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Abstract. Faster R-CNN has become a standard model in deep-learning
based object detection. However, in many cases, few annotations are
available for images in the application domain referred as the target do-
main whereas full annotations are available for closely related public or
synthetic datasets referred as source domains. Thus, a domain adaptation
is needed to be able to train a model performing well in the target domain
with few or no annotations in this target domain. In this work, we address
this domain adaptation problem in the context of object detection in the
case where no annotations are available in the target domain. Most exist-
ing approaches consider adaptation at both global and instance level but
without adapting the region proposal sub-network leading to a residual
domain shift. After a detailed analysis of the classical Faster R-CNN de-
tector, we show that adapting the region proposal sub-network is crucial
and propose an original way to do it. We run experiments in two differ-
ent application contexts, namely autonomous driving and ski-lift video
surveillance, and show that our adaptation scheme clearly outperforms
the previous solution.

Keywords: Object detection · Domain Adaptation · Deep learning ·
Faster R-CNN.

1 Introduction

Object detection in images refers to the task of automatically finding all instances
of given object categories outputting, for each instance, a bounding box and the
object category. Recently, approaches based on deep Convolutional Neural Net-
works (CNNs) have invaded the field thanks to both their efficiency and their
outstanding performances [18,17]. To address a given computer vision problem,
these methods require large training datasets with instance-level annotations.
However, for most real world applications, few annotations are available due to
the lack of image sources, copyright issues or annotation cost. To overcome this
problem, a current trend consists in training the network on a large public anno-
tated dataset (source domain), while adapting the network features to the tested
dataset (target domain). This approach is called domain adaptation [14,23]. If
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Fig. 1: Illustration of global, local and RPN adaptation (see text for details).

no annotations are available in the target domain, the domain adaptation is
referred as unsupervised.

In this context, the case of autonomous driving has been extensively ad-
dressed and a variety of datasets exists covering different urban scenes situations,
illumination and weather conditions [4,6]. In this paper, we are particularly inter-
ested in unsupervised domain adaptation in a ski lift video surveillance scenario.
The purpose is to detect dangerous situations during chairlift boarding by de-
tecting relevant objects of the scene (e.g. safety bar, people, chairlift carrier).
Instance level annotations are available for a reference chairlift where the chair
model, the perspective view or boarding system may be different from the target
chairlift [2].

Surprisingly, few works explicitly address the problem of unsupervised do-
main adaptation for object detection. Most approaches study the supervised
case basically by fine-tuning a model pre-trained on the source dataset with few
annotated images from the target domain, eventually freezing some layers to
concentrate the training on the last layers [8,22]. Other recent approaches try
to reduce the domain shift by transforming the source domain to make it close
to the target one using style transfer [12]. The most significant contribution of
domain adaptive object detection was proposed by [3]. Following [5], they added
adversarial training components in the classical Faster R-CNN detector, in order
to adapt both globally and locally the detector. Given the features from the two
domains and considering the subset of features specific to the object (Fig. 1),
a global adaptation, as illustrated in the bottom left of Fig. 1, may not match
source and target object features. Thus, Chen et al. [3] also propose to adapt
the features pulled from the regions returned by the Region Proposal Network
(RPN). We argue that, since the RPN is trained on the source domain, the pro-
posals from the target images may be wrongly detected and the local features
used for the adaptation may be outside the target object features set (bottom
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center in Fig. 1). In this paper, we propose to adapt the RPN in order to ensure
the features extracted from the target images to overlap with the source object
features. A local adaptation through adversarial learning will thus better align
source and domain features (bottom right in Fig. 1).

Our contributions are threefold: 1) We present a new viewpoint about the
domain shift problem in object detection. 2) We propose to adapt the RPN as
a global feature adaptation and integrate this new adaptation module in Faster
R-CNN. 3) We run extensive experiments in two different applications contexts:
autonomous driving and ski lift video surveillance.

