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Abstract: The photo-induced effects on sol–gel-based organo TiO2-SiO2 thin layers deposited by the
dip-coating technique have been investigated using two very different light sources: A light-emitting
diode (LED) emitting in the UV (at 365 nm, 3.4 eV) and an X-ray tube producing 40 keV mean-energy
photons. The impact of adding a photo-initiator (2,2-dimethoxy-2-phenylacetophenone-DMPA) on
the sol–gel photosensitivity is characterized namely in terms of the photo-induced refractive index
measured through M-line spectroscopy. Results show that both silica-titania sol–gel films with or
without the photo-initiator are photosensitive to both photon sources. The induced refractive index
values reveal several features where slightly higher refractive indexes are obtained for the sol–gel
containing the photo-initiator. UV and X-ray-induced polymerization degrees are discussed using
Fourier-transform infrared (FTIR) spectroscopy where the densification of hybrid TiO2-SiO2 layers is
related to the consumption of the CH=C groups and to the decomposition of Si-OH and Si-O-CH3

bonds. X-rays are more efficient at densifying the TiO2-SiO2 inorganic and organic network with
respect to the UV photons. Hard X-ray photolithography, where no cracks or damages are observed
after intense exposition, can be a promising technique to design submicronic-structure patterns on
TiO2-SiO2 thin layers for the building of optical sensors.

Keywords: sol–gel materials; X-ray photolithography; FTIR spectroscopy; photopolymerization

1. Introduction

The sol–gel chemistry process, based on hydrolysis and condensation reactions [1], is an elegant
technique used for the low-temperature synthesis of optical materials. This soft chemistry route allows
the fabrication of various optical elements in large applicative fields including the fabrication of
waveguides with a very high transparency in the telecommunication ranges [2–4], and diffraction
gratings [5,6] whose applications can be observed in solar applications [7]. It is even possible to
create Bragg gratings using the sol–gel approach through nanoimprinting processes [8], revealing the
potentiality to use this structure as strain and temperature sensors as it can be observed with bulk silica
glass or optical fibers [9,10]. Typically, metal alkoxides precursors (Ti, Zr, Si . . . .) are used to form
an inorganic metal oxides matrix (TiO2, ZrO2, SiO2 . . . ) or more hybrid structures. By varying the
chemical conditions and the molar ratio, the morphology of the induced materials is drastically affected.
It is thus possible to tailor their mechanical and optical properties namely in terms of absorption and
refractive index but also confer additional functionalities to the films by incorporation of molecules or
network modifiers [11]. The literature has largely described the behavior and the UV photosensitivity
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of sol–gel materials by the addition of a photo-initiator during the preparation of the mixture [12,13].
More specifically, the interaction of light with the material can be divided into two main classes
depending on the insolated photoresist. The first class corresponds to negative photoresists where
the insolated portion is polymerized under light exposure to form a densified and insoluble pattern.
The second class acts as positive photoresists. For this latter, the portion exposed to the radiation is
removed during the development process. Even if the UV photolithography is still widely used, the
existence of unconventional techniques (electron beam and X-ray photolithography) opens the way
to very-high-resolution structures at the nanometer scale and offers the possibility to functionalize
materials in extended and new ranges of fields. For example, very small and precise features in the
5 nm range were obtained with PMMA and inorganic metal halides [14]. X-ray photolithography was
also studied on both positive [15,16] and negative photoresists [17,18]. In [15], results showed that an
organic–inorganic sol–gel was photosensitive to soft X-ray synchrotron radiation with photon energies
ranging from 1 to 4 keV and that the obtained patterns had lateral dimensions close to 100 nm [16].
Another study performed on negative silica sol–gel films (methyltriethoxysilane-tetraethoxysilane)
exposed to harder X-rays (2.5–12 keV) revealed an important densification of the layers [18]. These
studies clearly show the benefits of such kind of radiations and open the way to the exploitation of
sol–gel films to create sub-micrometric structures in the field of miniaturized sensors where the refractive
index remains a crucial parameter. However, to our knowledge, there are no studies regarding the
effect of X-ray irradiation performed on TiO2-SiO2 thin films. To this aim, we have performed a study
on two hybrid TiO2-SiO2 layers. The mixture is strictly the same; however, to highlight the possible
benefit of the photosensitizer on the optical properties after X-ray exposure, the first one contains a
photo-initiator at a fixed concentration, whereas the second is photo-initiator-free. Both sol–gel layers
were exposed to hard X-ray photons (40 keV) and UV photons (365 nm–3.4 eV) in order to check
the induced photosensitivity. Further investigations on these films have been carried out by M-line
spectroscopy to have access to the induced refractive index, and Fourier-transform infrared (FTIR)
spectroscopy, revealing the optical and structural modifications caused by the UV or X-ray exposure.

