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Carlos Arango Duque, Olivier Alata∗∗, Rémi Emonet, Hubert Konik, Anne-Claire Legrand

Lab. Hubert Curien, CNRS UMR 5516, UJM, IOGS, Univ. Lyon, 42023 Saint Etienne, France

ABSTRACT

Micro-expressions are brief and subtle facial expressions that go on and off the face in a fraction of
a second. This kind of facial expressions usually occurs in high stake situations and is considered to
reflect a human’s real intent. There has been some interest in micro-expression analysis, however, a
great majority of the methods are based on classically established computer vision methods such as
local binary patterns, histogram of gradients and optical flow. A novel methodology for micro-expres-
sion recognition using the Riesz pyramid, a multi-scale steerable Hilbert transform is presented. In
fact, an image sequence is transformed with this tool, then the image phase variations are extracted
and filtered as proxies for motion. Furthermore, the dominant orientation constancy from the Riesz
transform is exploited to average the micro-expression sequence into an image pair. Based on that, the
Mean Oriented Riesz Feature description is introduced. Finally the performance of our methods are
tested in two spontaneous micro-expressions databases and compared to state-of-the-art methods.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Micro-expressions (MEs) are brief and subtle facial expres-
sions that last a fraction of a second which are considered to re-
flect a human’s hidden emotions (Ekman and Rosenberg, 2005).
Analyzing them has become a challenging problem in com-
puter vision with different state-of-the-art approaches based on
well-known computer vision methods such as local binary pat-
terns (LBP), histogram of gradients (HOG) and optical flow
(OF). However, MEs are composed of subtle motions which
might be difficult to process with classical approaches. One
possible solution is to analyze them by comparing the phase
variations between images. (Fleet and Jepson, 1990; Gautama
and Van Hulle, 2002) initially proposed that spatio-temporally
band-passed video provides a good approximation to the mo-
tion field.

However, its true potential became evident with motion mag-
nification a method in which phase variations of subtle motions
are amplified (Wadhwa et al., 2013). Specifically, the Riesz
pyramid-based representation for video magnification (Wad-
hwa et al., 2014a) has shown to be a simple, adaptable and
fast-processing method that can work in almost real-time. In
addition to allowing the motion to be exaggerated, the interme-
diate representations produced by these methods can be used

∗∗Corresponding author: Tel.: +33(0)469663262;
e-mail: olivier.alata@univ-st-etienne.fr (Olivier Alata)

to directly analyze subtle motion. Indeed, it has been already
used for subtle motion analysis (Duque et al., 2018b) and ME
spotting (Duque et al., 2018a).

This paper proposes a framework based on this tool to extract
multi-scale oriented phase variation features using the Riesz
pyramid in order to model and classify MEs. There have been
some other authors who have proposed to extract phase vari-
ations using a Riesz wavelet or transform as part of their ME
classification scheme (Oh et al., 2015, 2016; Liong and Wong,
2017). However, to our knowledge, there is no other method
that uses the multi-scale phase variations as the main feature of
their solution.

This paper is divided as follows: Sec. 2 presents a brief re-
capitulation of the state of the art in ME recognition. Sec. 3
introduces the reader to the monogenic signal components and
the Riesz pyramid. Sec. 4 presents a novel way to extract mo-
tion features using the orientation and phase from the mono-
genic signal to model MEs. Sec. 5 analyzes the results of our
experiments and compares them with state-of-the-art methods.
Finally, in Sec. 6, our conclusions are presented.

