject to the so-
called self-subtraction phenomenon. By combining information
(either by image subtraction as in the TLOCI type methods, or by
modes subtraction as in the PCA type methods) at different times
or wavelengths to attenuate the speckle background, the signal of
the exoplanets is also attenuated. Consequently, the photometry
is not intrinsically preserved so that an additional calibration step
via Monte–Carlo injections is mandatory to compensate for the
exoplanet self-subtraction. Finally, the main limitation of exist-
ing approaches is the lack of control of the probability of false
alarms on the detection maps and contrast curves (see Sect. 5

1 For discrete data, the Karhunen-Loève transform and the PCA are
identical procedures.
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for a discussion). It is common for state-of-the-art methods to
produce detection maps with many more false alarms than theo-
retically expected.

Based on an analysis of the limitations of existing algorithms
for ASDI data processing and of the needs driven by the new
planet finder instruments, the following desirable specifications
for exoplanet detection algorithms may be listed as:

– automatic source detection with statistical guarantees
(i.e., control over the probability of false alarms),

– characterization of the sources detected: subpixel astrome-
try and unbiased estimation of the relative spectrum2, with reli-
able confidence intervals,

– ability to process the whole field of view covered by the
instrument without artifacts,

– computation of a map reporting the contrast achieved for a
source to be detected at a given detection threshold.

In this paper, we attempt to address these different points
by deriving an algorithm from a data-driven statistical model-
ing of ASDI observations. The proposed algorithm, named PACO
ASDI, is an extension of our ADI exoplanet detection method
PACO introduced in Flasseur et al. (2018a). PACO can be used to
process independently each spectral channel of ASDI datasets
(Flasseur et al. 2018b). The main methodological adaptations
of PACO ASDI for joint ASDI processing are the following:
(i) modeling of local covariances based both on temporal and
spectral information (see Sect. 2), (ii) adaptation to the time-
specific and wavelength-specific magnitude of the background
fluctuations (see Sect. 2), (iii) a general approach combining
detection maps at different wavelengths that accounts for spec-
tral correlations (see Sect. 3.2) that is also beneficial to combine
detection maps from other existing algorithms (see Appendix F),
and (iv) estimation of the spectrum of sources, including a
parameter-free spectral smoothing (see Sect. 4.2).

Figure 1 gives the general scheme of PACO ASDI to which
we will refer throughout the paper. It illustrates the four main
steps of the algorithm:

– learning of a model of the background that accounts for the
patch spatial covariance (step À, detailed in Sect. 2),

– single-wavelength detection, by application of detection
theory to our statistical model of the background (step Á,
detailed in Sect. 3.1),

– multi-wavelength detection, by combining the single-
wavelength detection maps; this is achieved by learning the
spectral correlations between single-wavelength detection maps
(steps Â–Å) and introducing a (coarse) prior information on the
spectrum of the source (detailed in Sect. 3.2),

– once a source has been detected, its astrometry and pho-
tometry is estimated during a characterization step (step Æ,
described in Sect. 4), by iteratively refining the source parame-
ters (angular location, spectrum and total flux) and the statistical
model of the background (spatial and spectral correlations).

Statistical modeling of the spatial, temporal, and spectral
fluctuations of ASDI datasets is a guiding thread throughout the
paper for grounding the detection and estimation method and
to obtain reliable indications on the probability of false alarms,
astrometric, and photometric confidence intervals. Those statis-
tical guarantees are essential to the astronomers to automatize
the detection and analysis of ASDI datasets, for the scientific
exploitation of the results, and also for characterizing the per-
formance of the instrument (detection limits and photometric

2 In this paper, the term relative spectrum (or more simply spectrum)
refers to the estimated spectrum of the detected sources before correc-
tion for the stellar spectrum.

accuracy depending on the observation strategy, the observa-
tion conditions, and the performance of the adaptive optics +
coronagraph).

This paper is organized as follows. We describe in Sect. 2
our statistical modeling of the background fluctuations for ASDI
datasets. In Sect. 3, we explain how to obtain single wave-
length and combined detection maps at a controlled probability
of false alarms. Section 4 details our parameter-free and regu-
larized spectrum estimation procedure applied to the detected
sources. In Sect. 5, we illustrate on VLT/SPHERE-IFS datasets
the performance of the proposed PACO ASDI algorithm in terms
of detection maps, achievable contrast, and spectrum estimation.
Finally, Sect. 6 presents the paper’s conclusions.

2. Statistical modeling of background fluctuations
in ASDI

After speckle alignment by spectral image magnification, back-
ground structures (i.e., stellar speckles) are approximately con-
stant (up to a multiplication by a chromatic factor accounting
for the star spectrum) through time and the wavelengths. A
closer observation reveals some temporal and spectral fluctua-
tions. These fluctuations are spatially structured. It is essential
to model these fluctuations in order to discriminate between an
insignificant change of the background and a point source. We
describe in this section a statistical model of the background
fluctuations. The detection and source characterization algorithm
PACO ASDI is grounded on this model.

2.1. Local multivariate Gaussian model

Our modeling of the spatial covariances in ADI datasets with
PACO algorithm led to two conclusions: (i) to account for the
nonstationarity of the background, local modeling is necessary;
and (ii) given the limited number of samples available at any
given location, a trade-off must be found between the size of the
covariance matrices and the estimation variance.

To extend the modeling from ADI datasets to the 4D spatio-
temporo-spectral datacubes of ASDI, we keep a local Gaussian
modeling: parameters of the Gaussians are estimated by analyz-
ing patches extracted at a given location. For the nth pixel3 of the
field of view (identified by its 2D angular direction θn on the sky
with respect to the stellar center), we extract T ·L patches (where
T is the number of temporal frames and L is the number of spec-
tral channels), each made of K pixels. The patch size is constant
for a given instrument and is fixed with the same empirical rule
than the one derived in the PACO algorithm: it should be chosen
so that twice the full width at half maximum (FWHM) of the
off-axis PSF is encompassed by the patches. Those patches rn,`,t
are all centered on the same sky location θn but correspond to
different frames and spectral channels leading to the local collec-
tion {rn,`,t}`∈1:L, t∈1:T , where ` indicates the spectral channel and
t the frame index. If this collection contains no off-axis point
source, we model each patch rn,`,t as a random realization of the
K-dimensional GaussianN(mn,`, σ

2
n,`,tCn). The mean patch mn,`

is the same for all t but is chromatic. The K×K covariance matrix
is modeled as a product of two factors: a time and wavelength-
dependent scaling σ2

n,`,t and a spatial covariance matrix Cn

that are constant for a given patch collection extracted around
pixel n. This modeling follows the two guidelines: (i) local

3 We note that a reminder of the main notations used throughout the
paper is given in Table 1.
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1 1.2 1.4 1.6

Fig. 1. Scheme of PACO ASDI algorithm.

adaptivity to account for background nonstationarities, in par-
ticular, the model is specific to a given spatial location and cap-
tures different fluctuation magnitudes for different wavelengths
or different temporal frames; and (ii) a limitation of the number
of parameters that have to be estimated from the collection of
patches by neglecting temporal and spectral correlations. Several
variants of this modeling have been evaluated in experiments,

not reported here, that led to worse detection performances4.
The effectiveness of introducing a temporal scaling factor in ADI

4 In particular, the choice of a temporal versus spectral mean has been
studied. A temporal mean was found better suited to model the back-
ground of SPHERE-IFS data. It is straightforward to replace the tempo-
ral mean by a spectral mean if needed to model the fluctuations of other
instruments.
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Table 1. Reminder of the main notations.

Not. Definitions

. Constants and related indexes
N Number of pixels in a frame
n Pixel index
L Number of spectral frames
` Spectral index
T Number of temporal frames
t Temporal index
K Number of pixels in a patch

. Data quantities
r Observed intensity
f Background
h Off-axis PSF

. Estimated quantities
Background statistics

σ̂2 Temporo-spectral weight
m̂ Temporal mean
Ŝ Spatial (empirical) covariance
Ĉ Spatial (shrunk) covariance
N̂ Cholesky factorization of Ĉ: Ĉ−1 = N̂N̂>

Σ̂ Spectral (shrunk) covariance
L̂ Cholesky factorization of Σ̂: Σ̂

−1
= L̂L̂>

Source quantities
α̂ Vector of source fluxes (spectrum)
û Standard deviations of the source fluxes
β̂ Expected spectral S/N: β̂` = α`/

√
v`

γ̂ Prior on the source spectrum
β̂
′

Expected spectral S/N if α̂ = γ̂: β̂′` = γ`/
√
v`

w Spectral weights
. Detection criterions

S/N` Spectral S/N at wavelength `
x Vector of spectral S/N: x` = S/N`

Ŝ Vector of whitened spectral S/N := L̂>x
wwS/N Weighted whitened S/N :=

∑
` w`

[
L̂>x

]
`

GLRT` Spectral GLR: = S/N2
`

GLRT+ Combined GLR: =
∑
`

[
α̂`

]2
+ /v`

wGLRT Whitened GLR: = ||̂L>x||22
. Positions

φ0 2D angular loc. of a source in a ref. frame
φ`,t 2D angular loc. at wavelength ` and time t
bφ`,te Closest on-grid location to φ`,t

has been recently demonstrated (Flasseur et al. 2020). Neglect-
ing the spectral correlations of the background may seem a crude
approximation. There are indeed some strong correlations but
these correlations are difficult to capture at the scale of patches
given our limited number of samples. In Sect. 3.2, we describe
how to account for spectral correlations at a later stage of the
algorithm, with satisfying results.

2.2. Local learning of the parameters

Since a different multivariate Gaussian model is defined for
each angular location θn, the estimation of the parameters mn,`,
σ2

n,`,t and Cn can be performed independently on each collection

Algorithm 1: Local background statistics estimation.
Input: {rn,1,1, . . . , rn,L,T } (stack of L T patches)

(each patch has K pixels)

Output: {m̂n,`}`∈1:L (mean patches)
Output: Ĉn (K × K spatial covariance)
Output: {σ̂n,1,1, . . . , σ̂n,L,T } (scaling factors)

Ĉn ← I (initialize at identity matrix)
∀`, ∀t, σ̂(old)

n,`,t ← 1
for ` ← 1 to L do

m̂n,` ←
1
T
∑T

t=1 rn,`,t (sample mean)

do
Ĉn ←

K
tr(Ĉn)

Ĉn (normalization)
. Step 1: Estimate scaling parameters
for ` ← 1 to L do

for t ← 1 to T do
σ̂2

n,`,t ←
1
K
(
rn,`,t − m̂n,`

)>Ĉ−1
n

(
rn,`,t − m̂n,`

)
. Step 2: Update the mean patches
for ` ← 1 to L do

s←
∑T

t=1 1/σ̂2
n,`,t (normalization factor)

m̂n,` ←
1
s
∑T

t=1
1

σ̂2
n,`,t

rn,`,t (weighted mean)

. Step 3: Update the spatial covariance
Ŝn ←

∑
`∈1:L
t∈1:T

1/(T L)
σ̂2

n,`,t

(
rn,`,t − m̂n,`

)(
rn,`,t − m̂n,`

)>
P̃←

(∑
`,t 1/σ̂2

n,`,t
)2/(∑

`,t 1/σ̂4
n,`,t

)
(equivalent number of patches)

Ĉn ←Alg2(̂Sn, P̃) (shrinkage estimator)
while max`,t

∣∣∣σ̂n,`,t − σ̂
(old)
n,`,t

∣∣∣ ≥ ε;
{rn,`,t}`∈1:L, t∈1:T of 2D patches centered on a given location θn.
Under our assumptions of negligible temporal and spectral cor-
relations, the co-log-likelihood Ln of the collection can be
written:

Ln = − log p
(
{rn,`,t}`∈1:L, t∈1:T

∣∣∣ (1){
mn,`

}
`∈1:L ,

{
σ2

n,`,t

}
`∈1:L, t∈1:T

, Cn

)

⇒ Ln =
LT K

2
log 2π +

∑
`∈1:L
t∈1:T

1
2 log det(σ2

n,`,tCn)

+
∑
`∈1:L
t∈1:T

1
2
(
rn,`,t − mn,`

)>(
σ2

n,`,tCn
)−1(rn,`,t − mn,`

)
. (2)

We show in Appendix A that the maximum likelihood esti-
mates for the Gaussian parameters are the solution to the follow-
ing system of non-linear equations:

m̂n,` = 1∑
t∈1:T

1/σ̂2
n,`,t
·

∑
t∈1:T

1
σ̂2

n,`,t
rn,`,t

σ̂2
n,`,t = 1

K
(
rn,`,t − m̂n,`

)>̂S−1
n

(
rn,`,t − m̂n,`

)
Ŝn = 1

T L
∑
`∈1:L
t∈1:T

1
σ̂2

n,`,t

(
rn,`,t − m̂n,`

)(
rn,`,t − m̂n,`

)>
,

(3)

where the maximum likelihood estimate of the covariance Ŝn

is not directly used as an estimate of the covariance Ĉn, but
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Fig. 2. Accounting for temporal and spectral fluctuations with time and wavelength-specific scaling factors: a: observed intensities, for some
selected frames (4 wavelengths × 4 exposures); b: corresponding spatial distribution of scaling factors.

