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florence.tupin@telecom-paristech.fr

LOBRY Sylvain, Laboratory of Geo-information Science and Remote Sensing,
Wageningen University, 6708 PB Wageningen, The Netherlands
work@sylvainlobry.com

Abstract
Due to speckle phenomenon, some form of filtering must be applied to SAR data prior to performing any polarimet-
ric analysis. Beyond the simple multilooking operation (i.e., moving average), several methods have been designed
specifically for PolSAR filtering. The specifics of speckle noise and the correlations between polarimetric channels
make PolSAR filtering more challenging than usual image restoration problems. Despite their striking performance,
existing image denoising algorithms, mostly designed for additive white Gaussian noise, cannot be directly applied to
PolSAR data. We bridge this gap with MuLoG by providing a general scheme that stabilizes the variance of the po-
larimetric channels and that can embed almost any Gaussian denoiser. We describe MuLoG approach and illustrate its
performance on airborne PolSAR data using a very recent Gaussian denoiser based on a convolutional neural network.

1 Introduction
Image restoration is an old topic in image processing that
has been periodically revived by methodological break-
throughs such as the neighborhood filters (developed by
Lee and Yaroslavsky in the 80s), Markov random fields,
total variation minimization, wavelets filtering, sparse
representations, patch-based methods, and most recently,
deep neural networks. These methodologies have been
adapted to SAR intensity images to reduce fluctuations
due to speckle. Many adaptations are based on a log
transform that turns speckle fluctuations into an additive
component that is approximately Gaussian. The exten-
sion of these methodologies to polarimetric SAR images
is more challenging due to the lack of such variance sta-
bilization transform. Only a few methodologies could
be applied to PolSAR filtering, mostly “selection” type
algorithms that perform a (weighted) average over pix-
els identified as sufficiently similar (notably, Lee’s filters,
IDAN [9], Pretest [3] and NL-SAR[5]).
The aim of this paper is to show that there exists a trans-
formation that (approximately) stabilizes the variance of
PolSAR data and that an alternating optimization scheme
can be applied to include very easily, like a “black-box”,
almost any Gaussian denoiser. The general framework of
the method, called MuLoG, has been very recently de-
scribed in [4]. We illustrate it here in the case of PolSAR
data and show that it can successfully include a denoiser
based on a deep neural network, trained over natural im-
ages, because such a network encodes information about

geometrical and textural patterns encountered in all im-
ages.
The paper structure is the following: we first introduce
the variance stabilization transform, then we describe
MuLoG algorithm and analyze its performance with a de-
noiser based on deep learning for PolSAR covariance es-
timation.

2 PolSAR variance stabilization
Due to the interference between echoes retro-diffused
by the scatterers located within the same radar resolu-
tion cell, the diffusion vector ~k = (kHH kHV kVV)t ∈
C3 is highly sensitive to the configuration of scatter-
ers. Changes in this configuration lead to fluctuations of
the diffusion vector. Under Goodman’s fully-developed
speckle model, these fluctuations can be modeled by a
multivariate complex circular Gaussian distribution. The
covariance of this Gaussian distribution carries infor-
mation about the polarimetric behavior of the medium
within the resolution cell.
A polarimetric covariance matrix Σ can be estimated
from L samples of diffusion vectors ~k1, . . . , ~kL by com-
puting the empirical covariance:

C =
1

L

L∑
t=1

~kt.~k
∗
t , (1)

where ∗ denotes the Hermitian transpose. If vectors ~kt



are supposed to be Gaussian-distributed then the empiri-
cal covariance C follows a circular complex Wishart dis-
tribution, for L ≥ D:

pC(C|Σ) =
LLD|C|L−D

ΓD(L)|Σ|L
exp

(
−L tr(Σ−1C)

)
, (2)

where D is the dimension of the diffusion vector (D = 3
under the reciprocity assumption considered in this pa-
per, and D = 2 for dual polarization), L is the number of
looks, Γ stands for the multivariate gamma function and
tr() denotes the matrix trace.
The empirical covariance matrix is unbiased (E[C] =
Σ), but the fluctuations of the empirical covariance ma-
trix C depend on Σ. In particular, according to [6],
Var[tr(C)] = 1

L tr(Σ2), which shows that speckle fluctu-
ations cannot be considered as a stationary additive con-
tribution to the signal of interest.