2. Related Work

The ME recognition frameworks can be divided into differ-
ent feature representation families. The first one is composed
of LBP-based methods. They use the intensity information of
the image with the intention of describing facial features that
appear temporally during any kind of facial expression. A great
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numbers of descriptors are based on local binary patterns (LBP)
introduced in (Zhao and Pietikainen, 2007). A 3D extension
called LBP from Three Orthogonal Planes (LBP-TOP) takes a
stack of consecutive frames as 3D volume and compute LBP
over three orthogonal planes and has been used in several ME
recognition frameworks (Li et al., 2013). Due to the popularity
of LBP-TOP, a plethora of variations have emerged for feature
extraction. For instance, some authors propose to take the av-
erage plane from each stack first, and then compute the LBP
on the three average planes (MOP-LBP) (Wang et al., 2015).
Another variation called Spatio-Temporal LBP with Improved
Integral Projection (STLBP-IIP) preserves the shape property
of MEs and then enhances discrimination of the features for
ME recognition (Huang et al., 2015; Huang et al., 2016a). An-
other proposal called Spatio-temporal Completed Local Quan-
tized Pattern (STCLQP) extracts sign, magnitude and orienta-
tion information while creating a compact and discriminative
codebook (Huang et al., 2016b).

The second family is composed of OF-based methods. They
use the distribution of the apparent velocities of objects in an
image for motion representation. Some authors propose to de-
rive the OF vectors to calculate the optical strain (OS) or non-
rigid deformation for the analysis of MEs (Liong et al., 2014a).
Inspired in the success of histogram features in the object recog-
nition community, (Chaudhry et al., 2009) proposed the His-
togram of Oriented OF (HOOF) descriptor to model the dis-
tribution of OF during a video sequence. Another approach
called the fuzzy histogram of oriented optical flow orientations
(FHOFO) collects the motion directions into angular bins based
on the fuzzy membership function (Happy and Routray, 2018).
Some similar descriptors like Main Directional Mean Optical
flow (MDMO) (Liu et al., 2016) and Facial Dynamic Maps
(FDM) (Xu et al., 2017) extract OF motion vectors from se-
lected facial regions. Other authors have proposed to calcu-
late which facial regions have high probabilities of movement
(RHPM) and use them to filter the OF (Allaert et al., 2017). An-
other approach called Bi-Weighted oriented OF (BI-WOOF) is
a variation of HOOF that uses optical strain as a weighting co-
efficient (Liong et al., 2018).

The third family is composed of Deep learning methods.
These methods normally combine feature learning and classi-
fication in the same pipeline. In (Kim et al., 2016), the spa-
tial features of micro-expressions at different expression-states
are encoded using a CNN and then the temporal characteris-
tics of the different expression-states of the micro-expressions
are encoded using long short-term memory (LSTM) recurrent
neural networks. In (Li et al., 2018b), a VGGNet trained for
face recognition is finely tuned and adapted for ME recogni-
tion. Other authors propose to extract the ME features using
a pre-trained network (ImageNET) and an evolutionary feature
selection scheme to remove the irrelevant deep features (Patel
et al., 2016). In (Li et al., 2018a), a CNN is trained using both
gray-scale images and optical flow as input (3D-FCNN).

There are certain proposals that do not really fit the previous
families of methods. For instance, (Lin et al., 2018) uses spatio-
temporal Gabor filters (ST-Gabor) to extract features at differ-
ent scales and orientations by convolving a bank of oriented

bandpass filters to an image sequence. Some approaches also
consider combining appearance-based features and OF. For in-
stance, (Liong and Wong, 2017) proposes to mix the BI-WOOF
and the phase components from the monogenic signal obtained
by a Riesz transform. Furthermore, (Liong et al., 2014b) uses
optical strain as weights for LBP-TOP (OSW-LBP-TOP).

In this paper, a complete framework for ME recognition
based on the Riesz pyramid representation, a fast multi-scale
approximation of the Riesz transform is presented. A new fea-
ture called Mean Oriented Riesz Feature (MORF), using the
multi-scale oriented phase of the Riesz pyramid is introduced.
Let us now recall the basis of the Riesz pyramid and its compo-
nents.

