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Abstract

Graph anomaly detection have proved very useful in a wide range of
domains. For instance, for detecting anomalous accounts (e.g. bots, ter-
rorists, opinion spammers or social malwares) on online platforms, intru-
sions and failures on communication networks or suspicious and fraudulent
behaviors on social networks. However, most existing methods often rely
on pre-selected features built from the graph, do not necessarily use local
information and do not consider context based anomalies. To overcome
these limits, we present CoBaGAD, a Context-Based Graph Anomaly
Detector which exploits local information to detect anomalous nodes of a
graph in a semi-supervised way. We use Graph Attention Networks (GAT)
with our custom attention mechanism to build local features, aggregate
them and classify unlabeled nodes into normal or anomaly. Finally, we
show that our algorithm is able to detect anomalies with high precision
and recall and, outperforms state-of-the-art baselines.

Keywords : Graph neural network, Graph anomaly detection, Node
classification.

1 Introduction

Anomaly detection has been a field of intense research for the last decades,
both for graph data [3] and for vector data [24]. According to these last ones,
anomalies are substantial variations from the norm. In a graph, a node can
be an anomaly because of its neighborhood, its attributes or a combination of
both. For instance, in a graph with community structure (i.e. containing sets
of highly connected nodes) an anomaly can correspond to a node which do not
really belong to any community either because it is isolated or because it forms
a bridge between two groups. In an attributed graph with assortativity, it can
be a node whose attributes are significantly different from those of its neighbors.

0Supplementary Information available online: https://github.com/vaudaine/

Detection-of-contextual-anomalies-in-attributed-graphs

1

https://github.com/vaudaine/Detection-of-contextual-anomalies-in-attributed-graphs
https://github.com/vaudaine/Detection-of-contextual-anomalies-in-attributed-graphs


In this paper, we introduce and study a new particular case of node anomaly:
context-based anomaly. This kind of anomaly is relatively frequent in practice.
For instance, in a bibliographic network where the nodes correspond to papers
assigned to thematic categories and there is a link from a document node to
another if the first one cites the second, a contextual anomaly can correspond
to a node belonging to the category ‘Fruit’ (because it contains the word ‘Ap-
ple’) which is cited by documents belonging to the category ‘computer science’.
Context-based anomalies are also often associated with fraud or corruption. In
those situations, experts try to use ”patterns” or contexts to find these fraud
or corruption cases. For instance, a company has a CEO or an accountant who
has an account in a tax haven then this company is more likely to be fraudu-
lent. To define this kind of anomaly, we consider that there exists an unknown
small subgraph (a context), and a distinguished node in this subgraph, such
that each time this subgraph occurs in the data, then the node corresponding
to the distinguished node is an anomaly with a high probability p. In this paper,
for simplicity, we consider the case p = 1. We call this unknown subgraph a
context and the corresponding anomalies ”context-based anomalies”. We ar-
gue that these context-based anomalies are interesting and, as the experiments
show, not always well detected by current approaches.

Their detection can be tackled in a supervised, semi-supervised or unsuper-
vised way. The first one supposes that a training sample consisting of instances
of the two classes (normal nodes and anomaly nodes) is available. In the second
one, a set of unlabeled instances is also exploited during training while in the
latter one, no labels are available. In this paper, we consider the semi-supervised
case. More precisely, we use a transductive setting: the data consist of a sin-
gle graph for which a proportion of the nodes is labeled (either ”anomaly” or
”normal”) and other nodes have no labels. The goal is to find the labels of
the unlabeled nodes. The difference with a fully supervised setting is that the
learning algorithm can use the unlabeled nodes even if it has no access to their
labels which is helpful since removing them would change the connectivity of
the graph and thus disrupt the learning.

Generally, node anomaly detection is addressed by finding a representation
of the nodes in a feature space and then identifying anomalies in this space. The
features can be hand-made or automatically learned, for instance by a Graph
Neural Network (GNN) which is the state of the art for node classification and
more generally for solving many supervised or unsupervised problems on graphs.
In this paper, we propose to use this approach to automatically and simultane-
ously learn a suited representation of the nodes and detect the anomalies. More
precisely, we propose CoBaGAD (Context-Based Graph Anomaly Detector) a
semi-supervised algorithm to detect graph anomalies. CoBaGAD is a variation
of Graph Attention Networks (GAT) where the attention mechanism has been
changed by a custom one allowing better feature selection.