2. Materials and Methods

For all the experiments, we have used a homemade and hybrid sol–gel composed of TiO2-SiO2 whose
preparation is shown in Figure 1. This sol–gel was developed and optimized for the photolithography tools
we have in the lab, namely in terms of wavelength and power. All the chemical reagents were provided by
Sigma-Aldrich (Saint-Quentin Fallavier, France) and used without purification. The sol–gel was created
using 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and titanium (IV) isopropoxide (TIPT) as silicate
and titanium precursors, respectively. A partial hydrolysis and condensation of 3-(trimethoxysilyl)propyl
methacrylate was achieved using acidified water (HCl). In addition, 2-(methacryloyloxy)ethyl acetoacetate
(AAEM), working as the chelated agent, and titanium (IV) isopropoxide were added in (1). The molar
ratios of precursors Si:Ti:AAEM are 10:10:5.5. After a stirring period of 1 h, a total hydrolysis is performed
through the addition of water. A 2,2-dimethoxy-2-phenylacetophenone (DMPA) photo-initiator in the
form of 0.7 wt.% was added in the dark to initiate a UV photopolymerization as it is extensively described
in the literature [12,13,19]. DMPA was chosen as it has been identified as an efficient and stable molecule
with a high reactivity with this kind of formulation. The mixture is then filtered at 0.2 µm. After an
outgassing under nitrogen atmosphere, the solution was aged for 48 h before use. This procedure denotes
the “sol A” as shown in Figure 1. In order to investigate the impact of the photo-initiator, a solution
named “sol B” was prepared following the same procedure but without the photo-initiator.

The TiO2-SiO2 layers were deposited on two different substrates (Borofloat 33 and silicium) that
were cleaned according to three steps of soaking in acetone, ethanol, and deionized water before drying
under nitrogen. The sols were all deposited in a clean room at a fixed temperature and hygrometry
using the dip-coating approach at a translation speed of 7 cm/min, resulting in a film thickness of
4.9 µm. The deposited films were then baked at 60 ◦C for 5 min in order to evaporate the solvent and
to make a pre-densification of the TiO2-SiO2 layers. For the refractive index measurement, the films



Materials 2020, 13, 3730 3 of 10

were deposited on a Borofloat 33 substrate provided by Neyco (Vanves, France). Indeed, the M-line
spectroscopy used for the refractive index estimation is based on the propagated mode inside the layer.
It is thus essential to have an important refractive index change between the layer and the substrate to
ensure adequate guiding properties. For example, the refractive indexes are 1.58 and 1.47 at 633 nm for
the UV-insolated layer and the Borofloat 33 glass, respectively. The films were also characterized by
Fourier-transform infrared (FTIR) spectroscopy. To this aim, the films were deposited on a Si substrate,
ideal for use in the far-IR region. To investigate the effect of different light sources on the photosensitivity
of our homemade films, two sources operating in different wavelength ranges were used. The first one
was a UV source (UWAVE) emitting at a 365 nm wavelength composed by an LED matrix resulting in a
10 cm square light source (Figure 2a). For this latter, it is possible to control the power and the exposure
time. We also used the MoperiX facility from the Laboratoire Hubert Curien (Figure 2b). The X-ray
photons were produced by the Bremsstrahlung effect, and we have chosen a 100 kV voltage between
the anode and the cathode, resulting in the creation of hard X-rays with a mean photon energy of about
40 keV (0.3 Å). In this case, the distance between the source and the layers determines the dose rate
(Gy/s) and, by extension, the accumulated dose (1 Gy = 1 J/kg). The dose rate can strongly impact
the optical response of the material submitted to X-rays. For instance, such dose rate dependence has
been observed regarding pure-silica core fibers and germanosilicate fibers [20]. In order to avoid this
behavior, we have fixed the dose rate at 14 Gy/s for all the accumulated doses presented in this work. It
should be noted that the measured dose rate is constant over the entire layers, revealing that the films
are homogeneously irradiated. Moreover, a previous study regarding the hard X-ray (40 keV) exposure
on bulk silica glass showed that they are mainly stopped in the first half mm inside the sample [21].
With the thicknesses of the sol–gel layers being around 5 µm, a high penetration depth is possible,
revealing the possibility to obtain high-aspect-ratio structures. The TiO2-SiO2 layer reacts as a negative
photoresist insofar as the zones where the layer has not been exposed and polymerized with the light
source are dissoluted during the development in an alcoholic solution such as ethanol. Regarding the
UV exposure, a black tape is used to prevent the UV-induced polymerization process on a small area of
the layer, as shown in Figure 2a. It is thus possible to determine the minimum fluence needed for a
full polymerization of the layer. However, concerning the X-ray exposure, a lead plate should be used
to cover the layer as illustrated in Figure 2b. The development is realized in an EtOH bath where the
polymerized area is not dissoluted, as represented in Figure 2b.
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Figure 1. Preparation of TiO2-SiO2 sol–gel. Sol A represents the sol–gel containing the UV photo-initiator
(2,2-dimethoxy-2-phenylacetophenone). Sol B was prepared following the same procedure but without
the photo-initiator.
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Figure 2. Photosensitivity test for TiO2-SiO2 using: (a) The UV lamp (UWAVE) emitting at 365 nm, (b)
the MoperiX facility delivering hard X-ray photons (40 keV). In both cases, the development is made in
ethanol solution.