3. Background

3.1. The Monogenic Signal and the Riesz Transform

In signal analysis, a real valued 1-D signal can be represented
as a complex valued signal. From this representation some use-
ful information can be extracted such as the local amplitude
and local phase. The analytical representation is composed of
the original function and its Hilbert transform. In the case of
2-D signals (images), (Felsberg and Sommer, 2001) proposed
an isotropic generalization called the monogenic signal. The
monogenic signal is a triple comprised of the original image
and a quadrature pair produced by the Riesz transform (a 2-D
steerable generalization of the Hilbert transform). This quadra-
ture pair is 90 degrees phase-shifted with respect to the domi-
nant orientation at every pixel (Wadhwa et al., 2014a), thus we
can extract the local amplitude and the local phase variations
in the direction of the dominant orientation from the mono-
genic signal. Let I(x) be a 2D gray scale image of a spatial
variable x = (x, y)ᵀ, and let F(ω) be its frequency-domain
representation found using the 2D Fourier transform, where
ω = (ω1, ω2)ᵀ is a two-dimensional frequency (Bridge, 2017).
The two odd parts FR1 and FR2 of the monogenic signal are:

FRl (ω) =

{
i ωl
‖ω‖F(ω), ω , 0

0, ω = 0
(1)

where l = 1 or 2 and R1(x) and R2(x) correspond to the image
domain representation of FR1 and FR2 respectively.

3.2. The Riesz pyramid

The Riesz pyramid decomposes the image into multiple sub-
bands, each of which corresponds to a different spatial scale,
and then applies the Riesz transform of each sub-band (Fig.1b).
An ideal version of the Riesz pyramid could be built in the fre-
quency domain using octave (or sub-octave) filters similar to
the ones proposed in (Wadhwa et al., 2013) and the frequency
domain Riesz transform (Eq. 1). However, it requires the use of
costly Fourier transforms to be built. In order to make the Riesz
pyramid faster, some adaptations need to be made. Firstly, in-
stead of using the Fourier transform, the image is decomposed
into non-oriented sub-bands using an invertible image pyramid
such as the Laplacian pyramid. Secondly, an approximate Riesz
transform can be defined by two finite difference filters, which
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Fig. 1: Different representations of the Riesz pyramid. The input is a circle with a sharp edge (a). In (b), the input is decomposed into multiple spatial sub-bands
using an invertible transform, and an approximate Riesz transform is taken of each band to form the Riesz pyramid. In (c), the Riesz pyramid coefficients are
transformed into a quaternion. Then, for each subband the amplitude and the quaternionic phase can be extracted. In (d), we show the quaternionic phase difference
between two consecutive frames for the input image translated one pixel to the left (Left motion) and one pixel to the right (Right motion).

is significantly more efficient to compute. Since most of the
energy from the previously processed sub-bands are concen-
trated in a frequency band around ‖ω‖ = π

2 , the Riesz transform
can be approximated with the three tap finite difference filters
[0.5, 0,−0.5] and [0.5, 0,−0.5]ᵀ (Wadhwa et al., 2014a).

3.3. Riesz pyramid Coefficients
If a given image subband I is filtered using this method, the

result is the pair of filter responses, (R1; R2). The input I and the
Riesz transform (R1; R2) together form a triple (the monogenic
signal) that can be converted to spherical coordinates (applying
the method from (Wadhwa et al., 2014a)) to yield the local am-
plitude A, local orientation θ and local phase φ from the Riesz
coefficients.

I = A cos (φ)
R1 = A sin (φ) cos (θ)
R2 = A sin (φ) sin (θ)

(2)

While Eq. 2 can be solved, both (A, φ, θ) and (A,−φ, θ + π) are
possible solutions. This predicament can be fixed by consider-
ing

φ cos (θ), φ sin (θ) (3)

which are invariant to this sign ambiguity. If the methods of
(Wadhwa et al., 2014b) in which the Riesz pyramid coefficients
are represented as a quaternion are applied:

r = I + iR1 + jR2 (4)

then, the previous equation can be rewritten using Eq. 2 as:

r = A cos (φ) + iA sin (φ) cos (θ) + jA sin (φ) sin (θ) (5)