To carry out an experimental evaluation of CoBaGAD, we need datasets.
However, to our knowledge, real data for this kind of anomaly is not publicly
available. Thus, we used synthetic and real graph data in which we artificially
introduced context-based anomalies.
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Our contributions are:

� We define a new kind of node anomaly in a graph.

� We propose a GNN architecture to detect it.

� We validate our model on several kinds of graph with different pattern
anomalies and compare it with GAT, GCN, GraphSage and Node2vec +
LOF.

The paper is organized as follows. First, we review related works. We
define the problem in Section 3 and present our method to detect context-based
anomaly in attributed graphs in Section 4. Then, we describe our evaluation
protocol and the experiments carried out to evaluate the ability of our method
to detect anomalies. Finally, we discuss the obtained results which are generally
better than those provided by state of the art methods.

2 Related work

We can distinguish two main fields of research in anomaly detection according
to the type of data investigated. First, anomaly detection with tabular data,
where the elements (or instances) are described by feature vectors and which
aims at finding vectors in the space that are ”far” from the others. Different
criteria have been proposed to quantify the notion of ”far” from the others.
On the other hand, graph anomaly detection deals with relational data. While
they do not use the same type of data, these fields share common ideas. In this
section, we review state-of-the-art methods for both types of data and, finally,
for graph mining. Both fields have variations as static and dynamic anomaly
detection. Thereafter, we will focus only on static data.

2.1 Anomaly detection with vector data

In the literature, a large number of methods have been proposed to solve the task
of anomaly detection on vector data [17] [33]. They can be classified in several
families. The first family, detailed in particular in [31], uses a probability model
to describe the available instances and then identifies the anomalies as elements
having a low probability of occurrence according to the model generated from
the data. The second approach, based on notions of distance or neighborhood
detects anomalies by looking for elements that are too far from their neighbors
in the representation space or whose neighborhood is not sufficiently dense [20]
[1] [34]. Among the methods which directly exploit the neighborhood, we can
mention for instance [30] [20][4] and among those which estimate the density
around an instance, LOF (Local Outlier Factor) [8]. We can also cite methods
based on the construction of forests such as iForest [23] or iNNE [5], which
consist in recursively partitioning all the instances using attributes so as to
build a tree in which an instance located in a leaf far from the root is more
likely to be an anomaly than a less distant instance. However, comparative
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studies of these methods have highlighted difficulties that can lead to a decrease
in their performance, in particular the curse of dimensionality when the number
of attributes is high or even the imbalance of the data.

2.2 Anomaly detection with graph data

Concerning anomaly detection with graph data, the methods proposed in the
literature rarely aim at finding the same type of anomalies but they can be
classified into different categories depending on the kind of graph that they deal
with. The first kind is plain graph which is a graph without features. Scan
[39] and PAICAN [6] are graph clustering algorithms that detect anomalies
as byproducts. Such anomalies are usually bridges between communities as
in [37]. Structural anomalies such as anomalous edges or irregular subgraphs
can be detected by Autopart [10], [27] and [12]. For its part, OddBall [2] is
an approach based on power laws which detects elements of the graph whose
characteristics deviate from these power laws, for instance nodes with very high
degree. By this way, this method can detect near stars, near cliques, dominant
edges and heavy vicinity in a weighted graph. On the other hand, some methods
[26] [28] [29] have been proposed to deal with attributed graphs. FocusGo [29]
is a method that focuses on user-specific attributes to cluster nodes that are
similar. Outliers are defined as nodes which structurally belong to a cluster but
deviate from its focus attributes. Recently, an extension [28] of this method has
been proposed. It is able to both find communities and extract local information
(find focus features). Anomalies are nodes or groups of nodes that cannot be
easily summarized by a community and some focus features. GOutrank [26] and
ConOut [32] are outlier ranking techniques that find subgraphs as context of
nodes and subspaces of their features to focus on those that deviate from these
subspaces. Thus, like in [28] [29], anomalies are nodes whose features deviate a
lot from those of their neighbors.

2.3 Machine learning and graph mining

In recent years, machine learning has become more popular to mine graphs.
In particular, the rise of Word2vec [25] to deal with textual data has also led
to a renewal of graph embedding which aims to project a graph into a low-
dimensional space such that each node is represented by a vector [13] [41] [9].
In the context of anomaly detection, any method that deals with vector data
can be used afterwards. On the other hand, some embedding algorithms [40]
[18] have been created to both represent the nodes as vectors and find outliers.
However, they are unsupervised whereas we focus on semi-supervised learning.