2 Related Work

Object Detection The first approaches proposed in the context of CNN were
based on the region pooling principle [21,8]. In R-CNN [8], candidate regions
detected by selective search were represented by a subset of pooled features
and evaluated by an instance classifier. This two-stages principle was further
refined in Faster R-CNN [18] with a common CNN backbone to extract the
whole image features and two different sub-pipelines: the first one called RPN to
generate proposals of regions which are likely to contain objects and the second
one which is basically a classification and regression network aiming to refine
the location and size of the object and to find its class. Besides these two-stages
approaches, one-stage approaches directly predict box location, size and class in
a single pipeline either by using anchor boxes with different aspect ratios [13] or
by solving a regression problem on the feature grid [17]. Interested readers can
refer to the review of recent advances in object detection in [1]. Since Faster R-
CNN [18] provides very accurate results and has been largely studied, we propose
to consider this network as a baseline in this paper.
Domain Adaptation Unsupervised domain adaptation is needed when we
want to learn a predictor in a target domain without any annotated training
samples in this domain [14,23]. Obviously, annotations are available in a source
domain which is supposed to be close to the target one. Two main types of
methods have been proposed in this context. The first one is to try to match the
feature distribution in the source and target domains either by finding a transfor-
mation between the domains [15] or by directly adapting the features [10]. One
noticeable example is the gradient reversal layer approach proposed by Ganin
et al. [5] that attempts to match source and target feature distributions. They
propose to jointly optimize the class predictor and the source-target domain
disparity by back-propagation. The second type of methods relies on Genera-
tive Adversarial Networks (GANs) [11]. The principle is to generate annotated
synthetic target images from the source images and to learn (or fine-tune) the
network on these synthetic target data [12].
Domain adaptation for object detection Few works consider domain adap-
tation for object detection particularly in the unsupervised setting. [16] proposes
class-specific subspace alignment to adapt RCNN [8] and [3] uses adversarial
training inspired by [5] to adjust features at two different levels of a Faster
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R-CNN architecture. The adaptation at image level intends to eliminate the do-
main distribution discrepancy at the output of the backbone network while the
instance level adaptation concerns the features which are pooled from a Region
of Interest (RoI), before the final category classifiers. Following the same adver-
sarial training approach, Saito et al. [19] argue that a global matching may hurt
performance for large domain shifts. They thus propose to combine a strong
alignment of local features and a weak alignment of global ones. To the best of
our knowledge, none of the previous works considers the adaptation of the region
proposal sub network of Faster R-CNN. They are then sensitive to any shift in
the distribution of object bounding boxes between source and target domains.

In this work, we propose to incorporate two adversarial domain adaptation mod-
ules in Faster R-CNN: the first one at RPN-level to address the source-target
domain shift of features of the region proposal module and the second one at
instance-level to adapt the RoI-pooled features used in the final classification
module.

3 Our approach

In order to explain our adaptation scheme, we have to explain in details the
work-flow of Faster R-CNN [7], summarized in Fig. 2. Then, we present our
approach to adapt this detector between different domains.

3.1 Faster R-CNN

Faster R-CNN is basically composed of two convolutional blocks called C1 and
C2, providing two feature maps F1 and F2, respectively (cf. Fig. 2). Based on
F2, the RPN predicts a set of box positions used to crop the F1 feature map
using the RoI pooling layer (called RP layer, hereafter).

It is worth mentioning that the gradient can not be back-propagated through
the RP layer towards the RPN, because this step is not differentiable. The au-
thors of Faster R-CNN resort to an alternating training to cope with this problem
[7]. It is crucial to understand this point when one wants to apply domain adap-
tation to Faster R-CNN. It means that we can not just plug a domain adaptation
module after the last layers of Faster R-CNN (namely F3i) and adapt in one shot
the classification layers and the convolution blocks C1 and C2.

Back to the workflow of Faster R-CNN, the outputs F1i, i = 1, ..., Np, of the
RP layer are cropped and resized parts of the F1 feature map. Np is the number
of proposals returned by the RPN. The feature maps F1i are then sent to shared
fully connected layers FC3 whose outputs F3i are used to take the final decision
of class and location.

From this workflow, we note that the classification and regression layers take
as inputs either F2 or F3i, which are the key feature maps of the detector. In
the next section, we present how these feature maps can be adapted between
the two domains.



Region Proposal Oriented Approach for Domain Adaptive Object Detection 5

Fig. 2: Faster R-CNN Workflow.

3.2 Adapting Faster R-CNN

Let us consider a source domain S with NS images {ISi }, i = 1, ..., NS , each
containing nSi objects, located at the positions lSij and associated with the classes

cSij , j = 1, ..., nS
i . Likewise, we denote T a target domain constituted of NT target

images {ITi }, i = 1, ..., NT , each containing nTi objects, located at the positions
lTij and associated with the classes cTij , j = 1, ..., nT

i .
If the two domains are different (cameras, viewpoints, weather conditions,. . . ),

there exists a domain shift between the joint distributions P (IS , lS , cS) and
P (IT , lT , cT ). In this case, we can not train the detector on the source data and
obtain good results on the target data, without adaptation. The aim of domain
adaptation is to decrease this distribution discrepancy so that P (IS , lS , cS) ≈
P (IT , lT , cT ). In the context of unsupervised domain adaptation, the labels (lo-
cations and classes) of the target data are not available and this is not an easy
task to decrease the joint distribution discrepancy. By applying the Bayes’ rule
on the joint distribution, we obtain, for the source domain:

P (IS , lS , cS) = P (lS , cS |IS)P (IS) (1)

Most of the domain adaptation approaches assume a covariate shift, which means
that the shift between the source and target joint distributions is caused by the
marginal distributions P (I), while the conditional distributions P (l, c|I) are con-
stant across domains, i.e. P (lS , cS |IS) = P (lT , cT |IT ). Under this assumption,
in order to decrease the joint distribution discrepancy, we have just to decrease
the marginal distribution shift, so that P (IS) ≈ P (IT ). In order to change the
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marginal distributions of the images, the classical approaches apply a transform
T on the image features, so that P (T (IS)) ≈ P (T (IT )). Usually, the transform
T is a part of a convolution neural network.

In this paper, we propose to consider and adapt different feature maps ex-
tracted from the images. By looking at Fig. 2, we note that two feature maps
are used as input for classification and regression layers, namely the F2 feature
map and the F3i feature vectors. So, in order to adapt the detector to the source
domain, we have to adapt the marginal distributions of F2 and F3i, so that
P (FS

2 ) ≈ P (F T
2 ) and P (FS

3i) ≈ P (F T
3i ).

In order to enforce these distributions to be closer, we propose to resort to
an adversarial domain adaptation approach [5] called GRL for gradient reversal
layer. Note that any other adversarial domain adaptation algorithms could have
been used, we just use this one for a fair comparison with DA-Faster [3]. When
plugged on a feature map Fk, the idea of GRL is to minimize the discrepancy
between the feature distributions over the source and target domains P (FS

k ) and
P (F T

k ) [5]. If the GRL is able to perfectly overlap these two distributions, we
can conclude that the features extracted at this point of the network (Fk) are
domain invariant and so can be applied either on the source or target domain
with equivalent accuracies.

From the previous analysis, it is obvious that two GRL modules should be
inserted in the detector: one after the feature map F2 and one after the feature
vector F3i. It is worth mentioning that, when we plug a GRL module to a
feature map, we back-propagate the (reverse-)gradient until the first layer of
the C1 convolutional block. Thus, the main advantage of our approach is that
the reversal gradients are back-propagated through all the layers of the detector.
Consequently, the backbone, the RPN and the local features are all adapted (see
Fig. 3).

Formally, at training time, the total loss corresponding to a given training
image Ik ∈ IS ∪ IT from domain dk ∈ {S, T } is given by:

L = LFst − λ
∑
i,j

LH

(
FC2a(F i,j

2 (Ik)), dk

)
− λ

Np∑
i=1

LH (FC3a(F3i(Ik)), dk) (2)

where LFst denotes the original Faster R-CNN loss activated only if Ik ∈ IS ,
LH denotes the cross-entropy loss, λ denotes the trade-off parameter to balance
Faster R-CNN loss and domain adaptation losses, FC2a and FC3a denote the
fully connected predictors for domain adaptation, F i,j

2 (Ik) denotes the feature
vector at location (i, j) of feature map F2 for image Ik, and F3i(Ik) denotes the
feature vector corresponding to the proposal region i of image Ik.

We note that the recent domain adaptive detection approaches ([3,19]) have
not tried to adapt the RPN layer and we think that this is a strong weakness of
these approaches. Indeed, as mentioned in [3] (called DA-Faster hereafter), the
image-level adaptation is enforcing the F1 target and source feature distributions
to be closer but it is very hard to perfectly align them. This is one of the reasons
why DA-Faster approach also applies instance level adaptation. But, it is clear in
Fig. 2, that if F1 features are not well adapted between the domains, the output
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Fig. 3: Our domain adaptation for Faster R-CNN. See text for details.

of the RPN will also be different between the domains and consequently, the
locations where the boxes F1i are cropped from F1 will be domain dependent.
Therefore, the instance-level adaptation on F3i features will not help to adapt
the object detector between domains, since it will work on local features which
are not equivalent between the domains (see Fig. 1).

4 Experiments

4.1 Experiment Setup

To evaluate the efficiency of our approach we conduct experiments in two con-
texts: autonomous driving and video surveillance of ski lifts. In each case, we
train on a source dataset and test on a target dataset from a different domain.
During training, likewise the other domain adaptive approaches, we use also im-
ages from the target domain, but without any label, while the source dataset
images are provided with their bounding boxes instance annotations.