Thus, the local amplitude A and the quaternionic phase
(φ cos (θ), φ sin (θ)) are computed as:

A = ‖r‖
iφ cos (θ) + jφ sin (θ) = log (r/‖r‖)

(6)

Furthermore, the quaternionic phase can be denoised by ap-
plying a temporal quaternionic filtering scheme. A complete

explanation of the quaternionic operation used to extract the
Riesz coefficients and filtering can be found in (Wadhwa et al.,
2014b). Fig.1c shows the local amplitude and filtered quater-
nionic phase extracted from different levels of the Riesz pyra-
mid applied to an input image translated one pixel to the left.

3.4. Local orientation of the quaternionic phase

One of the advantages of the monogenic signal is that, in the
same way as the analytical signal, it preserves the split of iden-
tity. This means that, the local phase is invariant to changes
of the local orientation, and the local orientation is invariant to
changes of the local structure (which means that we can split
them). If we can recover the correct local direction from the lo-
cal orientation, we have an ideal split of identity with respect to
energetic, geometric, and structural information of the signal.
However, there are a few problems in estimating the correct
local direction. The first one is that the estimation of local ori-
entation is unstable if the local phase φ is close to 0. The second
problem is that it’s not possible to find an absolute estimation
for the local direction but rather the relative estimation.

The main question becomes whether the orientation compo-
nent of the quaternionic phase can be used to differentiate be-
tween opposing motions. Fig.1d presents a circle with a sharp
edge which is translated one pixel in any given direction. The
resulting filtered quaternionic phase with pseudo-colors where
the image saturation represents the phase φ component and the
color hue represents the orientation θ component is presented.
The areas of low amplitude are masked using the technique pre-
sented in (Duque et al., 2018b) for better visualization. The im-
age is translated one pixel to the left (left motion) and to the
right (right motion).In that way motion in different directions
can be represented (as evidenced by the different hues from the
pseudo color image representations from the edges of Fig.1d).
The orientation of the quaternionic phase is not the same as
that of the translation but rather it is perpendicular to the ori-
entation of the edge. This means that the oriented quaternionic
phase is affected by the aperture problem. Nevertheless, when
comparing two opposing motions (left vs right), their respective
oriented quaternionic phases are also opposite. This becomes
important for ME recognition, where different MEs represent
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motions in different directions. For example, when analysing
the eyebrow movement during an ME of surprise, the eyebrows
rise. On the other hand during an ME of anger, the eyebrows
are contracted (lowered).

4. Mean Oriented Riesz Features

This paper now proposes a descriptor to extract the oriented
phase elements from the monogenic signal called Mean Ori-
ented Riesz Features (MORF). While Sec. 4.1 introduces the
concept of the mean oriented Riesz image pair, Sec. 4.2 de-
scribes the implementation of our proposed descriptor.

4.1. Mean Oriented Riesz Image Pair

In Sec.3.4 it is shown how using a relative quaternion phase
estimation motions from different directions can be differen-
tiated. However, only the motion between two consecutive
frames is analyzed. Considering the MEs are captured as video
sequences of several frames, it is also necessary to analyse the
temporal evolution of these motions before proposing an ME
modelling scheme. It can be considered unnecessary to anal-
yse the whole ME sequence but rather a shorter sequence from
ME onset to ME apex (when the face goes from a neutral state
to a state of peak expressiveness) because the spatial displace-
ment of the facial muscles is more evident compared to the se-
quence that goes from ME apex to ME offset (the face goes
from peak expressiveness to a neutral state). It is also neces-
sary to deal with the high variance of the quaternionic phase
(φ cos(θ), φ sin(θ)) in areas of low local amplitude A. (Duque
et al., 2018a) proposes to crop a series of local ROIs and to
mask them using the local amplitude from the Riesz pyramid in
order to isolate areas of potential noise. Although this approach
was effective for ME spotting, it ignores certain facial areas of
low amplitude which might have some interesting information
while an ME is taking place (such as the cheek areas).