Today, state-of-the-art methods such as SDNE [36], GraphSAGE [15], GCN
[19] or GAT [35] [7] use deep learning to mine graphs and they have notably
obtained very good performance on tasks such as node classification as shown in
recent surveys [38] [11]. But, to the best of our knowledge, these deep learning
methods have not been used in anomaly detection context. Thus, in this work,
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we continue down this path by proposing a deep learning based method to
classify nodes into two classes: anomalies and normal nodes in a semi-supervised
context.

3 Problem definition

We aim at detecting contextual anomalies which are nodes of the graph whose
local context exhibits a singular arrangement.

More formally, let G(V,E,X) be a graph on a set of n nodes V = {vi}, a
set of edges E = {eij} and a feature matrix X ∈ Rn×F . Each row ~xi in matrix
X is the feature vector of node vi. We consider that there exists an unknown
small subgraph (a context), and a distinguished node in this subgraph, such
that each time this subgraph occurs in the data, then the node corresponding
to the distinguished node is an anomaly (we give several examples in sec. 5.1).

We use a transductive setting: the data consists of a single graph for which
a proportion of the nodes is labeled (either ”anomaly” or ”normal”) and other
nodes have no labels. The goal is to find the labels of the unlabeled nodes.
However and most importantly, the conditions (i.e., the context) which make a
node anomalous are not known during the training of the model.

4 Our method: CoBaGAD

The main idea of our method is to learn simultaneously two two-classes classifiers
with attention mechanisms. Then, local information is aggregated to determine
whether a node is normal or not. Parameters of the network are learnt with a
standard classification loss in a semi-supervised fashion. For this, we propose
to improve Graph Attention Networks (GAT)[35].

Global affine transformation: The first step is an affine transformation
followed by a non linearity σ. This function σ is applied elementwise. The
parameters are the matrix W ∈ RF×F ′

and a row vector b ∈ R1×F ′
. The

identity matrix is denoted 1.

Λ = σ (XW + 1b) (1)

This step transforms the features ~xi independently for each node vi. The ith row
of Λ is the new representation for node vi, and notice that since the matrix W
is not necessarily square, this new representation can have more or less features
than ~xi.

Attention layer: It consists of k attention heads (k is an hyper-parameter).
For each attention head c ∈ {0, ..., k − 1}, we perform a local linear transfor-
mation followed by a weighted aggregate: First, a local linear transformation
Wc ∈ RF ′×F ′

is applied on the features:

Λc = ΛWc (2)
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Then, for each edge (i, j) ∈ E, the value ei,j,c is computed:

ei,j,c = LeakyReLU
(

(~λi,c � ~λj,c).~uc
)

(3)

where � is the Hadamard product, ~λi,c and ~λj,c are resp. the ith and jth rows

of Λc, and ~uc ∈ RF ′
is a parameter column vector. The Hadamard product

multiplied by ~uc corresponds to a weighted dot-product similarity.
The attention weights αi,j,c are defined as a normalized version of ei,j,c such

that for each node vi and each head c, they are positive and sum to 1:

αi,j,c =
exp(ei,j,c)∑

k∈N(i) exp(ei,k,c)
(4)

where N(i) is the set of the neighbors of node vi.
The next step is to compute for each node vi, a convex combination of the

~λj,c for all neighbors vj of vi using the attention weights. These weights can
be seen as the amount of information that flows between nodes. Finally, the
new representation ~hi of the node vi is given by the concatenation of all the
representations given by the k attention heads. i.e., each node vi is represented
by a row vector of F ′k features.

~hi,c =
∑

j∈N(i)

αi,j,c
~λj,c and ~hi = σ′

(
‖k−1c=0

~hi,c

)
(5)

where σ′ is an activation function and ‖ is vector concatenation.
The network can be a stack of several such attention layers, the output of

each layer being the input of the next layer.

Classification: To detect anomalies, we consider that each of the head in the
last layer is a 2-classes classifier (thus each ~hi,c ∈ R2) and we combine these

classifiers by taking the argmax. i.e., if the maximum component in vector ~hi
is in an odd index, vi is classified as an anomaly. If the maximum is in an even
index, then it is a normal node.

The parameters that must be learnt are: W , b, and for each of the k attention
heads in each attention layer: the matrix Wc and the vector ~uc. The hyper-
parameters are F ′, the number of attention layers, and the number k of heads
in each attention layer. The activation functions σ and σ′ can also be chosen
by the user.