Algorithm 2: Shrinkage covariance estimator.

Input: Ŝn (K × K sample covariance matrix)
Input: P̃ (equivalent number of patches)
Output: Ĉn (covariance matrix estimate)

ρ̂←
tr(̂S2

n)+tr2 (̂Sn)−2
∑K

i=1 [̂Sn]2
ii

(P̃+1)
(

tr(̂S2
n)−

∑K
i=1 [̂Sn]2

ii

) (shrinkage factor)

for i← 1 to K do
[Ĉn]i,i ← [̂Sn]i,i (copy diagonal)
for j← i + 1 to K do

[Ĉn]i, j ← (1 − ρ̂)[̂Sn]i, j (shrink off-diagonal)
[Ĉn] j,i ← (1 − ρ̂)[̂Sn] j,i (shrink off-diagonal)

is replaced by a more reliable estimator with a smaller risk, as
described in the following paragraphs.

We solve the System (3) by the method of fixed-point iter-
ation, that is, by alternatively updating each unknown until
convergence. This leads to Algorithm 1, where we chose the
arbitrary normalization tr(Ĉn) = K for matrix Ĉn (some form
of normalization is necessary to remove the scaling degeneracy
in the product σ̂2

n,`,tĈn).
For locations θn outside of the central region of the field of

view, some patches rn,`,t fall outside of the measured area for
the largest wavelengths. In that case, the sum for the compu-
tation of Sn in the System (3) and in Algorithm 1 is restricted
to the wavelengths ` for which the patch is measured and the
normalization factor 1/T L is corrected to match the actual num-
ber of terms in the sum. Given the severe reduction in the num-
ber of patches actually used close to the borders of the field
of view, it is important to regularize the sample covariance to
reduce the estimation variance and to prevent obtaining singular
or ill-conditioned matrices. As in Flasseur et al. (2018a), we use
a shrinkage estimator, implemented according to Algorithm 2.

Because of the weighting by factors 1/σ̂2
n,`,t, some patches have

more importance than others and an equivalent number P̃ of
patches is used in the shrinkage formula, step 3 of Algorithm 1,
see also Flasseur et al. (2020). The closed form expression of P̃
is derived in Appendix B. The rationale behind this equivalent
number of patches comes from the variance reduction when per-
forming the weighted mean.

Figure 2a depicts the observed intensities in some frames
of an ASDI dataset. Fluctuations can be noted both through
time and through the wavelengths. In Fig. 2b, maps of the time
and wavelength-specific scaling factors σ̂2

n,`,t are displayed for
16 pairs (`, t). At a given location n, large values of this scaling
factor compared to other frames t or other wavelengths ` indi-
cate that the corresponding patches have a moderate or negligi-
ble weight when estimating the mean background and the spatial
covariance matrix. In the source detection and characterization
steps described in the following sections, patches with compar-
atively larger scaling factors σ̂2

n,`,t also play a minor role. The
method is thus robust to the presence of outliers5 in the data, see
Flasseur et al. (2020). A close inspection of the maps in Fig. 2b
reveals the presence of outliers: when an outlier affects a patch,
the whole patch is discarded, outliers are thus visible as a disk-
shaped area of large σ̂2

n,`,t values (corresponding to all spatial
locations n that contain the outlier, that is, the disk shape of our
patches).

The convergence of Algorithm 1 is illustrated in Fig. 3.
Three different locations in the field of view, depicted by a
red dot in the insert, are selected: a small angular separation
in Fig. 3a, an intermediate separation in 3b and a large separa-
tion in 3c. In each case, 1000 different random draws were used
as an initialization. The graphs report the normalized distance
to the solution found with a constant initialization after a large

5 Outliers are artifacts taking the form of unexpected fluctuations.
These artifacts can be spatially localized (e.g., defective pixels) or can
impact a larger part of the field of view when, e.g., a sudden degradation
of the adaptive optics correction occurs.
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Fig. 3. Convergence of the scaling factors, starting from many random initializations. In the inserts, the location in the field of view is indicated as
well as the evolution of the weights until the convergence criterion is reached.

number of iterations. Convergence to the same solution is
observed experimentally in all cases. An insert also gives the
evolution of each scaling factor σ̂2

n,`,t with the iterations, until the
convergence criterion is reached. A satisfactory convergence is
reached in about 10 iterations. At large angular separations, as in
3c, only the shortest wavelengths are available after the speckles
are aligned by spectral zooming. The convergence is even faster
in this case.

Figure 4 evaluates the statistical accuracy of our modeling
of the background on HR 8799 ASDI dataset. The left column
gives the values and empirical distributions of the collection
of mean-subtracted patches {rn,`,t − mn,`}`∈1:L, t∈1:T , at a loca-
tion n near the coronagraph (rows a and b), at a location far-
ther from the coronagraph (rows c and d), and for all patches
from the field of view (row e). Since only the modeling of
the background is considered here, all patches around and at
the location of the 3 known point-like sources were excluded.
Simply removing an average background per wavelength is not
satisfactory: values are not distributed according to a Gaussian
distribution, there are numerous large deviations. The central
column of Fig. 4 gives the intensity values and the empirical
distributions when only a spatial whitening is applied, using
the same spatial covariance matrix for all frames and all wave-
lengths. Each mean-subtracted patch intensity of the collection
{rn,`,t}`∈1:L, t∈1:T = {rn,`,t − m̂n,`}`∈1:L, t∈1:T is multiplied by the
K × K Cholesky factor N̂>n of the spatial covariance Ĉn such
as N̂nN̂

>
n = Ĉ−1

n . If the statistical modeling captures accurately
the fluctuations of the background, the vectors {N̂>nrn,`,t}`∈1:L, t∈1:T
should be distributed according to N(0, I) under H0: the linear
filter N̂>n whitens the vectors {rn,`,t}`∈1:L, t∈1:T . The introduction of
the whitening step leads to residuals more closely following a
standard Gaussian distribution. The right column considers the
case of spatial whitening by a covariance matrix scaled by the
time and wavelength-specific factors σ̂n,`,t. The empirical distri-
butions follow more closely a standard Gaussian, yet the match
is not perfect close to the coronagraph. Accounting for the spec-
tral or temporal correlations would probably further improve the
statistical modeling of the background. Such modeling, however,
seems difficult to carry out given the limited number of sam-
ples and is left to further studies. It is shown in the following
sections that the proposed modeling already provides consistent
results.

3. Detection maps

The statistical model of the background in ASDI datasets intro-
duced in the previous section is essential to derive the detection
and characterization method. Backgrounds at all wavelengths
are combined to estimate the parameters of this model. We first
describe how this multi-wavelength background model can be
applied to produce a detection map at a single wavelength. We
then discuss the combination of detection maps at several wave-
lengths.

3.1. Detection at a single wavelength

Let φ0 be the hypothetical location of a point source in some ref-
erence frame. If a point source is present at that location, with
a flux α` in the `th band of the spectrum, then the signal of that
source corresponds, at time t and in the nth patch, to α`hn,`(φ`,t),
with hn,`(φ`,t) the zoomed-in off-axis PSF centered at the sub-
pixel location φ`,t of the source at the `th wavelength and tth
frame. Given the scarcity of sources in the field of view, it is
safe to suppose that, within a small patch of a few tens of pixels,
only a single source may be present. Detecting a point source at
location φ0 then amounts to deciding for one of two hypotheses:


H0 : {rbφ`,te,`,t}t∈1:T = { f bφ`,te,`,t}t∈1:T

(background only)
H1 : {rbφ`,te,`,t}t∈1:T = α` {hbφ`,te,`(φ`,t)}t∈1:T

(background+source) +{ f bφ`,te,`,t}t∈1:T ,

(4)

where f is the notation for patches that contain pure back-
ground. The collection of patches considered in this hypothesis
test corresponds to all patches that would contain the source if it
was present: patches centered at pixel locations bφ`,te that match
the location of the source at time t and wavelength ` due to the
rotation of the field of view and the zoom applied to align the
speckles at all wavelengths, see Fig. 5. Under hypothesis H0,
the collection of patches corresponds to pure background: no
source is present at location φ0. Under hypothesis H1, the
patches result from the superimposition of an off-axis PSF and
of the background.

Under our statistical model of the background given in
Eq. (2), the likelihood of each hypothesis can be compared for a
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Fig. 4. Distribution of the centered patches: left: without whitening; center: after spatial whitening; right: after spatial whitening and correction
by the wavelength and time-specific scaling factors. Rows a and b: location selected at a small angular separation; rows c and d: location at
a larger angular separation; row e: empirical distribution computed over the whole field of view. Patches represented in this figure contain no
point-source.

given flux α`:

2 log
p({rbφ`,te,`,t}|H1, α`)

p({rbφ`,te,`,t}|H0)

= α`

T∑
t=1

u>bφ`,te,`,tĈ
−1
bφ`,te

hbφ`,te,`(φ`,t) (5)

with un,`,t =
1

σ̂2
n,`,t

(
rn,`,t − m̂n,` − α`hn,`(φ`,t)

)
.

Since the flux α` is generally not known beforehand, it has to
be estimated from the data. The maximum likelihood estimator,

under our model of the background, is:

α̂` =

T∑
t=1

b`,t/σ̂2
bφ`,te,`,t

T∑
t=1

a`,t/σ̂2
bφ`,te,`,t

, (6)

with

a`,t = hbφ`,te,`(φ`,t)
>Ĉ−1
bφ`,te

hbφ`,te,`(φ`,t) (7)

and

b`,t = hbφ`,te,`(φ`,t)
>Ĉ−1
bφ`e

(
rbφ`e,`,t − m̂bφ`,te,`

)
. (8)
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Fig. 5. Evolution of the 2D location φ`,t
of a source in a speckle-aligned ASDI
dataset: φ0 defines the 2D angular loca-
tion of a point source in a reference
frame; the apparent location of the point
source in the tth observation and the `th
spectral band is indicated by a black
disk; the apparent locations of a point
source at other observation times and
spectral bands are indicated by gray cir-
cles. The location φ`,t describes a radial
motion with the wavelength and a rota-
tion about the optical axis over time.

Substituting α` with its estimate α̂` in Eq. (5) leads to the
generalized likelihood ratio test:

GLRT` :

(
T∑

t=1
b`,t/σ̂2

bφ`,te,`,t

)2

T∑
t=1

a`,t/σ̂2
bφ`,te,`,t

H1
≷
H0

η. (9)

Only positive flux estimates are physically meaningful for point
sources. The test can then be improved by discarding locations
leading to negative flux estimates α̂` (see also Flasseur et al.
2018a):

S/N` :

T∑
t=1

b`,t/σ̂2
bφ`,te,`,t√

T∑
t=1

a`,t/σ̂2
bφ`,te,`,t

H1
≷
H0

τ , (10)

which matches GLRT` when τ =
√
η and α̂` ≥ 0. As noted by

Mugnier et al. (2009), the ratio in (10) corresponds to a signal-
to-noise ratio. It is obtained by linearly transforming the data and
accounts for the local, time and wavelength-specific covariance
of the background. The variance of the estimator α̂`, hereafter
noted v`, is:

Var[α̂`]︸  ︷︷  ︸
v`

=

 T∑
t=1

a`,t/σ̂2
bφ`,te,`,t

−1

. (11)

The signal-to-noise ratio of the flux estimate (S/N`) therefore
corresponds to the ratio α̂`/

√
v` and is distributed as a standard

normal variate underH0 (Mugnier et al. 2009).
Figure 6 compares the detection maps S/N` computed with

Eq. (10) and detection maps obtained by PACO on ADI subsets
(i.e., by processing the data one wavelength at a time). The major
difference between the two approaches is that PACO ASDI com-
bines information from all wavelengths to learn the background
model (more specifically, the covariance matrices). Therefore,
a more accurate model is obtained and point-sources are better

discriminated against the background: the signal-to-noise ratio
of the sources is improved at all wavelengths while the fluctua-
tions in the absence of sources are comparable.