The baseline is Faster R-CNN model trained only on the source dataset. As
mentioned earlier, our solution is inspired from DA-Faster [3] but our contribu-
tion is in the analysis of the domain shift in Faster R-CNN, conducting to the
solution that the domain adaptation module (GRL) should be plugged at the
RPN level. Consequently, the aim of these experiments is to compare DA-Faster
with our approach in order to check the validity of our contribution in practice.
Thus, adapting the RPN in other solutions such as [19], or using other adapta-
tion modules than GRL such as [14,23] might have provided better results, but
it is out of the scope of this paper. Thus, for all the experiments, we compare
our approach with DA-Faster [3].
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As mentioned in [19], the results provided by the authors of DA-Faster are
unstable and Saito et al. proposed to re-implement their own code for DA-Faster,
conducting to lower results than the original paper [3]. So likewise [19], we report
the results of DA-Faster with the implementation provided by [9] with the same
hyper-parameters as our solution (results denoted DA-Faster hereafter), as well
as the results provided by the original paper [3] (denoted DA-Faster* ), when
available on the considered dataset.

To evaluate object detection we report the mean Average Precision (mAP)
with intersection over union (IoU) threshold at 0.5 (denoted AP50), the mAP
with IoU threshold of 0.75 (AP75) and the mAP averaged over multiple IoU
from 0.5 to 0.95 with a step size of 0.05 (APcoco). The network is trained in an
end-to-end manner using back-propagation and the stochastic gradient descent
(SGD) algorithm. As a standard practice, Faster R-CNN backbone is initialized
with pre-trained weights on ImageNet classification. We use a learning rate of
0.001 for 50k iterations, and 0.0001 for the next 20k iterations. Each iteration has
2 mini-batches, one from source domain and the other from target domain. The
trade-off parameter λ to balance Faster R-CNN loss and domain adaptation loss
is set to 0.1 as in [3]. We use a momentum of 0.9 and a weight decay of 0.0005.

4.2 Autonomous driving

In this context we evaluate the domain adaptive detectors for two domain shifts:
weather conditions (foggy and not foggy) and acquisition conditions (different
cameras, different viewpoints and different scenes).

Fig. 4: One image from each dataset: the Cityscapes dataset (left), its foggy
version (center) and the KITTI dataset (right).

Cityscapes→ Foggy Cityscapes. In the first experiment we use the Cityscapes
dataset [4] as source domain. It is a urban scene dataset with 2975 training im-
ages and 500 validation images. The 1525 unlabeled images are not considered.
For training the network, we are using the 2975 train images and do not consider
the validation images. There are 8 categories with instance annotations in this
dataset, namely person, rider, car, truck, bus, train, mortorcycle and bicycle.
The target domain is the Foggy Cityscapes [20] dataset generated by applying
fog synthesis on the Cityscapes dataset to simulate fog on real scenes (see Fig. 4).
Thus, the number of images and labels are exactly the same as for Cityscapes
dataset. For testing the detection, we are using the 500 validation images from
Foggy Cityscapes. The results are summarized in Table 1. First, we can note
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that, without domain adaptation, the results of Faster R-CNN are very bad,
underlying the strong need of adapting the network in case of weather condition
variations. Thus, DA-Faster improves the results over Faster R-CNN, but we
note that our approach clearly outperforms DA-Faster on this dataset, show-
ing that the RPN adaptation helps in adapting the detector in case of weather
condition variations.

Table 1: Detection results on Foggy Cityscapes (trained on Cityscapes dataset).
The AP50 is reported for each class as well as the average APcoco, AP50 and
AP75 over all classes.

person rider car truck bus train mcycle bicycle APcoco AP50 AP75

Faster R-CNN 18.8 20.5 24.2 17.0 8.0 6.2 7.2 5.0 06.20 13.35 05.42

DA Faster R-CNN 27.3 35.7 44.1 20.3 35.2 8.9 16.2 23.6 12.28 26.41 10.02

DA Faster R-CNN* 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 - 27.6 -

Ours 27.8 35.8 45.1 23.5 42.1 26.1 18.0 27.6 13.70 30.47 11.04

Cityscapes → KITTI. In this experiment Cityscapes is the source domain,
and KITTI [6] is the target domain (see Fig. 4). KITTI is a benchmark for
autonomous driving which consists of 7481 training images. Since the test set is
not annotated we use all the training images with their annotations at test time
to evaluate the performance. Only one category (car) is annotated in KITTI,
so we consider this single class for evaluation. The results are summarized in
Table 2. Once again, we note that the domain adaptation helps improving Faster
R-CNN results. We see also that our approach outperforms DA-Faster for all
the criteria when using the same hyper-parameters. The results provided in [3]
are better than ours for AP50, but note that the implementation and hyper
parameters are different from our tests. The comparison is therefore not fair.