CoBaGAD differs from GAT by two major points. First, we added a global
affine transformation (Eq.1) to embed the original features in a new space.
This operation improves the ability to detect anomalies and allows to reduce
the dimension of the problem. Then, we use a custom attention mechanism in
Eq.3. Rather than concatenating the new representations of a pair of nodes, we
compute a similarity between them with the Hadamard product. The attribute
weight vector ~uc focuses on most important part of this product for classification.
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5 Experiments

5.1 Dataset generation and description

As benchmarks corresponding to the kind of anomaly considered in this paper
are not publicly available, to experimentally evaluate our model and compare it
with the state of the art, we have artificially introduced context-based anomalies
in many different graphs, real or synthetic. Table 1 gives the name, the number
of nodes and the number of edges of these graphs. G0 is a random Erods-Renyi
graph. G1 and G4 are also generated, respectively with Dancer [22] and LFR
[21], which mimic real-world graph’s behaviour. Moreover, we chose real world
graphs that are common in the literature: Polblogs 1, Cora 2 and Facebook 3.

The following process has been applied to transform each of these graphs
G(V,E) into an attributed graph G(V,E,X). The feature vector ~xi of node vi
is defined as a one-hot vector of dimension 5. In our illustrative example related
to fraud detection, such features can be interpreted as the role in a company
(e.g. [0, 0, 1, 0, 0] represents the CEO and [0, 1, 0, 0, 0] represents an employee).
In the following, these one-hot vectors are flagged as colors: blue (B), green (G),
red (R), yellow (Y) and purple (P).

Among the nodes of the graph, a few percent (between 4% and 6%) are
flagged as anomalies if they follow a simple rule described by a context. These
rules are presented in Table 2. In this table, Ȳ means that anomalies are nodes
that have colour Y ellow whereas B means that anomalies have at least one
neighbor whose colour is Blue. For example, A6 represent nodes that have the
colour yellow (Y ) or have at least one neighbor with colour blue (B) and at
least one neighbor with colour yellow (Y ).

Note that our algorithm CoBaGAD does not know how the anomalies have
been created. Indeed, in a real-world case, the expert would flag some nodes as
anomalies but he does not necessary know the conditions which make a node
anomalous. Thus the goal of our algorithm is to recognize these anomalies with-
out this contextual knowledge.

5.2 Experimental setup

All nodes of the graphs belong to either the set of anomalies or the set of normal
nodes. In a transductive setup, nodes are split into train, validation and test
sets. The train set is made of 50% of the total anomalies. Then, we add as many
normal nodes as there are anomalies. The same applies for validation set with
25% of anomalies. The test set is composed of the remaining 25% of anomalies
and 25% of normal nodes of the graph. Balancing train and validation sets in
order to have as many normal nodes as anomalies improved a lot the results.

1http://konect.cc/networks/dimacs10-polblogs/
2https://relational.fit.cvut.cz/dataset/CORA
3https://snap.stanford.edu/data/egonets-Facebook.html
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Graph Name Nodes Edges
G0 Erdos-Renyi 10000 24907
G1 Dancer 10000 189886
G2 Facebook 4039 88234
G3 Polblogs 1224 16715
G4 LFR 1000 5622
G5 Cora 1433 5429

Table 1: Datasets characteristics: name of the graphs, number of nodes and
edges.

Anomalies Definition
A0 B ∧G
A1 (B ∧G) ∨ (B ∧R)
A2 (B ∧G) ∨ (R ∧ Y )
A3 Ȳ
A4 Ȳ ∧B
A5 Ȳ ∧B ∧ Y
A6 Ȳ ∨ (B ∧ Y )

Table 2: Anomalies characteristics. B = blue, G = green, R = red, Y = yellow,
P = purple. Ȳ means that anomalies are nodes that have colour Y . B means
that anomalies have at least one neighbor whose colour is B.

Thus a part of negative examples (normal nodes) is ignored during training.
Due to space limitations, we only show the results using this sampling strategy.
To ensure the reproducibility of our results, code and datasets are available in
our GitHub 4.