Beyond the improvement of the detection map at a given
wavelength, PACO ASDI also benefits from combining detec-
tion maps at different wavelengths to better detect sources, as
described in the next section.

3.2. Combining multiple detection maps

3.2.1. Combination assuming spectral independence

The detection of point sources can be largely improved by
combining information from different wavelengths. The most
straightforward approach consists of the extension of the hypoth-
esis test in Eq. (4) in order to include the patches at all times
and all wavelengths (all locations depicted in Fig. 5 rather than
a single row). Under the assumption that spectral channels are
independent, the likelihood can be factored as a product over all
channels and fluxes α` can be separately estimated. Deciding for
the presence of a source at location φ0 based on the generalized
likelihood ratio amounts to:

GLRT :
L∑
`=1

(
T∑

t=1
b`,t/σ̂2

bφ`,te,`,t

)2

T∑
t=1

a`,t/σ̂2
bφ`,te,`,t

=

L∑
`=1

α̂2
`

v`

H1
≷
H0

η. (12)

To account for the imposed non-negativity of source fluxes, the
test can be slightly modified, see Flasseur et al. (2018b):

GLRT+ :
L∑
`=1

[α̂`]2
+

v`

H1
≷
H0

η , (13)

where [x]+ = max(x, 0) is the positive part of x.
UnderH0 and the assumption that S/N` values are indepen-

dent from one another (a hypothesis that will be rejected in the
following paragraphs), the distribution of GLRT+ is given by
(see the derivation in Appendix C):
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Fig. 6. PACO versus PACO ASDI: impact of learning background structures at a single wavelength (PACO, first row) or jointly from all the wave-
lengths (PACO ASDI, second row). Single-wavelength detection maps S/N` are shown for PACO ASDI. The differences between the 2 lines are
related to the estimation of the covariance matrices C and the scaling parameters σ. The combination of those maps leads to a single detection
map, not shown here, with improved sensitivity (see text and Fig. 8).

p
(
GLRT+

∣∣∣H0
)

=
1
2L δ0(GLRT+)

+

L−1∑
`=0

L!
2L`!(L − `)!

χ2
L−`

(
GLRT+) , (14)

where δ0 is a Dirac mass centered in 0 and χ2
L−` is a Chi-square

distribution with L − ` degrees of freedom.
Figure 7a displays the GLRT+ obtained with Eq. (13) on an

ASDI dataset of HR 8799 obtained with SPHERE-IFS. Three
point-sources can be detected in this dataset, at the locations
marked c, d, and e. To perform an automated detection, it is nec-
essary to set a threshold corresponding to a fixed probability of
false alarm. The empirical distribution of GLRT+ values, exclud-
ing the three regions that contain the point-sources, is shown at
the right of the detection map of Fig. 7a. This empirical distribu-
tion is compared to the theoretical distribution of GLRT+ under
H0, drawn in dashed line. A strong mismatch is observed. Due to
this discrepancy, it is not possible to derive a detection threshold
from the model of Eq. (14). The empirical distribution is shifted
to the left as if the number of wavelengths was smaller than L.
An effective number of wavelengths could be derived by fitting
the parameter L in Eq. (14) to the empirical distribution. This
effective number of wavelengths would account for the correla-
tions of S/N values between adjacent wavelengths. To limit the
number of false alarms, the detection threshold is typically set
in order to reach probabilities as low as 10−7. A mismodeling
of the right tail of the distribution may have a large impact on
the value of the threshold. Rather than estimating an effective
number of wavelengths to adjust the model (14), we model the
distribution of the S/N` values by accounting for the wavelength
correlations.

3.2.2. Accounting for spectral correlations

Signal-to-noise ratio values S/N` defined in Eq. (10) are
Gaussian distributed. However, they are not mutually indepen-

dent because the background patches, in a given frame, are very
similar for adjacent wavelengths. Before combining detection
maps, it is necessary to learn the spectral correlations between the
maps S/N`. This learning is performed locally, on a small region
of the maps S/N`. Since there might be a point source within
the region, it is necessary to use a robust estimator Σ̂ of the spec-
tral covariance (otherwise, spectral whitening would suppress the
source). There are several robust estimators for the covariance,
see for example the review in Hubert et al. (2008). The mini-
mum covariance determinant (MCD) method identifies a sub-
set of observations of a fixed size whose covariance matrix has
the lowest determinant. To identify this subset quickly, we use
the algorithm FAST-MCD introduced in Rousseeuw & Driessen
(1999). The region over which an estimate Σ̂ is computed must
be large enough to guarantee that the area of large S/N` val-
ues corresponding to a point source be considered as an outlier.
Appendix D discusses how to set the size of this region and how
Σ̂ can be improved, in a second step, by masking.

The vector x of S/N` values is a sufficient statistic for the
fluxes α̂` of a point source. The detection of a point source can
thus be defined directly on the vector x:
H0 : x = ε

(no source)
H1 : x = ε + β ,

(a point source is present)

(15)

where β ∈ RL is the vector of expected S/N values at each
of the L wavelengths: β` = α`/

√
v`, and ε is a random vector

accounting for the fluctuations of S/N` values. According to our
model of spectral correlations, ε follows the Gaussian distribu-
tion N(0,Σ). Replacing the unknown vector β by its maximum
likelihood estimate β̂ = x gives an approximation of the likeli-
hood ofH1 and leads to the following GLR test:

wGLRT : ‖L̂>x‖22 = x>Σ̂
−1

x
H1
≷
H0

η , (16)
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where L̂ is the L × L whitening matrix obtained by Cholesky
factorization, i.e., such that L̂L̂> = Σ̂

−1
. Similarly to the spatial

whitening introduced in Sect. 2.2, the matrix L̂ is such that L̂>x
be distributed according to N(0, I) under H0: it whitens vectors
of S/N` values, hence the name of the corresponding detection
criterion.

In the absence of spectral correlations (i.e., Σ = I), L = I and
the wGLRT equals the GLRT defined in Eq. (12). UnderH0, the
wGLRT follows a χ2 distribution with L degrees of freedom.

Figure 7b displays the wGLRT detection map and, by mask-
ing out the three sources, the distribution of wGLRT under H0.
The comparison with GLRT+ shows that the spectral whiten-
ing reduces artifacts in the absence of sources (periodic struc-
tures observed in Fig. 7a are no longer visible in Fig. 7b). The
empirical distribution of wGLRT is much closer to the expected
distribution, however, the match is not perfect, which motivates
considering another approach to the combination of detection
maps.

3.2.3. Improving the detection based on a prior spectrum
model

If a coarse model of the spectrum of the point source under study
is available prior to the detection, this model can be used to
improve the detection performance by giving more weight to
spectral bands where larger values are expected. Let γ be the
spectrum of a point source. Given that spectrum, the hypothesis
test (15) takes the simplified form:

H0 : x = ε

(no source)

H1 : x = ε + αint ·


|

γ`/
√
v`
|

︸     ︷︷     ︸
β′

,

(a point source is present)

(17)

where αint is the spectrally integrated flux, that is, the flux such
that α` = αint γ`, for all `. In contrast to the hypothesis test
(15), this new test requires estimating a single scalar parameter:
αint. The maximum likelihood estimator for the integrated flux
αint is:

α̂int =
x>̂LL̂>β′

β′ >̂LL̂>β′
, (18)

where β′ is the vector ofRL whose `th element is equal to γ`/
√
v`

(the expected S/N` value if α` was equal to γ`, i.e. αint = 1). The
variance of the estimator α̂int is (β′ >̂LL̂>β′)−1. By substituting
αint with its estimate α̂int, another GLRT is obtained:

wwGLRT : 2 log
p(x|H1, α̂

int)
p(x|H0)

=

(
x>̂LL̂>β′

)2

β′ >̂LL̂>β′
· (19)

Since only positive integrated fluxes αint make sense, vectors x
such that x>̂LL̂>β′ < 0 can be discarded. The square root of the
GLRT then leads to the test:

wwS/N :
x>̂LL̂>β′√
β′ >̂LL̂>β′

=

L∑
`=1

w` ·
[
L̂>x

]
`

H1
≷
H0

τ , (20)

which takes the form of a linear combination of the whitened
vector of S/N` values, with weights w` defined by w` =

[L̂>β′]`/
√
β′ >̂LL̂>β′, hence the name wwS/N. Like in our pre-

vious derivation of S/N`, wwS/N can be interpreted as a signal
to noise ratio: wwS/N = α̂int/

√
Var[α̂int].

Interestingly, wwS/N corresponds to the optimal linear com-
bination of the S/N` values, in the sense that the probability of
detection is maximized for all false alarms rates, i.e. a matched
filter, see Appendix E.

Comparison between wGLRT and wwS/N. Both wGLRT
and wwS/N encompass a whitening of the spectral correlations,
but wwS/N also includes an additional spectral wheighting strat-
egy based on a prior spectrum model. In order to select between
these two different detection criteria, several aspects must be
considered: (i) does the criterion follow the expected distribu-
tion under H0, that is, can detection thresholds be set for pre-
scribed false alarms rates? (ii) How large is the gain obtained when
the spectrum of the source is available? (iii) How does wwS/N
degrade if the assumed spectrum differs from the true spectrum?

Under H0, wGLRT is expected to follow a χ2 distribution
with L degrees of freedom, while wwS/N is expected to follow a
standard Gaussian distribution. The analysis of Fig. 7b led to the
conclusion that the fit with a χ2 distribution with L degrees of
freedom was not accurate. Figure 8 illustrates the empirical dis-
tribution of wwS/N for several prior spectra. For all the spectra
considered, the empirical distribution is in very good fit with a
centered standard Gaussian. A possible explanation for this bet-
ter fit of wwS/N with the theoretical distribution under H0 is
that the weights w` give more importance to spectral channels of
good quality (i.e., with a low variance v`) and that these channels
follow more closely our Gaussian model. The good fit of wwS/N
underH0 with the expected distribution makes it possible to reli-
ably set detection thresholds for a prescribed false alarms rate.

In order to assess the gain in detection performance brought
by the prior knowledge of the spectrum of the source, we com-
pare the contrasts achievable at a 5σ false alarms rate. We
derive the theoretical contrast values based on our statistical
modeling even if, in practice, a deviation is observed between
the theoretical distribution and the empirical distribution of
wGLRT. Under H0, wGLRT is expected to follow a χ2 dis-
tribution with L degrees of freedom. The probability of false
alarms is thus: PFA = P(χ2

L > η). The probability of detec-
tion of a source of flux αintγ, PD = P(wGLRT > η|H1),
corresponds to the probability that a noncentral χ2 distribu-
tion with L degrees of freedom and noncentrality parameter
(αint)2β′ >̂LL̂>β′ exceeds the detection threshold η. This probabil-
ity corresponds to QL/2(αint(β′ >̂LL̂>β′)1/2,

√
η), where QM(a, b)

is Marcum Q-function (Simon 2007). Hence, the theoretical 5σ
contrast reached by wGLRT can be computed by first solving
the equation 1

Γ(L/2)γ(L/2, η/2) = Φ(5) for η (where γ is here the
lower incomplete gamma function and Φ is the cumulative dis-
tribution function of the standard normal distribution), and then
solving QL/2(αint(β′ >̂LL̂>β′)1/2,

√
η) = 1/2 for αint. For example,

when L = 39 (as is the case of SPHERE-IFS), we find η ≈ 100
and αint ≈ 7.87(β′ >̂LL̂>β′)−1/2.

Since the expectation E[wwS/N|H1] is equal to
αint(β′ >̂LL̂>β′)1/2, the 5σ contrast reached by wwS/N is
readily obtained: αint = 5(β′ >̂LL̂>β′)−1/2. Including the prior
knowledge of the source spectrum, therefore, improves the
contrast by a factor 1.57 (wwS/N reaches a theoretical contrast
that is 1.57 times better than wGLRT).
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400 80 400 80

Fig. 7. Combined detection maps computed on HR 8799 ASDI dataset: a: GLRT+ criterion and its distribution in the absence of sources; b:
wGLRT criterion, including a spectral whitening operation, and its distribution. The three sources are excluded for the computation of the empirical
distributions.
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Fig. 8. Combined detection map with spectrum priors: in the absence of sources the empirical distribution matches very closely a Gaussian
distribution (red parabola in the log-scale representations).