As previously mentioned, one of the objectives of the photolithography technique is the control
of the refractive index evolution fostering better performances of the photonic devices. In order to
investigate the refractive index as a function of the light sources used for the photolithography and the
impact of the photo-initiator, we have used the M-line spectroscopy widely detailed in the literature [22],
based on LASF35 isosceles prism coupling and allowing the determination of the propagated mode
effective refractive index inside the layer. The setup used for the characterization is shown in Figure 3.
To this purpose, a 633 nm wavelength source is collimated and focused onto the base of a prism located
on a rotating plate for precise angle measurements. A polarizer is placed on the optical path allowing
adjustment of the TE (transverse electric) or TM (transverse magnetic) mode. The reflected visible light
is then observed on a camera where the guided modes launched into the TiO2-SiO2 films manifest
themselves as black lines. The rotation of the goniometer, which is the location of the prism, the thin
layer, and the press, allows us to precisely align the reticule with a black line and to have access to
the corresponding angle. Their observation allows the determination of the effective refractive index
with a precision of 10−3. For a given sample, this quantity is an average value of two measurements
obtained by removing and replacing the sol–gel layers between the press and the prism. In addition to
the M-line spectroscopy, we have characterized the thin layers using a Nicolet iS20 FTIR spectrometer
(Thermo Scientific, Waltham, Massachusetts, USA) in attenuated total reflectance (ATR) mode with a
0.482 cm−1 resolution.Materials 2020, 13, x FOR PEER REVIEW 5 of 10 
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Figure 3. M-line spectroscopy used for the effective refractive index of the TiO2-SiO2 sol–gel layers.
A 633 nm light source is used.

3. Results

3.1. Photosensitivity Tests

In order to check the photosensitivity of our sol–gel layers, we have performed several X-ray
irradiations on sol A (photo-initiator DMPA) and B (photo-initiator free), as described in Table 1, with
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accumulated doses ranging from 0.5 to 100 kGy. Regarding the sol A response to X-rays, three regimes
can be discerned. The first regime occurs when using low accumulated doses ranging from 0.5 to 10 kGy
where sol–gel layers do not seem to be sufficiently insolated: The unexposed and exposed areas are
both dissolved during the development process. Beyond this value, a polymerization is observed for a
15 kGy total accumulated dose. However, for this latter, the polymerization remains partial insofar as an
important area of the exposed sol–gel layer is also removed, meaning that we have reached a threshold
transition zone. The fact that the exposed regions are removed after development in EtOH solution is
mainly attributed to the minor cross-linking effect for this range of accumulated doses. For higher ones
(25, 50, and 100 kGy), a full polymerization is induced. The same experiment was repeated using sol
B, referring to the sol–gel without the photo-initiator. Interestingly, it should be noted that the DMPA
photo-initiator seems to not influence the photosensitivity of the layers, the same behavior as for sol A
being obtained: a full polymerization is also achieved at 25 kGy. The behavior of hybrid TiO2-SiO2