Taking the aforementioned considerations into account, we
propose to model the temporal evolution of the ME in two
single images called the mean oriented Riesz (MOR) image
pair. The filtered quaternionic phase of an ME sequence is sim-
ply calculated from onset to apex and then, for each pixel, the
results are averaged through the time axis :

φλ(θ) =
1

fa − fo + 1

fa∑
t= fo

φtλ(θt) (7)

with fo and fa, the frame the onset begins and the frame of the
apex respectively, and λ either cos or sin. The main intuition
is that by temporally averaging the filtered quaternionic phase,
the real motion of each pixel is modelled in a single orientation
and magnitude while reducing the effect of wrongfully detected
motion due to noise.
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Fig. 3: Riesz pyramid level evaluation

4.2. MORF extraction

To begin with the face is detected in the first frame (Viola and
Jones, 2001), then, an active appearance model (AAM) (Tz-
imiropoulos and Pantic, 2013) is used to detect a set of fa-
cial landmarks. Next, certain facial landmarks which will not
move during facial expressions are selected (the inner corners
of the eyes and the lower point of the nose between the nos-
trils are selected). These points are tracked using the KLT al-
gorithm (Tomasi and Kanade, 1991) and a cropped face image
sequence is obtained (the area outside the face border is masked
- see Fig. 2). The Riesz pyramid is applied to obtain the quater-
nionic phase (Sec. 3.3) and it is filtered with the method de-
scribed in (Duque et al., 2018a). Then, Eq. 7 is then used to
obtain the MOR image pair (see center of Fig. 2).

The face is divided into a grid of equally sized non-
overlapping rectangle areas. As can be seen in Fig. 2, each pixel
in the image pair represents a motion vector with a magnitude
and angle. They can be extracted from the oriented phase by:

φR =
2
√

(φR cos(θR))2 + (φR sin(θR))2 (8)

θR = arctan
 φR sin (θR)

φR cos (θR)

 (9)

where φR is a matrix containing the phase of every pixel, θR is
a matrix containing the dominant orientation of every pixel and
R corresponds to the level of the Riesz pyramid, the oriented
phase is being extracted from.

we are extracting the oriented phase from. The next step is
to create the histogram of oriented phase for each one of the
rectangular blocks. For each pixel, a bin is selected based on
the orientation θ and a weighted vote is cast based on the value
of the phase φ. The final histogram is the concatenation of all
the histograms (Fig. 2).

The MORF descriptor depends on three parameters: G which
determines the grid division of ([Gx,Gy]) ROIs, O which de-
termines the number of orientations bins of the descriptor and
R which determines the level of the Riesz pyramid going to
be extracted. Thus MORFG,O,R produces a feature vector of
Gx ×Gy × O length.
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Fig. 4: Orientation binning parameter evaluation

5. Experimental Results

5.1. Datasets

For our experimentation, two spontaneously elicited ME
databases are selected. First, the SMIC database (Li et al.,
2013) consists of 164 spontaneous facial MEs image sequences
from 16 subjects. The full version of SMIC contains three
datasets: the SMIC-HS dataset recorded by a high speed camera
at 100 fps; the SMIC-VIS dataset recorded by a color camera at
25 fps; and the SMIC-NIR dataset recorded by a near infrared
camera at 25 fps (all with a spatial resolution of 640 × 480).
Ground truth annotations provide the frame numbers indicat-
ing the onset and offset frames. The MEs are labeled into three
emotion classes: positive, surprise and negative emotions. For
our experimentation it is decided to use only the SMIC-HS
dataset.