Rather than expressing the contrast in terms of the value of
the integrated flux αint required in order to achieve the detection,
it can also be expressed as the flux of the source, at a given
wavelength, so that the detection using jointly all wavelengths

is possible. This wavelength-specific contrast corresponds to the
values α` = αintγ`. For example, the achievable contrast using
only a single detection map S/N` is 5

√
v`. When the multi-

wavelength criterion wwS/N is applied, if L̂ = I and if the prior
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actually matches the true spectrum of the source, then the achiev-

able contrast corresponds to a flux 5γ`/
√∑

` γ
2
`
/v` in the `th

channel. Therefore, with respect to the single-wavelength map,
the contrast is improved by a factor:√√√

1 +

L∑
`′,`

(γ`′/γ`)2

v`′/v`
, (21)

which depends on the spectrum γ` of the source and on the vari-
ance v` of the source flux. This factor is strictly greater than one
(i.e., the contrast is strictly improved) provided that there is at
least one wavelength `′, different from `, such that the spectrum
is non zero (γ`′ , 0) and the variance is finite (v`′ < ∞). Obvi-
ously, if these two conditions are not met, either the source emits
no light at the additional wavelengths or no meaningful measure-
ment is available so that the performance cannot be improved
compared to when using a single wavelength detection map. In
all other cases, there is a gain, that is, the combined detection
map leads to a better sensitivity than even the detection map
S/N` at the wavelength providing the best contrast. In particu-
lar, if the spectrum is flat (∀`, γ` = 1/L) and the variances v`
are all equal, the contrast is improved by a factor

√
L, which

is to be expected when combining L measurements of identi-
cal statistical weight. This factor should, however, be considered
as an upper bound that cannot be reached in practice for sev-
eral reasons: (i) the whitening matrix L̂ differs from the identity
because of the correlations between channels, the effective num-
ber of (independent) channels is, in fact, smaller than L, (ii) the
estimation of matrix L̂ is performed in two steps and relies, in
the second step, on a thresholding strategy that requires a detec-
tion to prevent the attenuation of point-like sources, (iii) neither
the spectrum nor the variance are constant with respect to the
wavelength, (iv) the true spectrum of the source may differ from
the prior spectrum used in wwS/N.

Impact of a mismatch between the true and assumed
spectrum in wwS/N. Finally, the impact of a mismatch between
the assumed spectrum in wwS/N and the true spectrum of the
source needs to be assessed. This impact can be evaluated by
comparing the contrast that is reached when the actual spectrum
is used with respect to the contrast when an incorrect prior spec-
trum is used in wwS/N. Let γ? be the true spectrum and β′? the
vector such that β′?` = γ?`/

√
v` for all `. The achievable contrast

under the true spectrum prior is:

5(β′
?
>̂LL̂>β′?)−1/2. (22)

Under the incorrect prior γ, wwS/N is distributed, under H1,
according to the Gaussian N(αint(β′?

>̂LL̂>β′)(β′ >̂LL̂>β′)−1/2, 1).
The contrast that is achieved is thus equal to
5(β′ >̂LL̂>β′)1/2/(β′?

>̂LL̂>β′). With respect to the ideal case
where the true spectrum γ? is used as a prior, the achievable
contrast is degraded by a factor:√
β′ >̂LL̂>β′

√
β′?
>̂LL̂>β′?

β′?
>̂LL̂>β′

, (23)

which corresponds to the inverse of the normalized correlation
between the whitened true spectrum and the whitened assumed
spectrum.

Table 2 reports the factors by which the achievable contrast
is degraded when the prior spectrum differs from the true spec-
trum. Due to the symmetry in Eq. (23), the role of the prior spec-
trum and of the true spectrum can be interchanged. These factors

Table 2. Degradation of the achievable contrast when the prior spectrum
differs from the true spectrum.

true SED:

prior SED:
1.07 ± 0.02 1.11 ± 0.03 1.005 ± 0.001 1.48 ± 0.14

1.015 ± 0.004 1.04 ± 0.01 1.22 ± 0.06
1.08 ± 0.02 1.12 ± 0.03

1.4 ± 0.1

Notes. Contrast ratio with respect to a detection with the true spectrum, closer to 1 is
better.

have been computed for 1681 whitening filters computed on a
SPHERE-IFS dataset around HR 8799. The mean factor and its
standard deviation are reported in the table. When the true spec-
trum and the prior spectrum are very close (third true spectrum
and first prior, in the table) the contrast degradation is negligi-
ble (the factor is not significantly greater than 1). Even when the
spectrum differs significantly (last true spectrum and first or last
prior), the contrast degradation remains modest (at most a factor
1.48 in this case) and smaller than that observed when replacing
wwS/N by wGLRT (a factor 1.57 was predicted in the previous
paragraph).

Selected detection criterion. These comparisons between
wGLRT and wwS/N lead to a clear conclusion: wwS/N is to
be preferred since (i) its distribution under H0 is more accu-
rately modeled (so that detection thresholds can be automati-
cally set to reach prescribed false alarms rates), (ii) the detection
performance is higher when the spectrum of the source is
known in advance, (iii) even if the prior spectrum used in
wwS/N differs significantly from the true spectrum of the source,
the detection performance of wwS/N is higher than that of
wGLRT.

Other algorithms for exoplanet detection in ASDI datasets
can produce a detection map (signal-to-noise ratio) per wave-
length. We show in Appendix F that our strategy for combining
multiple detection maps is also beneficial to those algorithms.

4. Source characterization

So far, we introduced two modelings of the data: (i) the back-
ground model introduced in Sect. 2, accounting for spatial
covariances as well as wavelength-specific and time-specific
scaling factors, and (ii) the model of the spectral covariances of
vectors x of S/N` values. The second model, based on the inter-
mediate detection maps S/N`, includes both the patch covari-
ances (through the computation of S/N` values) and the spectral
covariances. Rather than performing the astrometric and pho-
tometric characterizations of a detected point source based on
the co-log-likelihood Ln introduced in Eq. (2), which does not
account for spectral correlations, we define the co-log-likelihood
C on the vectors of S/N` values:

C (φ0,α) = − log p( x | φ0,α, {v`}`∈1:L,L )

= 1
2

∥∥∥∥∥∥∥∥∥∥L>


|

x` −
α`
√
v`

|


∥∥∥∥∥∥∥∥∥∥

2

2

+ const., (24)

where the vector x of S/N` values is extracted at the integer loca-
tion bφ0e of the field of view, and variance values v` depend on the
level of background fluctuations in the patches extracted from
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spectral channel `. The constant term depends only on L and on
the determinant of the whitening matrix L.

Similarly to PACO algorithm (Flasseur et al. 2018a), when
characterizing a point source found in the detection map, the
background statistics are re-estimated jointly with the determi-
nation of the subpixel location and flux of the source. This
prevents any bias that may occur due to self-subtraction (com-
putation of the mean patches m̂n,` without accounting for the
presence of the source). An alternating estimation strategy is
carried out by iteratively applying the following steps, see also
Fig. 1: (i) Algorithm 1 is applied to the residual patches {rbφ`,te,`,t−
α` hbφ`,te,`(φ`,t)}`∈1:L, t∈1:T , with α initially set to 0, to learn the
local background statistics, (ii) S/N` values x` and variances v`
are computed for each wavelength, (iii) the spectral covariance Σ
underH0 is estimated based on the vectors of values x`−α`/

√
v`

in a local area centered at bφ0e; the whitening matrix L is then
derived by Cholesky factorization of the inverse of Σ, (iv) the
subpixel location φ0 and the flux values α` are estimated, then
all the steps are repeated to improve the background modeling
and progressively separate source and background.

The last step, corresponding to the astrometric and photo-
metric estimations, is detailed in the following two paragraphs.

4.1. Astrometric estimation

The estimation of the location φ0, with subpixel accuracy, can
be performed by maximizing one of the combined-wavelengths
detection criteria over a grid. In practice, we maximize wwS/N
over a refined subpixel grid of locations φ0 with the current flux
estimates as a prior spectrum: γ = α/(

∑
` α`). This corresponds

to jointly maximizing C (φ0, 0)−C (φ0, α
intγ) with respect to the

location φ0 and the integrated source flux αint.
Beyond the unbiased estimation of the astrometry and the

photometry, it is critical to characterize the variance of these two
quantities. In this context, the variances and covariances are pre-
dicted at each location of the field of view through the so-called
Cramér–Rao lower bounds (CRLBs) of the vector p of parame-
ters (the 2D angular location φ0 and the spectrum α) that char-
acterizes a point source. The CRLB is a good estimate of the
covariance of the maximum likelihood estimator when the num-
ber of samples is large enough (Kendall et al. 1948). We follow
the approach of Flasseur et al. (2018a, 2020) for ADI processing
with the PACO algorithm: the Fisher information matrix IF on the
vector p is given by:

[
IF
bφ0e

(p)
]
i, j

=

L∑
`=1

T∑
t=1

1
σ̂2
bφ0e,`,t

∂
[
α` hbφ0e,`(φ0)

]
∂pi

>

(25)

· Ĉ−1
bφ0e

∂
[
α` hbφ0e,`(φ0)

]
∂p j

,

where the first two components of p represent the two compo-
nents of the 2D location φ0. The product α` hbφ0e,` models the sig-
nal of a point source of flux α` in the `th spectral channel. As in
Flasseur et al. (2018a, 2020), we use a continuous model of the
off-axis PSF (for instance, an isotropic Gaussian) to simplify the
computation of the spatial derivatives. The standard deviations
δi for each of the parameters are obtained from the diagonal of
the inverse of Fisher information matrix:

[
δ(p)

]
i =

√[
IF(p)−1]

i,i. (26)

4.2. Estimation of the source spectrum

At a given source location φ0, estimating the vector of source
fluxes α by minimizing C leads to the following maximum like-
lihood estimates:

α̂ = V−1x , (27)

where V is a diagonal matrix with diagonal entry [V]`,` = 1/
√
v`.

It means that for each wavelength `, the estimated flux α̂` is:

α̂` =
√
v`x` , (28)

which corresponds to the same flux estimates as obtained when
computing the S/N` values channel by channel with Eq. (6)
(i.e., accounting for the spectral correlations does not lead to
a different estimator because L is non-singular). The estimator
covariance, on the other hand, reflects that flux variations are
correlated:[
Cov[α̂]

]
i, j =

√
vi v j [Σ]i, j . (29)

When using instruments with many contiguous spectral
bands, a spectral smoothness can also be enforced by favoring
fluxes with small variations from one spectral band to the other,
as captured by the following regularization term:

R(α) = 1
2‖Dα‖

2
2 , (30)

with D the matrix of the finite differences.
If a large library of spectra is available, an a priori covari-

ance Γ of the spectrum can be learned, providing a richer mod-
eling than the simple smoothness prior. In the definition of R,
the matrix D is then replaced by D = Γ−1/2, that is, R(α) =
− log p(α) + const = 1

2 (α − α)>Γ−1(α − α) = 1
2 ‖Γ

−1/2(α − α)‖22,
where the prior distribution p(α) is a centered multivariate
Gaussian with mean vector α and covariance matrix Γ, see for
example (Tarantola 2005).

When a regularization term is considered, the estimation of
the fluxes α corresponds to a maximum a posteriori (MAP):

α̂(MAP)
= arg min

α
C (φ0,α) + µR(α) , (31)

where µ is a hyperparameter that controls the amount of smooth-
ing introduced by the regularization term. Since both C and R
are quadratic in α, the MAP estimate can be obtained in closed
form and corresponds to the following linear transform of the
vector x of S/N` values:

α̂(MAP)
=

(
VΣ̂

−1
V + µD>D

)−1
VL̂︸                        ︷︷                        ︸

M(µ)

Ŝ , (32)

where Ŝ = L̂>x is the whitened6 vector of spectral S/N` val-
ues, and M(µ) is the matrix defining the linear estimator α̂(MAP),
parameterized by the smoothing parameter µ. It can be noted that
removing the regularization term (i.e., taking µ = 0) in Eq. (32)
yields the same estimator as the one in Eq. (27).

Setting the value of the hyperparameter µ requires some
adaptation to both the spectrum smoothness and the integrated
flux. In order to obtain a detection and characterization method
that is fully automatic, we investigated several strategies to
select automatically the value of µ: (i) the generalized maxi-
mum likelihood (GML), also known as the evidence method

6 We remind that L̂L̂> = Σ̂
−1

.
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(Wahba 1985; MacKay 1992), which first marginalizes the joint
distribution p(x,α|µ, φ0) with respect to the unknown spec-
trum α, then maximizes the so-called generalized likelihood
p(x|µ, φ0) with respect to µ; (ii) the generalized cross-validation
(Craven & Wahba 1978; Golub et al. 1979), which approximates
the error obtained by a leave-one-out validation strategy and is
agnostic of the noise variance; (iii) Stein’s unbiased risk esti-
mator (SURE; Stein 1981). Estimating µ with the SURE led to
the best overall performance in our simulations, with a slight
improvement over GML and a clear gain with respect to GCV,
see Appendix G.