Speckle fluctuations can be made almost signal-
independent by the matrix logarithm transform:

C 7→ C̃ = logC = E diag(Λ̃)E−1 , (3)

where Λ̃i = log Λi , E ∈ CD×D is the matrix whose
column vectors are eigenvectors (with unit norm) of C,
Λ ∈ RD

+ is the vector of corresponding eigenvalues, such
that C = E diag(Λ)E−1, and Λ̃ ∈ RD. Its inverse trans-
form is the matrix exponential defined similarly. Log-
transformed covariance matrices C̃ are distributed ac-
cording to a Wishart-Fisher-Tippett distribution [4]:

pC̃(C̃|Σ̃) = κeL tr(C̃−Σ̃) exp
(
−L tr(eC̃e−Σ̃)

)
, (4)

with κ a scalar that depends only on D, L and C̃
and that will be irrelevant when estimating Σ̃ from a
given C̃. This distribution is the polarimetric general-
ization of the well-known Fisher-Tippett distribution of
log-transformed intensity images corrupted by speckle.
The first two moments of the trace of C̃ are known in
closed form [1]:

E[tr C̃] = tr Σ̃ +

D∑
i=1

Ψ(0, L− i+ 1)−D logL ,

and Var[tr C̃] =

D∑
i=1

Ψ(1, L− i+ 1) , (5)

which shows that, (i) like in the case of a single-channel
intensity image, a bias is present when averaging log-
transformed data, and (ii) the variance (of the trace) is
signal-independent (i.e., independent from Σ). Numer-
ical experiments show that not only the variance of the
trace is stabilized, but the variance of each term of the co-
variance matrix C is approximately signal-independent.
The matrix logarithm is thus a good candidate to extend
Gaussian denoisers to PolSAR covariance estimation.

3 MuLoG framework
We give here a summarized presentation of MuLoG ap-
proach in the case of polarimetric images. More technical

details are available in [4]. We then show how to include
a denoising step based on a deep neural network.

The general scheme of MuLoG is depicted in figure 1.
Several ingredients are combined in order to include a
Gaussian denoiser within a generic approach for PolSAR
covariance estimation:

1. speckle fluctuations are made almost signal-
independent by applying a matrix logarithm on the
data,

2. the complex entries of the covariance matrices are
decomposed into real-valued channels,

3. these channels are whitened and equalized,

4. the log-likelihood of log-transformed covariances
is maximized while enforcing some form of regu-
larization using alternating minimization.

Prior to performing the matrix logarithm transforma-
tion, off-diagonal elements of the covariance matrices
are shrunk so as to ensure that all covariance matrices
are full rank (starting from SLC PolSAR images, the co-
variance matrix at pixel t is initially the rank-one ma-
trix ~kt.~k

∗
t ). Channels whitening is performed so that

each channel be processed independently by the Gaussian
denoiser while introducing as few artifacts as possible.
A whitening transform is defined based on a principal
component analysis of the real-valued channels extracted
from the matrix logarithm of the speckle-corrupted data.
We define by Ω : x 7→ Σ̃ the affine mapping that trans-
forms whitened and equalized channels x back into a
complex-valued covariance (in matrix-log domain). Fig-
ure 2 illustrates how a single look PolSAR image (shown
with Pauli color-coding in Fig.2(a)) can be decomposed
into variance-stabilized and whitened real-valued chan-
nels (first 3 channels shown in L∗a∗b∗ color-coding in
Fig.2(e), last 3 channels shown in Fig.2(f)). The estima-
tion of the matrix-log transform of (speckle-free) covari-
ance matrices x̂ from the noisy matrix-log-transformed
channels y = Ω−1(C̃) can be formulated within the
maximum a posteriori framework as the following mini-
mization problem:

x̂ ∈ argmin
x

− log py(y|x) +

D2∑
i=1

R(xi) , (6)

where, from (4), we have (up to a constant)