Secondly, the CASME II (Yan et al., 2014) database consists
of 247 spontaneous facial MEs image sequences from 26 sub-
jects. They were recorded using a high speed camera at 200 fps
and spatial resolution of 640 × 480. Ground truth annotations
not only provide the frame numbers indicating the onset and
offset but also the apex frames (the moment when the ME is
at its highest intensity). The MEs are labeled into five classes:
happiness, surprise, disgust, repression and others.
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Fig. 5: Grid division parameter evaluation

5.2. Parameter Analysis

To evaluate the impact of the different parameters on our
system, our proposed framework is tested while its parameter
values are varied. It is decided to evaluate the following pa-
rameters: the pyramid level (from 2nd to 4th level1), the grid
division (Gx = [4, . . . , 10] and Gy = [6, . . . , 12]) and orienta-
tion binning (O = [4, . . . , 10]). For classification, a multiclass-
SVM (one-vs-all) using a polynomial kernel of degree three is
trained. The hyperparameters are tuned by an exhaustive grid
search process. The results are tested by a Leave-One-Subject-
Out (LOSO) cross-validation.

The effect of the level of the Riesz pyramid is shown (Fig. 3).
In both the SMIC-HS dataset and the CASME II dataset extract-
ing the phase values from the 2nd level of the pyramid results
in a higher median accuracy. Furthermore, the effect of the an-
gle division for the MORF descriptor is shown (Fig. 4). In both
cases, the best angle division for the level that yields the best re-
sults (2nd) is between 6 and 7 divisions. The effect of the grid
division for the MORF descriptor is also shown (Fig. 5). In the
SMIC-HS dataset, the best grid division is between 7 and 10 for
Gx and 6 to 8 for Gy. In the CASME II dataset, the best grid
division is between 7 and 9 for Gx and 8 to 10 for Gy (However
there are some peaks when Gx is 10).

1The first level has the information of the highest frequency sub-band and
seems to carry an important amount of undesired noise, therefore is not included
in our analysis.



6

SMIC-HS

Feature
Pyramid

Level

Non
Amplified

A-MORF
α = 5 α = 10

Acc F1-mea Acc F1-mea Acc F1-mea

MORF
2 65.45% 0.6466 58.79% 0.5764 53.33% 0.5266
3 57.58% 0.5733 61.21% 0.6059 58.18% 0.5822
4 50.30% 0.5043 50.30% 0.5054 50.91% 0.5158

F-MORF
2&3 58.79% 0.5937 60.00% 0.5999 59.39% 0.5895
3&4 54.55% 0.5507 56.36% 0.5695 58.18% 0.5798

2&3&4 58.79% 0.5913 58.79% 0.5794 59.39% 0.5868

Table 1: ME classification for SMIC HS in terms of accuracy and F-measure

CASME II

Feature
Pyramid

Level

Non
Amplified

A-MORF
α = 5 α = 10

Acc F1-mea Acc F1-mea Acc F1-mea

MORF
2 56.91% 0.5878 58.94% 0.6045 58.54% 0.5983
3 55.69% 0.5545 57.72% 0.5779 58.94% 0.5762
4 52.85% 0.5110 53.66% 0.5183 54.88% 0.5355

F-MORF
2&3 58.54% 0.5923 62.20% 0.6304 62.20% 0.6171
3&4 59.35% 0.5871 56.10% 0.5549 56.50% 0.5576

2&3&4 59.76% 0.6012 58.54% 0.5850 58.13% 0.5827

Table 2: ME classification for CASME II in terms of accuracy and F-measure

5.3. MORF variations

Some variations to the MORF descriptor are tested by com-
bining different data and methodologies. Firstly, the results of
two or more MORF histograms are merged from different lev-
els of the Riesz pyramid (F-MORF). The idea is to use the ori-
ented phase calculated from different sub-bands to potentially
complement the information for modelling an ME. Secondly, it
is decided to use the amplification process of (Wadhwa et al.,
2013) in which the subtle phase changes are multiplied by a
scalar without amplifying the noise (A-MORF). This is done
by multipling the quaternionic filtered phase (φ cos(θ), φ sin(θ))
by a magnification factor (α), then, after performing a quater-
nion exponentiation on it, the amplified quaternioninc phase is
extracted:

sin(αφ) cos(θ), sin(αφ) sin(θ) (10)

Finally, this representation is used to calculate the MOR image
pair and extract the MORF descriptor. The pyramid levels can
also be both merged and amplified to obtain AF-MORF. The
recognition performance of the proposed method is measured
using both recognition accuracy and F-measure. The results are
shown in Table 1 and Table 2.