We compare our algorithm, CoBaGAD, with state-of-the-art methods in
node classification: Graph Convolution Networks [19] (GCN), Graph Attention
Networks [35] (GAT), GraphSAGE [15] with mean aggregator and an unsuper-
vised anomaly detection approach based on Node2vec [14] and LOF [8]. For
every deep learning method, we learn a single layer. Given the kind of studied
pattern, add more layers seems not relevant. For CoBaGAD, we use GELU [16]
as activation function σ and softmax as activation function σ′, F ′ = 2, k = 2 as
we learn two 2-classes classifiers for both anomalies and normal nodes. For GAT
and GraphSAGE, we use the same parameters. For GCN, we use localpool filter,
softmax as activation function and output of dimension 2. For every algorithm,
we tried two versions: without self-loop and with self-loops by adding the iden-
tity matrix to the adjacency matrix and we present the best results. We train
for 1000 epochs with Adam optimizer and a learning rate of 5e− 3 on the train
set and validate it at each step. The weights of the networks are kept when the
accuracy on the validation set is the highest. We use the standard categorical

4https://github.com/vaudaine/Detection-of-contextual-anomalies-in-attributed-graphs
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cross-entropy loss: L(Y true, Y pred) = −
∑k

j=1

∑N
i (ytrueij ×log(ypredij )). Concern-

ing the unsupervised approach, it is an association of Node2vec embedding and
LOF anomaly detection. First, we compute an embedding of the graph using
Node2vec with p = 1, q = 1 and dimension 128. It outputs a new representation
for every node vi. This representation is concatenated with its feature vector ~xi.
Finally, these vectors are fed to a LOF classifier in order to detect anomalies.

6 Results

For each model, each dataset and each type of anomaly, experiments are con-
ducted 12 times by changing the train/validation/test split. We choose the 3
best results on the validation and report the mean and standard deviation of
precision obtained on the test set. These results can be found in Table 3. Due
to space constraints, we did not report results for the unsupervised approach
combining Node2vec and LOF since the precision was very low as expected (be-
tween 0% and 20%). Also, the recall on anomalies, and the recall and precision
on normal nodes are not reported. They are indeed very high for all graphs and
type of anomaly (most of the time above 98%) and no significant differences can
be observed between the different models. These results are however available
in additional materials 5.

The results show that our algorithm achieves state-of-the-art performance
across all datasets and anomalies. More specifically, for A0, A1 and A2 which all
are anomalies based on the pattern B ∧G, our method always outperforms the
other competitors (except for A0, G5 where it is still very relevant). We are able
to improve upon GAT, our principal contendor, by at least 2% on A0, G0 up
to 62% on A0, G2. Attention based methods are better than the others (GCN,
GraphSage, Node2vec + LOF) when dealing with these types of anomaly.
Anomalies A3 to A6 rely on the pattern Ȳ which means that the considered
nodes are yellow. This means that the information about the node itself is
required. A3 is a very simple pattern where anomalies are defined by the sim-
plest pattern: nodes are just yellow. In that case, we can suppose that it is
easy for many algorithms to perform well on detecting those nodes. In fact,
GraphSAGE shows good performance for most of the graphs but lack a bit of
consistency. GCN is more consistent but results are worse than those provided
by GraphSAGE. While GAT fails to show good performance, our method is the
most consistent and show very good results in general. Then, for A4 to A6, as
the pattern becomes more complex, CoBaGAD remains the only method that,
except a few cases, correctly detects the anomalies.

7 Conclusion

We have defined a new kind of anomaly based on a context. Such anoma-
lies follow a simple pattern. Then, we have presented Context Based Graph

5https://github.com/vaudaine/Detection-of-contextual-anomalies-in-attributed-graphs
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A0 G0 G1 G2 G3 G4 G5

CoBaGAD 0.98± 0.03 0.96± 0.03 0.95± 0.03 0.87± 0.09 0.85± 0.13 0.92± 0.12
GAT 0.96± 0.04 0.83± 0.02 0.33± 0.08 0.55± 0.08 0.59± 0.13 0.93± 0.1
GCN 0.34± 0.02 0.12± 0.01 0.11± 0.0 0.18± 0.02 0.31± 0.03 0.26± 0.02

GraphSage 0.53± 0.01 0.56± 0.03 0.63± 0.05 0.44± 0.08 0.36± 0.08 0.52± 0.03

A1 G0 G1 G2 G3 G4 G5

CoBaGAD 0.96± 0.03 0.98± 0.02 0.78± 0.1 0.73± 0.05 0.72± 0.15 0.85± 0.12
GAT 0.74± 0.3 0.55± 0.21 0.51± 0.14 0.63± 0.07 0.46± 0.19 0.8± 0.18
GCN 0.34± 0.02 0.19± 0.03 0.13± 0.02 0.19± 0.03 0.34± 0.04 0.26± 0.01