After spectral whitening, the vector of whitened S/N` val-
ues is distributed according to a centered Gaussian distribu-
tion. The unbiased risk estimate provided by SURE is then
(Thompson et al. 1991):

r̂isk = 1
L ‖(I − A(µ))̂S‖22 + 2

L tr(A(µ)) − 1 , (33)

where A(µ) = L>VM(µ). Therefore, the parameter µ̂(SURE) that
minimizes the risk7 estimate is given by:

µ̂(SURE) = arg min
µ

‖(I − A(µ))̂S‖22 + 2 tr(A(µ)). (34)

Estimating µ̂(SURE) is a mono-dimensional minimization that can
be performed, for instance, by a golden section search (Brent
1973). Once µ̂(SURE) is obtained, the vector of fluxes is computed:
α̂(MAP)

= A(̂µ(SURE) )̂S.

5. Results

5.1. Datasets description

In this section, we assess the performance of the proposed
PACO ASDI algorithm both in terms of source detection and
spectrum estimation. The results are compared to two standard
algorithms: TLOCI and KLIP. These two algorithms are cur-
rently used for the exploitation of the SPHERE science data
(Lagrange et al. 2019a; Mesa et al. 2019b; Gratton et al. 2019;
Gibbs et al. 2019; Maire et al. 2019). In the following, they are
applied both in ADI and ASDI mode. We used the SpeCal
(Galicher et al. 2018) implementation of TLOCI-A(S)DI and
KLIP-A(S)DI algorithms which is the current reference and well
documented post-processing standard of the SPHERE consor-
tium. The TLOCI implementation is based on the algorithm as
described in Galicher et al. (2011), Marois et al. (2014). In par-
ticular, it implements a frame selection strategy for the estima-
tion of the stellar PSF to mitigate the self-subtraction of the
putative sources. A flat spectral template was considered in our
experiments. The KLIP implementation is based on the algo-
rithm as described in Soummer et al. (2012). No frame selec-
tion strategy was implemented to minimize the self-subtraction
of the putative sources when conducting the PCA. There are
several variants of these implementations, especially for the
KLIP-ASDI method. In this paper, we used only the publicly
available variant of the SPHERE consortium. For all algorithms
from the SpeCal software, the S/N maps are computed after
annular normalization of the residual images (obtained after sub-
traction of the estimated on-axis PSF) by the empirical standard
deviation of the noise. Besides, with SpeCal, the self-subtraction
phenomenon is calibrated before the reduction using massive
injections of fake exoplanets to derive the radial throughput of

7 The risk is defined by: risk = E
[
||̂α − α||2

]
.

the algorithms as a function of the angular separation. The esti-
mated exoplanet spectra are then compensated for this calibrated
correction, see Delorme et al. (2017) for detailed procedures. In
ADI mode, each spectral channel is processed independently.
A combined detection map is obtained by a simple summa-
tion of the detection maps from the different spectral channels.
The spectrum estimation is obtained by a photometry estima-
tion per wavelength using the ADI PSF model. The reason we
considered the ADI mode is that it is a common practice to
process independently each spectral channel of an ASDI series
because the exoplanet signature are usually present in the redder
channels.

For the comparisons, we selected four datasets from the
SPHERE-IFS instrument obtained in various conditions of
observation leading to different degrees of difficulty for the
detection and estimation tasks. The four datasets are obtained
from the SPHERE-IFS raw data using the pre-reduction and
handling pipeline of the SPHERE consortium (Pavlov et al.
2008). Background, flat-field, bad pixels, registration, true-
North, wavelength and astrometric calibrations are also per-
formed during this step, see Pavlov et al. (2008), Zurlo et al.
(2014), Maire et al. (2016) for the detailed procedures. These
processings are followed by additional steps implemented at the
SPHERE Data Center (Delorme et al. 2017) to refine the wave-
length calibration, reduce the cross-talk and somewhat cope with
bad pixels. We did not apply other post-processings such as high-
pass filtering. Three of these calibrated datasets are dedicated to
the evaluation of the detection performance on fields reported in
the literature to contain point sources. The fourth one is used for
the evaluation of the spectrum recovery performance. To do so,
we numerically injected fake point sources at low fluxes to per-
form this evaluation. The four datasets considered were recorded
around the following reference targets:

HR 8799 (HIP 114189) which is a A5V type star located
in the Pegasus constellation. It hosts four confirmed exoplanets,
only three of them (HR 8799 c, d, and e) are within the SPHERE-
IFS field of view (the last one, HR 8799 b, is visible with the
larger field of SPHERE-IRDIS). All of them were discovered
(Marois et al. 2008), confirmed (Marois et al. 2010), and widely
studied (Bowler et al. 2010; Currie et al. 2011; Marley et al.
2012) by direct imaging. In the following, this dataset is used as
a baseline to compare the overall performance of the detection
algorithms on sources at a standard level of contrast (between
10−6 and 10−5) in the considered spectral band.

β Pictoris (HIP 27321) which is a A6V type star located in
the Pictor constellation. It hosts two known exoplanets (β Pic-
toris b and c) as well as a protoplanetary disk made of gas and
dust. βPictoris b was discovered (Lagrange et al. 2009) and con-
firmed (Lagrange et al. 2010) by direct imaging. β Pictoris c
was discovered more recently by the radial velocities method
(Lagrange et al. 2019b). In the following, we do not consider the
presence of β Pictoris c8. New datasets around this star allowed
to constrain better the orbit of the βPictoris b and to refine its
photometry (Lagrange et al. 2019a). In the following, we use a
dataset at a challenging epoch (before the conjonction reported

8 β Pictoris c has a very small angular separation with its host star
(0.10-0.15 arcsec at its maximal elongation). For comparison, the inner
working angle of the coronagraphs of SPHERE is 0.125 arcsec. Besides,
β Pictoris c has a very low contrast given its separation (about 1 × 10−4

in the H Johnson’s band). For these two reasons, it could be detected
by direct imaging only when it is at its maximal elongation, given
the current instrumental and processing capabilities, see Lagrange et al.
(2019b).
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Table 3. Log information for the considered SPHERE-IFS datasets.

Target ESO ID Observation date T ∆par Seeing Strehl ratio

HR 8799 095.C-0298 2015-07-04 46 16.4◦ 1.43 78%
β Pictoris 097.C-0865 2016-09-16 116 38.5◦ 0.45 94%
HD 131399 095.C-0389 2015-06-12 49 37.2◦ 1.30 78%
HD 172555 095.C-0192 2015-07-11 31 (∗) 12.9◦ 1.20 –

Notes. Columns are: target name, ESO survey ID, observation date,
number T of available temporal frames, total amount of parallactic
rotation ∆par of the field of view, seeing value at the beginning of the
observations, and Strehl ratio at 1.6 µm. (∗)The recorded dataset around
HD 172555 was made of 62 temporal frames but we selected T = 31
frames by discarding one of them over two, preserving the amount of
the parallactic rotation ∆par to slightly increase the difficulty of the spec-
trum estimation task.

in Lagrange et al. 2019a) since the angular separation of the exo-
planet is smaller than 0.15 arcsec, which corresponds to nine
pixels away from the coronagraph mask.

HD 131399 (HIP 72940) which is a A1V type star located
in the Centaurus constellation. It forms a triple system with
two other stars (HD 131399 B and C) located about 349 au
from the brightest star HD 131399 A (De Zeeuw et al. 1999;
Dommanget & Nys 2002; Pecaut & Mamajek 2013). This sys-
tem also hosts a faint point source (HD 131399 Ab) discovered
by direct imaging (Wagner et al. 2016), at first supposed to be
a bounded exoplanet. However, further joint analysis of GEM-
INI/GPI and VLT/SPHERE datasets to refine the astrometry and
the spectrum estimation of the candidate companion led to the
conclusion that HD 131399 Ab is more likely to be a background
brown dwarf (Nielsen et al. 2017). In the following, this dataset
is used to compare the behavior of detection algorithms in the
case of a faint point source falling close to the limit of the instru-
ment’s field of view.

HD 172555 (HIP 92024) which is a A5V type star located
in the Pavo constellation (Schütz et al. 2005; Lisse et al. 2009).
The analysis of directly imaged (A)(S)DI series was conducted
in several surveys but, to the best of our knowledge, no point
source was ever detected (Nielsen et al. 2008; Nielsen & Close
2010). We use this dataset to conduct the spectrum estimation of
numerically injected fake point sources.

Table 3 summarizes the main observation parameters of
these datasets. It can noted that the conditions of observations
were not particularly good for three of these datasets (seeing val-
ues between 1.20 and 1.43).

Besides, a MatlabTM implementation of the PACO ASDI rou-
tines for computing spectrally combined wwS/N maps is avail-
able online9.

5.2. Detection performance

5.2.1. Detection results

In the following, the detection criteria is based on wwS/N map
with PACO ASDI since it offers interesting properties in terms
of detection sensitivity and controlled false alarms rate when
thresholding at 5σ (see Sect. 3.2.3). In our comparison to the
state-of-the-art algorithms, we use the final signal-to-noise map
(denoted “combined S/N”) provided by the different pipelines.
The “combined S/N” map is generally obtained by a weighted
mean of the signal-to-noise ratio computed in each channel. This
combination is generally followed by a post-processing step via

9 http://doi.org/10.5281/zenodo.3679426

so-called “unsharp filtering” (high pass filtering) to improve the
visual quality of the combined S/N map by attenuating some
spurious background artifacts. In PACO ASDI, the spatial whiten-
ing and spectral whitening operations can be seen as data-driven
and locally-adaptive filters. No additional filtering is required to
enhance the detection maps produced by PACO or PACO ASDI.

Figures 9 and 10 show the combined detection maps around
HR 8799, β Pictoris, and HD 131399 obtained with TLOCI-
A(S)DI, KLIP-A(S)DI, and PACO ASDI for two sets of color
bars. The detection is performed by thresholding the maps at
τ = 5 (corresponding to a PFA = 2.87 × 10−7), as classically
done in direct imaging.

State-of-the-art algorithms lead to strong radial background
artifacts likely caused by a miss-modeling of the spatial and spec-
tral correlations since they take the form of the typical struc-
tures observed in the GLRT+ maps obtained with PACO ASDI (see
Fig. 7a) when the spectral correlations are neglected. In addi-
tion, the detection seems very difficult in the regions close to
the borders of the instrument’s field of view due to strong arti-
facts, in particular with TLOCI-ADI and KLIP-ADI, possibly
due to a miss-modeling of the aberrant data occurring on the bor-
ders. For example, distinguishing the signature of the exoplanet
HR 8799 c (top-left corner of the field of view) from the artifacts
seems almost impossible with TLOCI-ADI and KLIP-ADI. In
ASDI mode, the quality of the detection maps is generally not sig-
nificantly better in these areas due to artifacts (in particular with
TLOCI-ASDI) or regions with zeros or saturated values obtained
with KLIP-ASDI (indicated by arrows in the figures), possibly
caused by the absence of explicit modelization of areas with miss-
ing data for the longest wavelengths. All these sources of arti-
facts cause a severe limitation of the workable field of view in
which an exoplanet can be actually detected. The portion of the
field of view impacted by missing or aberrant data increases with
the parallactic rotation and with the ratio λmax/λmin. It reaches
more than 20% for TLOCI-ASDI on the β Pictoris and HR 8799
datasets. PACO ASDI provides stationary detection maps on the
whole field of view (including at the vicinity of the host star and
close to the borders of the field of view) so that a unique detec-
tion threshold can be set. The stationarity is explained both by
the local statistical modeling of the spatio-spectral correlations
of the background and the explicit consideration of the missing
or aberrant data which are flagged as outliers.

Regarding the detection accuracy of the algorithms, only
PACO ASDI ensures a statistically-grounded control of the PFA
in the sense that no false alarm is generally observed at the
5σ threshold. Unlike PACO ASDI, all other algorithms consid-
ered lead to several false detections in the field of view (many
more than expected at 5σ). In practice, astronomers are familiar
with the “false alarms issue” and generally differentiate candi-
date companions from the false alarms by visual inspection of
the multi-spectral data and of the reduction results.