For SMIC-HS better results are obtained using MORF and
CASME II using FA-MORF. This discrepancy comes from the
differences of the datasets. The subjects in CASME II were at a
closer distance to the camera during video recording compared
to SMIC, thus the captured faces had a bigger resolution which
result in a shift of the ME motion to low frequencies. This
might explain why better results can be obtained using the 2nd
level of the Riesz pyramid in the SMIC-HS dataset but in the
CASME II dataset similar results are obtained both in the 2nd
and 3rd levels. Consequently merging these two levels yields
better results for CASME II but not for SMIC-HS. Furthermore
the CASME II videos were captured with a camera twice as
fast as those in SMIC-HS. This means that the phase differences
between frames in the CASME II database are smaller and can
potentially be improved by amplification which might explain

why A-MORF and FA-MORF perform better in the CASME II
dataset.

5.4. State-of-the-art Comparison
Our classification results are compared with some represen-

tative methods from the state of the art2 in Tab.3. For the LBP-
based methods, it can be seen how they have improved from the
baseline proposed by (Li et al., 2013). Each method extracts
spatio-temporal information by creating a different code-book
based on the intensity difference between a pixel and its 3D
neighborhood. One reason why these methods tend to do bet-
ter in the dataset CASME II is that, as previously mentioned,
its images have a bigger resolution which means extracting bet-
ter textured information of the MEs. For the OF-based meth-
ods, each method extracts motion information from OF. The
best results come from Bi-WOOF (Liong et al., 2014a) and OF
Maps (Allaert et al., 2017) for calculating the motion between
onset and apex frames (instead of calculating the motion be-
tween consecutive frames). Furthermore, OF Maps extract the
coherent movement on the face in different locations and use it
to filter residual motion vectors (noise). For the deep learning
methods, each method either trains or tunes a pre-trained convo-
lutional neural network (CNN) for extracting features and clas-
sification. Although these methods are becoming more widely
used in classification problems, they also struggle to obtain
good results when dealing with small datasets. And although
they obtain good results with the CASME II, they avoid using
a smaller dataset such as SMIC-HS.

Our proposed approach does not yield the best possible re-
sults. It is worth noting that, while other authors have been able
to obtain better results starting from a baseline method (like
LBP-TOP in the case of the LBP-based methods and HOOF
in the case of OF-based methods) and propose an improved
method by changing the way they extract features and how to
code them (quantizing the values, developing a weighted his-
togram, pre-selecting regions of interest and/or frames to pro-
cess, etc.), our method uses a more basic featuring extracting
method. It can be imagined that applying a more sophisti-
cated method to extract information from Riesz phase variations
might result in better results. All things considered, our method
is still able to surpass several descriptors in both datasets.

Our method outperforms other Riesz based methods like (Oh
et al., 2015, 2016) by approximately 20%. However, (Liong and
Wong, 2017) remains as the best Riesz phase-based method.
It’s worth noting that the performance of the previous version
of this method, Bi-WOOF (Liong et al., 2014a), is greatly im-
proved by adding Riesz phase difference between onset and
apex frames (Liong and Wong, 2017). This implies that our
results could be improved by complementing our phase-based
features with other motion and texture features.