surface layers submitted to X-rays is not well known. As observed through the microscope image given
in Figure 4b, no surface damage or cracking was present after the X-ray-induced densification, even
at the maximum accumulated dose (100 kGy) as it was previously reported in [18] on hybrid silica
layers. Moreover, no damages were induced for the UV-cured sol–gel (Figure 4a). Contrary to UV or
X-ray exposure, a high thermal treatment can have a strong negative impact on the TiO2-SiO2 surface
layers. In order to highlight this behavior, we have applied a bake process after the deposition (no light
exposure) at 90 ◦C during 2 h where cracks and surface damages are observed mainly due to tensile
stress, as demonstrated in Figure 4c. This comparison between light exposure and thermal treatment
clearly evidences that organo TiO2-SiO2 layers are less affected in terms of damages by hard X-ray
photons than by a thermal treatment and that they can act as good candidates for X-ray lithography
even at very high 40 keV photon energies.

Table 1. Effect of X-ray accumulated dose (kGy) on the photopolymerization of sol A (photo-initiator)
and B (photo-initiator free).

Accumulated Dose (kGy) Sol A Polymerization Sol B Polymerization

0.5 No No
5 No No

10 No No
15 Partial Partial
25 Full Full
50 Full Full

100 Full Full
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Figure 4. Microscope images (X10) of silica-titania sol–gel layers obtained in reflexion mode for: (a)
sol–gel irradiated with UV photons (180 J/cm2), (b) sol–gel irradiated with 40 keV hard X-rays at a
100 kGy accumulated dose, and (c) baked sol–gel at 90 ◦C during 2 h (no light exposure).

The two different sol–gels were also characterized through UV insolation (Figure 2a). The results
show that they are both polymerized with a minimum threshold fluence of 90 J/cm2. Below this value,
the layers are totally dissoluted during the development process and follow the same trend observed
with X-ray exposure: the amount of the photo-initiator does not seem to affect the behavior of the
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materials in terms of photosensitivity. This can be explained by the DMPA concentration of 0.7 wt.%
used for this experiment. Indeed, with a higher concentration ranging from 3 to 5 wt.% as it can be
observed in the literature [12], the photodegradation of the exposed films can be accelerated, and a
difference in the polymerization threshold between DMPA and DMPA-free solutions can be observed.

3.2. Refractive Indexes Measurements

In addition to the photosensitivity tests, the different layers were characterized in terms of refractive
index at 633 nm for the TE mode in order to have access to a potential effect of the photo-initiator.
Figure 5 shows the induced refractive index for sol A and B using M-line spectroscopy. Through this
graph, we can clearly see the effect of the photo-initiator. Concerning sol A (black square), the refractive
index is constant (1.585) whatever the source (UV or X-rays) used for the polymerization. It is worth
noting that for the layers irradiated in the X-ray regime, whatever the dose, the effective refractive
index is stable even at higher accumulated doses (100 kGy). In the absence of the photo-initiator (red
dot), the refractive index of the layer is 1.582 using UV light at 180 J/cm2. This value is lower compared
that of sol A (1.585), highlighting the effect of the photo-initiator. The same trend can be observed for
the layers irradiated with X-rays where the refractive indexes of sol B are globally lower.Materials 2020, 13, x FOR PEER REVIEW 7 of 10 
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Figure 5. Effective refractive index of the layers (sol A and B) at 633 nm in transverse electric (TE) mode
for different exposures: UV (180 J/cm2) and X-rays (50, 100, and 200 kGy). The films were deposited on
a Borofloat 33 substrate (n = 1.47 at 633 nm) to ensure an important refractive index change between
the layer and the substrate. The precision of the refractive index measurements is 10−3 insofar as a high
number of guided modes are observed.

Depending on the accumulated dose, the refractive index slightly increases with a slope rate of
2.10−5 kGy−1. In order to validate this behavior, we have also irradiated sol B with a 200 kGy total
accumulated dose where no cracks are observed after exposure. This result confirms a good agreement
with the previous data (50 and 100 kGy) where a higher effective refractive index of 1.585 is obtained
corresponding to the maximum value achievable at 633 nm.