Regarding the detection sensitivity of the tested algorithms,
only PACO ASDI leads to detection peaks significantly higher
than the conventional detection threshold (τ = 5) for all the
known point sources, even when they are close to the host star
(as β Pictoris b) or close to the borders of the field of view
(as HD 131399 Ab). For example, for HR 8799, only one source
can be unambiguously detected at 5σ with state-of-the-art algo-
rithms on the dataset we have reduced. The other sources can
be distinguished by a visual inspection of the detection maps
but require to lower the detection confidence at about 3.5 for
the exoplanet HR 8799 e and at 4.3 for the exoplanet HR 8799 d.
The best results with existing methods are obtained with KLIP-
ADI, leading to the detection of HR 8799 c (top-left corner of
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Fig. 9. Detection maps (wwS/N for PACO ASDI and combined S/N for the other algorithms) around HR 8799, β Pictoris and HD 131399 obtained
with TLOCI-ADI, KLIP-ADI (50 modes), TLOCI-ASDI, KLIP-ASDI (10, 50, 100 and 150 modes) and the proposed PACO ASDI algorithm. The
color bars are common for all methods and are set between −5 and the highest true detection peak provided by PACO ASDI (excepted for HR 8799
for which the color bar is set between −5 and 42.7 corresponding to the wwS/N value of HR 8799 e with PACO ASDI). The detection threshold is
set at τ = 5 and the values above this threshold are classified as true detections (yellow circles) and false detections (red squares and polygons).
Missed detections are indicated by pink triangles. The value of the largest false alarm is also indicated in red on each map. Black arrows point at
areas with constant values.

the field of view) at a combined S/N equal to 66.9. On the
same dataset, the three known exoplanets are detected with PACO
ASDI and the wwS/N reaches 188.2 for HR 8799 c. For β Pic-
toris and HD 131399, only PACO ASDI can detect the known

sources without any false alarm in the field of view. Low-
ering the detection threshold with TLOCI-A(S)DI and KLIP-
A(S)DI leads to several false alarms in the field of view thus
preventing their automatic detection. Moreover, our experiments
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Fig. 10. Same caption than Fig. 9. The color bars are adapted to each method and are set between −5 and the detection peak associated with one
of the real sources to be detected (respectively HR 8799 e which is the closest to the host star, βPictoris b, and HD 131399 Ab).

tend to show that in certain cases it is not so easy to distin-
guish true detections from false alarms via visual inspection:
on the considered β Pictoris dataset processed with TLOCI-
A(S)DI and KLIP-A(S)DI algorithms, it seems difficult to visu-
ally discriminate βPictoris b (combined S/N ∈ [1.9; 3.3]) and

HD 131399 Ab (combined S/N ∈ [0.2; 2.0]) from false alarms
since the shape of the detection peaks (blobs spatially corre-
lated on a few pixels) are sometimes quite similar. The case
of HD 131399 is interesting since the dataset we consider in
this paper was already processed by other authors. For example,
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1 1.2 1.4 1.6

Fig. 11. Achievable 5σ contrast on HR 8799 and β Pictoris. a: contrast curves obtained with TLOCI-A(S)DI, KLIP-A(S)DI, and PACO ASDI. All
curves correspond to the mean contrast along spectral channels. For PACO ASDI, the solid red line is for the spectral mean S/N` contrast while
the dashed pink line is for the spectral mean wwS/N contrast. The wwS/N contrast is the theoretical lower bound given by Eq. (22) when several
spectral channels are combined. Contrast curves as provided by KLIP and TLOCI do not correspond to a 5σ false alarms rate contrarily to the
contrast curves of PACO ASDI. The achievable contrasts are thus significantly over-optimistic for KLIP and TLOCI, see discussion in the text
(Sect. 5.2.2). b: examples of 2D S/N` contrast maps obtained with PACO ASDI for four spectral channels: `1 = 0.9575 µm, `13 = 1.1589 µm,
`25 = 1.3915 µm and `37 = 1.6054 µm. The superimposed white circles represent the locations of the known exoplanets.

Fig. 12. Detection maps (wwS/N for PACO ASDI and combined S/N for
the other algorithms) around HD 172555 in the absence of fake point
sources.

Nielsen et al. (2017) report the detection of HD 131399 Ab at
a combined S/N between 4.0 and 6.3 with the cADI algorithm
(Marois et al. 2006; Lagrange et al. 2010). The detection val-
ues reported with the cADI method are higher than the values
obtained in our experiments with the TLOCI-A(S)DI and KLIP-
A(S)DI algorithms but they remain significantly lower than the

value obtained with PACO ASDI (wwS/N = 10.3). The differ-
ence between TLOCI & KLIP and cADI could be explained
by the low “aggressivity” of the cADI method (i.e., low self-
subtraction and reduced amount of artifacts due to the ADI
strategy) which seems to be particularly adapted to this target
located very near the borders of the field of view. However, while
the cADI detection map presented in Fig. 2 top-left corner of
Nielsen et al. (2017) allows to identify HD 131399 Ab, several
point-like features are also falsely detected with a comparative
or higher level of S/N, especially near the coronagraph.

5.2.2. Achievable contrast

In this section, we compare the minimal contrast required to
achieve a detection with PACO ASDI to the contrasts of TLOCI
and KLIP. As is classically done in the literature, we derive the
so-called “5σ contrast curves” representing the minimum con-
trast of a source to still be detected with a probability of detection
PD = 0.5 when the detection threshold is set to obtain a proba-
bility of false alarms PFA = 2.87 × 10−7. This achievable con-
trast can be computed for the single-wavelength detection maps.
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Table 4. Angular separation, minimum, maximum, and mean contrast
of the 12 fake point sources injected in the fourth dataset.

Id. Sep. min[α`] max[α`] mean[α`]

#1 0.220′′ 2.3 × 10−5 8.0 × 10−5 5.0 × 10−5

#2 0.306′′ 1.2 × 10−5 5.0 × 10−5 2.8 × 10−5

#3 0.264′′ 1.3 × 10−5 2.0 × 10−5 1.8 × 10−5

#4 0.399′′ 6.2 × 10−8 3.0 × 10−5 1.1 × 10−5

#5 0.454′′ 3.3 × 10−6 1.0 × 10−5 6.6 × 10−6

#6 0.682′′ 1.9 × 10−7 9.0 × 10−5 3.3 × 10−5

#7 0.166′′ 1.8 × 10−6 6.6 × 10−6 3.8 × 10−6

#8 0.187′′ 3.6 × 10−6 1.5 × 10−5 8.5 × 10−6

#9 0.219′′ 4.1 × 10−9 2.0 × 10−6 7.5 × 10−7

#10 0.318′′ 2.6 × 10−6 4.0 × 10−6 3.6 × 10−6

#11 0.504′′ 3.3 × 10−7 1.0 × 10−6 6.6 × 10−7

#12 0.618′′ 2.1 × 10−6 7.0 × 10−6 4.4 × 10−6

Notes. The three sources (#5, #10, and #12) on which we perform addi-
tional Monte–Carlo estimations are emphasized in bold font.

-5 50

Fig. 13. wwS/N maps obtained with PACO ASDI around HD 172555
with injected fake point sources #1 to #6 (left) and #7 to #12 (right).

As detailed in Sect. 3.2.3, the 5σ contrast in channel ` is 5
√
v`

(the minimum contrast α` of the source in the spectral channel
` so that P(S/N` > τ) = 0.5). As detailed in Sect. 3.2.3, the
combination of the S/N` maps improves the achievable contrast.
When the combined detection map wwS/N is used, the achiev-
able contrast is given by Eq. (22) if the prior spectrum perfectly
matches the source spectrum. In practice, this theoretical lower
bound is not reached, for the reasons discussed in Sect. 3.2.3 and,
like with PACO, because at the detection stage the S/N` values
are underestimated, the background statistics being estimated in
the presence of the source. From our experience, values of the
contrast achieved for single-wavelength detections are typically
reached in practice with S/N` and can thus be used as a safe
value of the achievable contrast.

Figure 11a gives the achievable 5σ contrast curves
obtained with TLOCI-A(S)DI, KLIP-A(S)DI, and PACO ASDI
on HR 8799 and β Pictoris. For PACO ASDI, both the S/N` con-
trast and the combined wwS/N contrast are represented. Con-
sidering the S/N` contrast curves of PACO ASDI, a clear gain
is observed at small angular separations (≤0.7 arcsec) compar-
atively to the state-of-the-art algorithms. At larger separations,
this gain is maintained except for KLIP-ASDI which can reach
better contrasts. However, as already observed and discussed in
our previous paper (Flasseur et al. 2018a) on ADI series, con-
trast curves produced by state-of-the-art algorithms are often
optimistic both in terms of PD and PFA. These previous obser-
vations also verify here in ASDI mode: all detection maps of

Fig. 14. Contrast curves at 5σ obtained on HD 172555 with PACO ASDI
comparatively to TLOCI-ADI. The mean contrast of the fake faint point
sources #1 to #12 is marked by orange points.

state-of-the-arts algorithms present many more false alarms than
what would be expected at 5σ. According to Fig. 11, far from
the β Pictoris star, the best achievable contrast is reached when
using KLIP-ASDI with 150 modes and PACO ASDI that con-
verge towards the same detection limit. However, Figs. 9 and 10
show that KLIP-ASDI produces several false alarms in the field
of view and a lower signal-to-noise ratio for the exoplanet com-
pared to PACO ASDI. With KLIP-ASDI, the largest value of a
false alarm is significantly higher than 5.0, while it should be
very unlikely to have a background value larger than 4.0. This
illustrates that the 5σ contrast of state-of-the-art algorithms does
not correspond to the expected level of PFA and can thus only
be used to perform relative comparisons. We also give the con-
trast reached by PACO ASDI when single-wavelength detection
maps are combined. A theoretical gain (see Eq. (21)) slightly less
than one order of magnitude is expected due to the combination,
according to Fig. 11. When comparing the S/N` values of the
point sources in the single-detection maps of HR 8799 shown in
Fig. 6b (values in the range 1.5–5.5) to the values in the com-
bined detection maps of Figs. 9 and 10 (wwS/N = 42.7), the
improvement is in relatively good agreement with the contrast
curves of Fig. 11a.

As for PACO (Flasseur et al. 2018a), the achievable contrast
of PACO ASDI can be computed at every point of the field of
view. Figure 11b gives examples of 2D contrast maps obtained
with PACO ASDI for some selected spectral channels. They show
that the detection is more favorable on certain spectral chan-
nels than others. For example, the achievable contrast on spec-
tral channel `25 = 1.3915 µm is about twice worst than the
one obtained on spectral channel `13 = 1.1589 µm. This can
be explained by the presence of large spectral variations of the
intensity fluctuations or additional noise probably caused by the
low atmospheric transmission. Interestingly, these maps indicate
that the achievable contrast varies significantly along an annulus
of fixed angular separation. It is particularly the case near the
host star since the residual central halo is not isotropic. Thus, the
2D contrast information can be useful to derive an accurate esti-
mation of the achievable contrast given the angular location of a
detected source.

5.3. Spectrum estimation performance

In this section, we evaluate the performance for the spectrum
extraction of point sources. As mentionned in Sect. 1, the
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Fig. 15. Estimated spectrum of the detectable fake faint point sources (#1 to #6 plus #8, #10, and #12) obtained with TLOCI-ADI (blue), TLOCI-
ASDI (orange), and PACO ASDI (green). The spectrum ground truths of the different fake faint point sources are marked by black lines. The given
1σ confidence intervals are those predicted by the considered algorithms. A zoom around the ground truth is added for sources #10 and #12.

recovered spectra are not corrected for the stellar spectrum in
this paper.

We first use numerical injections of fake point sources for
the quantitative characterization of PACO ASDI. For this pur-
pose, we use the dataset around HD 172555 (see Sect. 5.1) with
no detectable source. Figure 12 gives the wwS/N map obtained
with PACO ASDI and the combined signal-to-noise ratio maps
obtained with other algorithms on this dataset, before injecting
the fake point sources. While state-of-the-art algorithms reveal
several areas above the detection threshold at τ = 5, experts did
not identify consistent detection peaks by closer inspection. In
addition, PACO ASDI does not identify any significant detection
peak at 5σ. We inject 12 fake point sources in the field of view
with a variety of mean contrast and true spectra. Table 4 gives
astrometric and photometric information about the fake point
sources. Sources #1 to #6 have a mean flux lower or equal to
5×10−5 while sources #7 to #12 have a mean flux lower or equal
to 8.5× 10−6. Figure 13 presents the wwS/N maps obtained with
PACO ASDI around HD 172555 with fake point sources #1 to
#6 (left) and #7 to #12 (right) simultaneously injected. Figure 14
gives contrast curves at 5σ obtained on the considered dataset
with PACO ASDI comparatively to TLOCI-ADI. Contrast curves
indicate that sources #1 to #6, #8, #10, and #12 can be detected
at 5σ by PACO ASDI while the sources #7, #9, and #11 are too
faint to be detected from the S/N` maps at the considered angu-
lar separations, see Fig. 13.