One cause of error might come from the limitations of the
local orientation of the monogenic signal. The local orientation
θ represents the dominant direction in the image at any given
point. This representation comes from the formulation of the

2For a more thorough comparison, we refer the reader to state-of-the-art
surveys presented in (Oh et al., 2018) and (Goh et al., 2018)



7

monogenic signal which assumes images as intrinsically one-
dimensional signals. This means that the monogenic signal is
useful for modelling image features such as edges and lines that
have variation in one direction only, but cannot model image
features such as corners that have variation in two directions
(intrinsically 2D signals) (Wietzke et al., 2009).

6. Conclusion

A facial micro-expression recognition method based on the
quaternionic oriented phase representation of the multi-scale
monogenic signals is proposed. Phase variations are quickly
extracted from a video using an approximate Riesz transform
called the Riesz pyramid. The temporal evolution of a micro-
expression is modelled as an image pair that contains the mean
oriented phase component of the monogenic signal which aims
to reduce the effects of image noise. Furthermore, this model
is extended into an easily-adaptable and low-dimensional fea-
ture descriptor which can also contain the amplification of the
oriented phase or concatenate the multi-scale oriented phase
representation. Our method achieves an accuracy of 65.45%
and an F-score of 0.6466 for the SMIC-HS dataset and an ac-
curacy of 62.20% and an F-score of 0.6304 for the CASME II
dataset. These are the best results for methods focused on Riesz
transform based features. It is also competitive against methods
based on widely researched features such as LBP and OF and
even against deep learning methods. Furthermore, it obtains the
best results in the SMIC-HS for methods focused in one single
type of feature.

Our Riesz pyramid-based method has shown itself to be a
powerful tool for ME recognition. Adopting a more sophisti-
cated feature extraction and codification, along with comple-
menting the Riesz phase variations with motion or texture in-
formation, could be used to create an improved ME analysis
technique in the future. In addition, since there is already a
method that uses a similar basis for ME spotting Duque et al.
(2018a), both methods can be merged for an integrated Riesz
phase-based spotting and recognition framework.
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Micro-Expression Classification Methods

Family
Method Accuracy F-measure

Features Paper SMIC HS CASME II SMIC HS CASME II

LBP
based

LBP-TOP Li et al. (2013) 48.78% − − −

LBP-MOP Wang et al. (2015) 50.61% 45.75% − −

STLBP-IP Huang et al. (2015) 57.93% 59.51% 0.583 0.573

STCQLP Huang et al. (2016b) 58.39% 64.02% 0.6381 0.5836
Di-STLBP-IP Huang et al. (2016a) 63.41% 64.78% − −

OF
based

OS Liong et al. (2014a) 53.56% − − −

FDM Xu et al. (2017) 54.88% 41.96% 0.538 0.4053
HFOFO Happy and Routray (2018) 51.83% 56.64% 0.5243 0.5248

Bi-WOOF Liong et al. (2014a) 62.20% 58.85% 0.62 0.61
OF Maps Allaert et al. (2017) − 65.35% − −

Deep
learning

Imagenet Patel et al. (2016) 53.60% 47.30% − −

3D-FCNN Li et al. (2018a) 55.49% 59.11% − −

CNN + LSTM Kim et al. (2016) − 60.98% − −

VGGNet Li et al. (2018b) − 63.30% − −

Others

Monogenic + LBP-TOP Oh et al. (2015) − − 0.44 0.41
Riesz Wavelet + LBP-TOP Oh et al. (2016) − − − 0.43

OSW-LBP-TOP Liong et al. (2014b) 53.66% 42.00% 0.54 0.38
ST-Gabor Lin et al. (2018) 54.47% 55.28% − −

Bi-WOOF + Riesz Phase Liong and Wong (2017) 68.29% 62.55% 0.67 0.65

Our
method

MORF 65.45% 56.91% 0.6466 0.5878
F-MORF 58.79% 59.76% 0.5937 0.6012

FA-MORF 61.21% 62.20% 0.6059 0.6304

Table 3: Comparison of micro-expression recognition performance in terms of accuracy and F-measure for feature-extraction state-of-the-art methods.
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