− log py(y|x) = L

n∑
k=1

tr
(

Ω(xk) + eΩ(yk)e−Ω(xk)
)

(7)

and the final estimate Σ̂k at pixel index k is defined as
Σ̂k = exp Ω(x̂k). The same regularization R is ap-
plied separately to each (real-valued) channel since after
whitening and equalization these channels are approx-
imately i.i.d. By applying the variable splitting z =
x and the alternating directions method of multipliers



Figure 1: MuLoG approach to speckle reduction in PolSAR data.

(ADMM), the minimization problem is turned into the
following sequence of steps:

ẑ ← argmin
z

β

2
||z − x̂ + d̂||2 +

D2∑
i=1

R(zi) , (8)

d̂← d̂ + ẑ − x̂ , (9)

x̂← argmin
x

β

2
||x− ẑ − d̂||2 − log py(y|x) , (10)

where the first step amounts to a Gaussian denoising, the
second step is an update of so-called scaled Lagrange
multipliers, and the third step is a non-linear processing
performed independently at each pixel. Because of the
matrix exponentials that involve eigen-decompositions,
this last step is not trivial. An iterative procedure is de-
scribed in [4].
Since (8) corresponds to a Gaussian denoising step of
each channel of the images x̂ − d̂ for a noise variance
equal to 1/β, the idea of plug-and-play ADMM meth-
ods is to perform (8) using an off-the-shelf Gaussian de-
noiser [2, 4] (the regularization R is then not explicitly
defined). In this paper, we consider a very recent Gaus-
sian denoiser based on a deep convolutional neural net-
work described in [11]. The neural network combines
several elements that have proven very effective: batch
normalization [8] (normalization of the output of each
layer to improve the learning speed), residual learning [7]
(i.e., learning of how to recover the noise to remove to ob-
tain a restored image, rather than learning how to directly
restore the image) and dilated convolutions [10] (to cap-
ture multi-scale features without resorting to dimension
reduction/augmentation). This network has been trained
over a set of more than 5000 natural images.

4 Results and discussion
We illustrate MuLoG on an airborne full-polar SAR im-
age obtained with the E-SAR sensor of the DLR (image
over Oberpfaffenhofen provided with PolSARpro). In or-
der to reduce speckle correlation, we downsampled by a
factor 2 the image prior to filtering. Figure 2 illustrates
the original image (region of interest of size 351 × 351
pixels), the result of a boxcar filtering (i.e., multilooking)
over a 3 × 3 window, the result of NL-SAR [5] which
can be considered as a state-of-the-art speckle reduction
technique for PolSAR data (the processing took 20s with
the default parameters on a laptop with a quad-core i7-
4980HQ CPU @ 2.80GHz) and the result using MuLoG

with the deep CNN of [11] (the processing took 2min
with a CPU implementation of the CNN on Matlab). The
multi-looking process degrades the resolution: point-like
targets are spread and small details are lost while homo-
geneous regions are insufficiently smoothed. In contrast,
both NL-SAR and MuLoG preserve the resolution while
performing a strong smoothing of homogeneous areas.
Some residual noise can be observed on the NL-SAR re-
sult in the regions where too few similar patches could
be found, while MuLoG offers a strong smoothing every-
where. The two results are in good agreement in most
regions. Small discrepancies can be observed on some
isolated targets that are sometimes suppressed in MuLoG.
The texture of the vegetated area also does not seem very
natural with MuLoG. The performance of MuLoG+CNN
could most probably be improved by performing a train-
ing specific to PolSAR images. Even with a network
trained over natural images, the performance is very good
which seems to indicate that the network captured infor-
mation about points, lines, edges or textures that is gen-
eral enough to be common to several image modalities.
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(g) color composition of the first 3 channels after matrix logarithm and whitening, at the beginning (e) and at the end
(g) of the denoising procedure; (f) and (h) color composition of the last 3 channels (i.e., the least significant channels
according to the PCA).
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