Figure 15 shows the spectrum estimation for the nine
detectable fake sources obtained by PACO ASDI, TLOCI-ADI,
and TLOCI-ASDI. These results show that the spectrum

estimations provided by PACO ASDI are in good agreement with
the ground truth since no systematic photometric bias can be
observed. We note only one significant discrepancy between the
estimated spectrum by PACO ASDI and the ground truth occur-
ring for source #8 between 1.07 µm and 1.22 µm. This discrep-
ancy can be explained both by the very faint source contrast in
this spectral band (lower than 5 × 10−6), the proximity with the
host star (angular separation equals to 0.187 arcsec) and the pres-
ence of a “dark” speckle near the injection leading to a negative
estimated source flux (thresholded at 0) at the corresponding
wavelengths. The predicted spectrum confidence intervals also
seem coherent with the empirical standard deviation of estima-
tion. The spectrum estimates obtained by PACO ASDI are quali-
tatively much better than those obtained with TLOCI.

To complete this statistical study, we consider three sources
from the 12 previous ones (sources #5, #10, and #12) for
which we perform 30 Monte–Carlo injections/spectrum esti-
mations over a circular annulus (i.e., at constant angular sep-
arations). Figure 16 gives the 30 estimated spectra obtained
with TLOCI-A(S)DI, KLIP-ADI, and PACO ASDI and the mean
estimations. The confidence intervals provided by the differ-
ent algorithms can be compared to the empirical 1σ confidence
intervals. Table 5 complements this figure with statistical results
in terms of photometric bias, agreement between the predicted
and the empirical confidence intervals, and mean square error
(MSE). These results show that PACO ASDI is photometrically
unbiased in the sense that the photometric bias is negligible
(about ±1% of the mean contrast of the sources) without resort-
ing to Monte–Carlo methods to estimate and compensate the

A9, page 21 of 29

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937239&pdf_id=15


A&A 637, A9 (2020)

Fig. 16. Monte–Carlo estimated spectrum for fake point sources #5, #10 and #12 obtained with TLOCI-ADI, KLIP-ADI (5 modes), TLOCI-ASDI
and PACO ASDI. For each of the three considered sources, the 30 Monte–Carlo spectrum estimations are given in gray line. Red and blue lines
compare the 1σ predicted confidence intervals to the empirical ones centered on the mean estimated spectra over the 30 Monte–Carlo estimations.
The spectrum ground truth of the considered sources is in black.

potential source self-subtraction phenomenon, as is common
practice with most of the state-of-the-art algorithms. In com-
parison, this relative photometric bias reaches in most of the
cases 4% of the mean contrast of the sources with other meth-
ods (excepted for source #12 with TLOCI-ADI). The results of
state-of-the-art methods are generally not better in ASDI than in
ADI mode. This could be explained by the stronger source self-
subtraction that occurs when several spectral channels are pro-
cessed jointly. This observation could illustrate why experts tend
to apply also ADI detection and/or characterization algorithms
on ASDI datasets by processing each spectral channel indepen-
dently (Nielsen et al. 2017; Perrot et al. 2019; Gibbs et al. 2019;
Maire et al. 2020, see also Maire et al. 2014; Rameau et al. 2015
for the challenge of ASDI processing). The empirical confidence
intervals are also smaller with PACO ASDI. The RMSE of the
estimated spectra is reduced by a factor at least two by PACO

ASDI with respect to other algorithms (on average, by a factor
3.6 for the three sources analyzed in Table 5). Moreover, the con-
fidence intervals provided by the method are in good match with
the observed standard deviations of the Monte–Carlo simulation:
the ratio between the predicted standard deviation and the empir-
ical standard deviation is between 0.94 and 1.21 for PACO ASDI,
which is closer to one than for other methods (i.e., PACO ASDI
confidence intervals are more reliable).

We also illustrate astrometric and spectrum estimations
on the real point sources in the first three datasets. Table 6
presents the estimated astrometry and Fig. 17 gives the esti-
mated spectra with PACO ASDI of the exoplanets HR 8799 c-d-
e, βPictoris b, and the background source HD 131399 Ab. The
datasets are processed in a totally automatic fashion as described
in Flasseur et al. (2018c) for ADI datasets. A joint refinement of
the astrometry and photometry estimations of the source with
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Table 5. Monte–Carlo validation of spectrum estimation methods.

TLOCI-ADI KLIP-ADI TLOCI-ASDI PACO ASDI

Source #5: 〈α`〉` = 6.6 × 10−6

bias:
〈
〈α̂`−α`〉
〈α`〉`

〉
`

−9.2% −7.4% +1.3% −0.7%
predicted std: 〈σ̂α`〉` 1.1 × 10−6 1.0 × 10−6 1.3 × 10−6 6.2 × 10−7

empirical std: 〈σα`〉` 1.8 × 10−6 5.4 × 10−6 1.5 × 10−6 6.0 × 10−7

ratio 〈σα`〉`
/
〈σ̂α`〉` 1.65 5.24 1.13 0.97

RMSE:
√
〈‖α̂ − α‖2〉 1.9 × 10−6 5.7 × 10−6 1.6 × 10−6 6.1 × 10−7

Source #10: 〈α`〉` = 3.6 × 10−6

bias:
〈
〈α̂`−α`〉
〈α`〉`

〉
`

−4.2% +5.8% −4.7% −0.1%
predicted std: 〈σ̂α`〉` 1.3 × 10−6 1.0 × 10−6 1.3 × 10−6 5.5 × 10−7

empirical std: 〈σα`〉` 2.0 × 10−6 1.9 × 10−6 2.3 × 10−6 6.7 × 10−7

ratio 〈σα`〉`
/
〈σ̂α`〉` 1.54 1.90 1.78 1.21

RMSE:
√
〈‖α̂ − α‖2〉 2.0 × 10−6 1.9 × 10−6 2.4 × 10−6 6.9 × 10−7

Source #12: 〈α`〉` = 4.4 × 10−6

bias:
〈
〈α̂`−α`〉
〈α`〉`

〉
`

−0.3% −38.5% +10.0% +1.1%
predicted std: 〈σ̂α`〉` 9.4 × 10−7 6.0 × 10−7 1.1 × 10−7 6.0 × 10−7

empirical std: 〈σα`〉` 1.5 × 10−6 9.2 × 10−7 1.5 × 10−6 5.7 × 10−7

ratio 〈σα`〉`
/
〈σ̂α`〉` 1.66 1.53 1.29 0.94

RMSE:
√
〈‖α̂ − α‖2〉 1.6 × 10−6 2.0 × 10−6 1.7 × 10−6 6.2 × 10−7

Notes. Best results are highlighted in blue while the worst results are in red.

Table 6. Estimated astrometry (separation and true-north aligned angle)
of the real faint point sources known in the used datasets with PACO
ASDI.

Source Est. sep. (arcsec) Est. angle (◦)

HR 8799 c 0.9425 ± 0.0031 328.31 ± 0.19
HR 8799 d 0.6636 ± 0.0065 218.94 ± 0.51
HR 8799 e 0.3834 ± 0.0068 274.80 ± 1.09
βPictoris b 0.1423 ± 0.0063 216.25 ± 1.70
HD 131399 Ab 0.8412 ± 0.0065 194.74 ± 0.59

Notes. The confidence intervals are given at 1σ.

the highest wwS/N is performed. Its estimated flux contribution
is then subtracted to the data and the wwS/N map is updated
using a conventional cleaning approach (see Fig. 17 for cleaned
wwS/N examples). This procedure is repeated until no source
at a significant level of signal-to-noise ratio is detected in the
wwS/N map. The estimated spectra are quite smooth and coher-
ent between one spectral channel to the other with realable
confidence intervals. The spectrum extraction is especially chal-
lenging for HD 131399 Ab since it is located near the borders
of the SPHERE-IFS field of view (see Figs. 9 and 10), and the
observing conditions of the considered dataset were not particu-
larly good (seeing about 1.30, see Table 3). Nielsen et al. (2017)
use photometric and astrometric estimations from VLT/SPHERE
and GEMINI/GPI to show that HD 131399 Ab is more likely a
background brown dwarf. This result was a revision of the pre-
vious status of HD 131399 Ab firstly considered as an exoplanet
just after its discovery and confirmation on the basis of (noisy)
extracted astrometry and photometry (Wagner et al. 2016). The
difficulty to ascertain that HD 131399 Ab was an exoplanet based
on the first observations illustrates the importance of algorithms
that can provide reliable astrometric and spectrum estimations.
We expect PACO ASDI to help refining the estimated orbit and
the spectral characterization of future candidate companions.

6. Conclusion

ASDI observations provide very rich data for the detection
and characterization of point sources such as exoplanets. Data
processing algorithms form an important component in high
contrast imaging. Despite extensive efforts in the design of coro-
nagraphic instruments, the separation of the signal of interest
(off-axis sources) from the background signal of the on-axis
star has to be performed under adverse conditions: large tempo-
ral and spectral fluctuations of the intensity of the background,
strong correlations and contamination by outliers. Data process-
ing algorithms must be designed with the aim to be robust to all
these characteristics of the noise. We have shown in this paper
that data-driven statistical modeling paved the way to reliable
source detection and characterization methods.
PACO ASDI, the data processing algorithm introduced in this

paper, produces detection maps with improved sensibility com-
pared to existing methods. In particular, the detection maps are
obtained through a whitening and weighting strategy accounting
for the spectral correlations. We show that this general principle
is also beneficial to combine detection maps from other exist-
ing detection methods. An important additional feature of PACO
ASDI is the control of the probability of false alarms: detec-
tion maps can be reliably thresholded. Using the conventional
5σ threshold generally produces no false alarm in an IFS field.
This contrasts with detection maps obtained with other methods
for which many false alarms are observed, in particular at very
small angular separations and close to the borders of the field of
view. Full exploitation of the field of view seems to be a feature
of PACO ASDI that is shared by few other methods.

The elaborate statistical model of PACO ASDI, accounting
for spatial, spectral, and temporal fluctuations, is also used
to characterize the astrometry and photometry of the detected
point sources. By refining the model of the background jointly
with the estimation of the source spectrum, the bias due to
source self-subtraction is prevented. The spectrum is estimated
using a parameter-free spectral regularization. Our numerical
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Fig. 17. Estimated spectra using PACO ASDI of the known real faint
point sources of the considered datasets (top: HR 8799 c–d–e, mid-
dle: βPictoris b, bottom: HD 131399 Ab). The inserts show a residual
wwS/N map after “cleaning” the contribution of the detected sources.
Synthetic subpixel views (4 nodes per pixels) show with false colors
the aggregated flux of the detected sources along the different spectral
channels (blue for `1 = 0.9575 µm and red for `L=39 = 1.6357 µm).

experiments show reduced estimation errors compared to stan-
dard methods.

Beyond the direct analysis of ASDI datasets, PACO ASDI
also provides information on the achievable contrast, photomet-
ric and astrometric accuracies that are reached for given instru-
mental and observational conditions. The impact of different
observation scenarios (spectral coverage, parallactic rotation)
can then be assessed using a data-driven model whose predic-
tion accuracy has been validated on real data.
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Appendix A: Estimation of the local statistics of the
background in ASDI

In this appendix, we derive the maximum likelihood estimator
of the Gaussian parameters. The expression of this estimator
is obtained by minimizing the co-log-likelihood Ln defined in
Eq. (2). The first-order optimality condition ∇Ln = 0 leads to
equations defining each parameter.

The condition ∂Ln
∂mn,`

∣∣∣∣
mn,`=m̂n,`

= 0 gives:

C−1
n

∑
t∈1:T

1
σ2

n,`,t

(
m̂n,` − rn,`,t

)
= 0.

Since C−1
n is necessarily non-singular, we obtain the expression

of the wavelength-specific average patch:

m̂n,` =
1∑

t∈1:T
1/σ2

n,`,t

·
∑
t∈1:T

1
σ2

n,`,t

rn,`,t , (A.1)

which corresponds to a weighted average of the spatial patches,
computed over time indices 1 to T , with weights 1/σ2

n,`,t that
reduce the impact of frames and spectral channels displaying a
large variance σ2

n,`,t.