GraphSage 0.46± 0.04 0.5± 0.02 0.51± 0.06 0.39± 0.06 0.38± 0.07 0.47± 0.03

A2 G0 G1 G2 G3 G4 G5

CoBaGAD 0.61± 0.04 0.62± 0.06 0.58± 0.2 0.47± 0.14 0.64± 0.15 0.72± 0.06
GAT 0.52± 0.02 0.42± 0.1 0.29± 0.03 0.35± 0.06 0.3± 0.03 0.51± 0.11
GCN 0.27± 0.02 0.12± 0.0 0.14± 0.01 0.2± 0.04 0.25± 0.02 0.23± 0.03

GraphSage 0.33± 0.01 0.38± 0.02 0.44± 0.03 0.44± 0.05 0.33± 0.03 0.38± 0.01

A3 G0 G1 G2 G3 G4 G5

CoBaGAD 0.99± 0.01 0.99± 0.01 0.95± 0.05 0.91± 0.13 0.89± 0.15 0.93± 0.02
GAT 0.82± 0.07 0.79± 0.03 0.78± 0.07 0.55± 0.03 0.43± 0.01 0.61± 0.09
GCN 0.95± 0.02 0.97± 0.02 0.91± 0.07 0.8± 0.21 0.94± 0.08 0.78± 0.04

GraphSage 1.0± 0.0 0.99± 0.01 0.97± 0.04 0.71± 0.1 0.68± 0.24 0.97± 0.03

A4 G0 G1 G2 G3 G4 G5

CoBaGAD 0.9± 0.1 0.95± 0.04 0.97± 0.04 0.8± 0.07 0.62± 0.1 0.89± 0.09
GAT 0.5± 0.07 0.77± 0.15 0.77± 0.03 0.67± 0.23 0.51± 0.1 0.43± 0.05
GCN 0.44± 0.01 0.7± 0.03 0.71± 0.12 0.6± 0.12 0.65± 0.07 0.35± 0.02

GraphSage 0.46± 0.03 0.73± 0.02 0.72± 0.02 0.58± 0.11 0.61± 0.04 0.41± 0.03

A5 G0 G1 G2 G3 G4 G5

CoBaGAD 0.84± 0.02 0.9± 0.03 0.82± 0.07 0.61± 0.03 0.51± 0.23 0.84± 0.22
GAT 0.69± 0.11 0.74± 0.07 0.71± 0.09 0.57± 0.07 0.52± 0.09 0.46± 0.1
GCN 0.35± 0.01 0.67± 0.04 0.62± 0.07 0.6± 0.04 0.46± 0.13 0.23± 0.02

GraphSage 0.34± 0.01 0.68± 0.0 0.68± 0.06 0.51± 0.04 0.56± 0.06 0.3± 0.04

A6 G0 G1 G2 G3 G4 G5

CoBaGAD 0.9± 0.01 0.89± 0.05 0.54± 0.27 0.62± 0.2 0.26± 0.09 0.4± 0.04
GAT 0.55± 0.12 0.59± 0.12 0.39± 0.05 0.48± 0.1 0.27± 0.03 0.39± 0.03
GCN 0.38± 0.05 0.26± 0.09 0.2± 0.07 0.21± 0.01 0.32± 0.13 0.46± 0.11

GraphSage 0.67± 0.04 0.58± 0.05 0.48± 0.06 0.49± 0.16 0.48± 0.06 0.65± 0.14

Table 3: Precision of the detection of anomalies A0-A6 on several graphs (G0-
G5) in the testing set. Bold: best in column.

Anomaly Detector, CoBaGAD, an extension of the Graph Attention Networks
that focuses on detecting those anomalies. Through intensive transductive ex-
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periments, we demonstrate the ability of our method to identify such pattern
anomalies and to outperform state-of-the-art algorithms.
Different improvements can be addressed as future work such as scoring anoma-
lies instead of binary classifying. Another particularly interesting field of re-
search in the domain of anomaly detection is the interpretability of the detected
anomalies. The objective would be to be able to recover the context that defines
anomalies. Then, we will also study anomaly defined by contexts of larger di-
ameter. This will involve using networks with more layers to increase the ”field
of view”.
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