Table 2: Detection results in KITTI training set (trained in Cityscapes dataset)
for one class (Car) detection.

APcoco AP50 AP75

Faster R-CNN 26.73 58.60 21.54
DA Faster R-CNN 27.51 60.38 22.67
DA Faster R-CNN* - 64.1 -
Ours 28.39 61.32 23.59

4.3 Video surveillance of ski lifts

The MIVAO research project was launched in collaboration with a french start-
up Bluecime, based on the needs of ski lift operators to secure chairlifts. MIVAO
aims to develop a computer vision system that acquires images from the boarding
station of chairlifts, analyzes the important elements (people, chairlift carrier,
safety bar, ...) and triggers an alarm in case of dangerous situations. In this paper,
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we tackle this problem as an object detection task trying to detect the safety
bar in the image, considering that it has to be closed when the chairlift leaves
the boarding station. Across the ski resorts, the viewpoint, the background, the
carrier geometry and the camera may be different and domain adaptive detectors
are required to install new systems without a fastidious and time-consuming step
of manual annotation.

Chairlift dataset For this experiment, we have created a dataset with im-
ages from two different chairlifts, called hereafter chairlift 1 and chairlift 2. The
dataset contains 3864 images from chairlift 1 and 4260 images from chairlift 2.
Example images are provided in Fig. 5. We can note that the main differences
between the two chairlifts are in the viewpoints which are slightly different and
in the presence of a cluttered background in the chairlift 2.

Fig. 5: Example images from our chairlift dataset. The two left images are from
chairlift 1 and the two right images are from chairlift 2. The box annotations
(open:red and close:green) are provided for the two right images, for illustration.

The images are centered on the chairlift and manually labeled with the po-
sition and the dimensions of the bounding box containing the safety bar. From
this information, we have created instance annotations with two categories: open
safety bar and close safety bar, as illustrated on the two right images from Fig. 5.

Evaluation The results are provided in Table 3. By training the baseline
Faster R-CNN using images from one chairlift and test it on images from another
chairlift, the results were surprisingly very good in terms of AP50. This can be
explained by the important size of the ground truth bounding boxes that have
high chance to well overlap random bounding boxes with similar dimensions.
Obviously, when looking at the more demanding criteria such as APcoco or
AP75, the need of domain adaptation is evident for precise object detection.
The results show that the two domain adaptive detectors (DA-Faster and ours)
are equivalent for the adaptation from chairlift 1 to chairlilft 2, but they also
show that our adaptation is much better than DA-Faster for the adaptation from
chairlift 2 to chairlift 1. It is difficult to explain why DA-Faster is less accurate
in one direction (ch2 → ch1) than in the other direction (ch1 → ch2). One
assumption could be that in DA-Faster, the RPN is better trained on chairlift
1 since in this case the background is less cluttered. Thus, when applying it on
chairlift 2, the adaptation process tends to promote features from the foreground
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and both the proposal and the classification are good. On the contrary, if the
RPN is trained on chairlift 2, it will rely on cluttered features which are removed
with the global adaptation and thus, for DA-Faster, the proposals will be bad on
chairlift 1, leading to an important residual domain shift in the results. On the
contrary, in our method, since the RPN is directly adapted, the residual shift is
lower (see figure 1 and the related explanation in section 1).

Table 3: Detection results on the chairlift dataset. First, adaptation from chairlift
1 to chairlift 2, and second adaptation from chairlift 2 to chairlift 1.

ch1→ ch2 ch2→ ch1

APcoco AP50 AP75 AP AP50 AP75

Faster R-CNN 30.34 99.49 0.30 36.56 98.98 9.86
DA Faster R-CNN 50.51 99.50 33.4 42.56 98.99 11.1
Ours 50.93 99.99 30.7 48.83 99.00 45.6

5 Conclusion

In this paper, we have tackled the problem of domain adaptation for object
detection. After a detailed analysis of the complete workflow of the classical
Faster R-CNN detector, we have proposed to adapt the features pulled from this
network at two different levels: one adaptation at a global level in the Region
Proposal Network and one adaptation at the local level for each bounding box
returned by the RPN. We have shown that these two adaptations are comple-
mentary and provide very good detection results. We have tested our solution
on two different applications, namely the autonomous driving and the chairlift
security. As future works, we propose to test more accurate adaptation proce-
dures such as the approaches presented in [14,23]. These methods could help
in the learning step to reach stable solutions which is a strong weakness of the
domain adaptive Faster R-CNN. Furthermore, it could be interesting to adapt
the features at different depth of the network as recommended by [19].
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