The condition ∂Ln

∂σ2
n,`,t

∣∣∣∣∣
σ2

n,`,t=σ̂
2
n,`,t

= 0 leads to:

K
2σ̂2

n,`,t

−
1

2σ̂4
n,`,t

r̄>n,`,tC
−1
n r̄n,`,t = 0 ,

with r̄n,`,t = rn,`,t − mn,` the residual patches. This gives:

σ̂2
n,`,t =

1
K

r̄>n,`,tC
−1
n r̄n,`,t. (A.2)

The time and wavelength-specific scaling factors σn,`,t are thus
obtained by computing the variance of each spatially whitened
patch.

Finally, the condition ∇CnL
∣∣∣
Cn=Ŝn

= 0 gives:

T L
2

Ŝ−1
k − Ŝ−1

k

(∑
`∈1:L
t∈1:T

1
2σ2

n,`,t

r̄n,`,t r̄>n,`,t
)̂
S−1

k = 0 ,

leading to:

Ŝk =
1

T L

∑
`∈1:L
t∈1:T

1
σ2

n,`,t

r̄n,`,t r̄>n,`,t , (A.3)

which is the sample covariance matrix of the spatial patches,
each rescaled by the corresponding time and wavelength-specific
factor.

Appendix B: Derivation of the equivalent number of
patches

The equivalent number of patches P̃ corresponds to the number
of samples if all weights are equal and is smaller when some
weights differ.

Let us assume that {rt}t∈1:T be a collection of T indepen-
dent and identically distributed random variables. The weighted
mean m̂ =

∑T
t=1 w

′
t rt, where w′t ≥ 0 are normalized weights

(w′t = wt/
∑T

t=1 wt), is an unbiased estimator of E[r] with a

variance Var[m̂] =
∑T

t=1 Var[w′t rt] (by independence of the rt),
which leads to Var[m̂] = Var[r]/P̃, with

P̃ = 1
/ T∑

t=1

w′2t =

 T∑
t=1

wt

2 /  T∑
t=1

w2
t

 , (B.1)

the effective number of samples.
If all weights are equal, P̃ = T : the effective number of sam-

ples is equal to the total number of samples. If all weights but
one are zero, P̃ = 1. In our case, the weights wt correspond to
1/σ̂2

n,`,t, which leads to the formula to compute P̃ in Algorithm 1,
step 3. In practice, the samples {rt}t∈1:T are not identically dis-
tributed (their variances differ), but P̃ still indicates if the mean
is reliable.

Appendix C: Derivation of the distribution of GLRT+

The GLRT+ is defined as the sum
∑L
`=1

[α̂`]2
+

v`
=

∑L
`=1 s` with

s` = [α̂`]2
+/v`. In the absence of source and under the simpli-

fying assumption of an absence of spectral correlation of the
backgrounds (i.e., underH0 and within our Gaussian model with
statistically independent channels) the terms s` are independent
and identically distributed. Due to the thresholding of negative
values, the distribution of each s` corresponds to a mixture of a
χ2 random variable and a Dirac mass at 0:

p
(
s`
∣∣∣H0

)
=

1
2
δ0(s`) +

1
2
χ2

1 (s`) , (C.1)

where the Dirac mass δ0 centered in 0 accounts for the proba-
bility 1/2 that S/N` be negative and the Chi-square distribution
with one degree of freedom χ2

1 corresponds to the distribution
of the square of a standard Gaussian variable. By independence
of the s`, the distribution of their sum, that is to say GLRT+, is
given by the convolution product:

p
(
GLRT+

∣∣∣H0
)

=
(
p
(
s1

∣∣∣H0
)
∗ · · · ∗ p

(
sL

∣∣∣H0
))︸                              ︷︷                              ︸

L times

(GLRT+)

=
1
2L δ0(GLRT+)

+

L−1∑
`=0

L!
2L`!(L − `)!

χ2
L−`

(
GLRT+) , (C.2)

by application of the binomial expansion and the property χ2
a ∗

χ2
b = χ2

a+b (the sum of two independent χ2 random variables with
respective degrees of freedom a and b is a χ2-distributed random
variable with a + b degrees of freedom).

Appendix D: Robust estimation of the spectral
correlations

We described in Sect. 3.2.2 how modeling the covariance
between the detection maps S/N` at each wavelength could
be used in order to combine the spectral information. In this
appendix, we discuss the estimation process of the spectral
covariances Σ.

When estimating covariance matrices Σ, we face two diffi-
culties: (i) the estimation must be local in order to capture the
nonstationarities of those correlations and (ii) the estimation can-
not be performed in the presence of sources (since the spec-
tral correlations would then also depend on the spectrum of the
source and on the values of v`).
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Fig. D.1. Influence of the size A (given in pixels and displayed as a disk at the scale of the field of view) of the region over which the spectral
covariances Σ̂ are estimated. The S/N` maps are combined assuming the spectrum shown in (g), for whitening matrices L̂ obtained from each
estimate of the spectral covariance. From a to f : combined maps wwS/N and the empirical distribution of wwS/N under H0 are shown side by
side.
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Fig. D.2. Comparison of three spectral whitening strategies: a: no whitening; b: spectral whitening based on a robust estimate of the covariance
computed over a large area (A = 5000 pixels, shown at the bottom); c: spectral whitening based on a local estimate of the covariance computed
over a smaller area (A = 300 pixels, shown at the bottom) by masking out regions of high wwS/N given by method (b).

As described in Sect. 3.2.2, the presence of sources can be
circumvented by applying a robust estimator like the MCD to a
region large enough so that the portion corresponding to a point
source is always marginal. Figures D.1a–f displays the combined
detection maps wwS/N obtained on HR 8799 when assuming the
spectrum plotted in (g). The size of the region over which the
robust estimation of Σ is performed is given both in terms of
pixels and by a disk at the same scale as the detection map. If the
spectral covariances are learned on a region that is too small, as
in Fig. D.1a, the detection map is flattened even at the location
of the sources. By increasing the size of the region, the robust
estimator of the spectral covariance correctly captures the corre-
lations in the absence of sources. However, when the region gets
too large, the whitening operation slightly lacks locality.

It can be observed in Fig. D.1 that the empirical distribution
in the absence of source correctly matches the expected stan-
dard Gaussian model. From a detection map like Fig. D.1e, it is

then possible to detect point sources by thresholding at τ = 5,
and a binary mask can be obtained in order to mask the point
sources. In a second step, the spectral covariance matrices Σ
can be re-estimated on much smaller windows by excluding all
pixels that fall in the binary mask. Figure D.2 compares the
detection map obtained D.2a without spectral whitening, D.2b
with spectral whitening performed after estimating the spectral
covariances over a large area with a robust estimator, and D.2c
with spectral whitening performed on small areas by computing
the sample covariance after exclusion of the pixels around the
point sources. This last strategy can be applied to small areas
(A = 300 pixels), and thus, better eliminate spurious structures
in the background. However, it requires a two-step processing:
first the computation of the whitened detection map D.2b with
the robust covariance estimator, then the formation of the exclu-
sion map, the re-estimation of the covariance matrices and the
re-computation of a new detection map.
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Appendix E: Optimality of the detection criterion
wwS/N

In this part, we show that the optimal linear combination of S/N`

values corresponds to the wwS/N test that we derived from the
GLRT. The general form of a test based on a linear combination
of (whitened) S/N` values takes the form:

wwS/N :
L∑
`=1

w` ·
[
L̂>x

]
`

H1
≷
H0

τ , (E.1)

where w` are weights whose value is to be determined.
Under hypothesis H1, the value of wwS/N is to be maxi-

mized, while the variance of wwS/N underH0 remains equal to
one, so that underH0 wwS/N is a standard Gaussian variate and
a detection threshold can be straightforwardly set.

Since the vector L̂>x follows N(0, I) under H0, the variance
of wwS/N underH0 equals

∑L
`=1 w

2
` . The constraint that wwS/N

has unit variance leads to the condition
∑L
`=1 w

2
` = ‖w‖22 = 1.

UnderH1, the expected value of wwS/N is

EH1 [wwS/N] =

L∑
`=1

w` ·
[
L̂>EH1 [x]

]
`
, (E.2)

where [EH1 [x]]` = αintβ′`. Equation (E.2) is a scalar product
between the vector of weights w` and the whitened expected
S/N` values. Given the normalization constraint ‖w‖ = 1,
Eq. (E.2) is maximized for a vector of weights that has unit
Euclidean norm and is collinear to L̂>EH1 [x]. This leads to the
following definition of optimal weights:

w =
L̂>β′

‖L̂>β′‖
, (E.3)

which corresponds to the values of the weights obtained in
Eq. (20).

Appendix F: Combination of S/N maps with spectral
whitening

Our approach to combine detection maps computed at different
wavelengths is general and can also apply to the output of other
algorithms, as illustrated in Fig. F.1. We processed the signal-
to-noise ratio maps produced by TLOCI and KLIP algorithms.
In F.1a, we show the combined signal-to-noise ratio obtained by
simple averaging, in F.1b and F.1c we apply a spectral whitening
and the prior spectrum of Fig. D.1g according to the definition of
wwS/N (we have set v` = 1 for both TLOCI and KLIP). In D.1b,
the whitening matrix L̂ is computed from the robust covariance
estimator applied on a large area, in D.1c the two-step approach
with masking of the point sources in the second step is applied.
The detection maps are clearly improved by our spectral whiten-
ing scheme. Compared to PACO ASDI, the combined detection
maps display a lower value for the 3 sources of the field of view as

Fig. F.1. Combination of S/N maps with our spectral whitening strategy:
a: simple spectral averaging of TLOCI and KLIP S/N maps, b–c: com-
bination with spectral whitening and the spectrum shown in Fig. D.1g.

well as some border artifacts, which indicates that modeling the
nonstationary spatial covariance also plays an important role in
PACO ASDI.
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Appendix G: Automatic setting of the smoothing
parameter µ for spectrum estimation

As detailed in Sect. 4.2, it is useful to enforce a spectral smooth-
ness during the spectrum estimation of a detected point source.
The expected gain is a reduction of the MSE of the estima-
tion, in particular when the source contrast is very weak. In this
appendix, we numerically compare three well-known regulariza-
tion strategies of the estimated spectra: GCV (Craven & Wahba
1978; Golub et al. 1979), GML (Wahba 1985; MacKay 1992) and
SURE (Stein 1981) (see Sect. 4.2 for a short description). For
this purpose, we perform 30 Monte–Carlo injections and spec-
trum estimations on 4 sources (#2, #5, #10 #12, see Sect. 5.3).
Figure G.1 compares the GCV, GML, and SURE regularization
strategies in terms of MSE and agreement between the estimates
with the empirical 1σ confidence intervals. A comparison is also
given with the results obtained when the regularization hyperpa-
rameter µ is set in an “oracle” mode that is, by selecting µ that
minimizes the MSE between the spectrum estimate and the spec-
trum ground truth. These experiments illustrate that the GML
and SURE approaches lead to very similar results with a slight
improvement brought by SURE with respect to GML. In com-
parison, the GCV leads to significantly worst results. This can
be explained by the fact the GCV is generally used when the
noise variance is unknown. Regularizing the spectrum estimation
with GML or SURE is beneficial since it reduces the MSE. As
expected, the gain brought by the regularization is larger when
the contrast of the source is weak and for sources located near
the host star, that is, when the estimated spectrum is very noisy.
For example, the MSE is reduced by about 37% for the source
#2 (brightest one of the four considered) while it is reduced up
to 67% for the source #10 which is the faintest one. In addition,
the results obtained with the automatic setting of the hyperpa-
rameter µ by GML or SURE are not very far from the optimal
results achieved by the oracle. Finally, as shown by Fig. G.1 (bot-
tom), the estimated confidence intervals are in good match with
the empirical ones (a factor between 0.94 and 1.21 is observed in
our experiments) when the regularization is performed with the
SURE approach.

Fig. G.1. Comparison of the GCV, GML, and SURE regularization
strategies on 30 Monte–Carlo injections / spectrum estimations for
sources #2, #5, #10, and #12. Top: gain in terms of MSE reduction
comparing with the absence of spectral regularization (values higher
than one indicates a decrease of the MSE). Bottom: comparison between
the empirical 1σ confidence intervals predicted by PACO ASDI and the
empirical ones (values higher than one indicate that predicted confi-
dence intervals are smaller than the empirical ones so that the algorithm
estimation is too optimistic).
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