3.3. FTIR Spectroscopy

The effect of UV and X-ray radiations has also been evaluated by FTIR spectroscopy in order to
investigate the chemical and structural changes in the hybrid thin films. As previously mentioned, the
films should be deposited on Si substrates insofar as it is transparent in the far-IR region. To investigate
the potential impact of hard X-rays on Si wafer, we have performed Raman spectroscopy measurements
on different Si substrates submitted to accumulated doses ranging from 50 to 100 kGy. The results
show that the band peaking at roughly 520 cm−1 corresponding to the vibrational mode of Si is not
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affected in terms of wavenumber and full-width at half-maximum compared to the pristine sample.
This result clearly reveals that there are no structural changes on Si substrates after X-ray exposure in
this accumulated dose range, as it was already shown in [23], where Si nanocrystals are not altered up
to 300 kGy. FTIR spectroscopy is a powerful technique in order to monitor the light-induced structural
changes and polymerization in the inorganic network of various thin films. The literature has extensively
studied the behavior of TiO2-SiO2 layers through this technique [24–26] where inorganic and organic
network modifications related to photopolymerization are mainly observed in the 800–1300 cm−1

range. We report in Figure 6a,b the FTIR spectra obtained for sol A and B, respectively, submitted to
different exposures: non-exposed films (black line), UV-cured films at 180 J/cm2 (red line), and hard
X-ray-exposed films at 50 kGy (blue line) and 100 kGy (magenta line). After UV or X-ray exposure,
the sol A spectra (Figure 6a) show several features through three bands peaking at 815, 933, and
1166 cm−1. The first band located at roughly 815 cm−1 highlights the photoinduced organic network
formation and corresponds to the stretching vibration of CH=C. Under UV treatment, the band intensity
decreases compared to the pristine layer, indicating the consumption of the CH=C double bonds and,
consequently, a polymerization process. It should be noted that the area under this peak is even lower
when the layer is X-ray-irradiated at a 50 and 100 kGy accumulated dose, confirming a more important
polymerization rate using this kind of radiation. The decrease in the 815 cm−1 band after light exposure
was already reported in the literature and used to control the photo-induced polymerization [25]. FTIR
measurements can also identify the structural changes that occur in the inorganic network, namely in
terms of Si-O-Ti and Si-O-Si bonds. Figure 6a reveals two bands peaking at 1166 and 933 cm−1 when the
sol–gel layer is not exposed to light. In both cases, we can observe a decrease in these bands with respect
to UV or X-ray exposures. The first one, peaking at 1166 cm−1, corresponds to the stretching vibration
of Si-O-CH3. The dramatic decrease in this band with respect to UV or X-ray exposure indicates the
formation of Si-O-Ti or Si-O-Si bonds, revealing a higher polymerization. Another interesting feature
of Figure 6a is the band located at 933 cm−1.This band is attributed to the presence of silanol groups
(Si-OH). The decrease in this band with respect to photon exposure denotes a consumption of hydroxyl
groups. As this band is very weak upon X-ray exposure, it clearly indicates that X-ray photons are more
efficient to decompose Si-OH and Si-O-CH3 bonds, leading to a densification of the inorganic network
through two main bonds: Si-O-Si and Si-O-Ti. Sol B was also characterized through FTIR spectroscopy
as it can be shown in Figure 6b. It is interesting to note that, even without the use of photo-initiator, the
sol–gel is still photosensitive to our UV and X-ray treatments following the same behavior as Sol A,
namely in terms of photoinduced changes related to the bands peaking at 815, 933, and 1166 cm−1.
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Figure 6. FTIR spectra of sol A with the 2,2-dimethoxy-2-phenylacetophenone (DMPA) photo-initiator
(a) and sol B without DMPA (b). Both cases represent the non-exposed films (black), the UV-exposed
films at 180 J/cm2 (red), and the X-ray-exposed films at 50 kGy (blue) and 100 kGy (magenta).

4. Conclusions

In the present work, we have investigated the effect of different light sources (UV and hard
X-rays) on the polymerization of two TiO2-SiO2 sol–gels by comparing the influence of a commercial
photo-initiator (2,2-dimethoxy-2-phenylacetophenone) on the film properties. It was observed that
the layers are photosensitive with respect to 3.4 eV or 40 keV photons even if the photo-initiator is
absent. After X-ray exposure, the films reveal no cracks or damaged surfaces, leading to the possibility
of using such sources in order to polymerize sol–gel layers. By comparing the exposed layers in terms
of refractive indexes, we have highlighted the effect of the photo-initiator where slightly higher and
constant refractive indexes are achieved when DMPA is incorporated in the sol–gel compared to a
DMPA-free solution. For this latter, higher refractive index values are obtained when using hard X-ray
photons to reach a maximum value of 1.585 at 633 nm. It should be noted that the concentration of
the photo-initiator does not seem to affect the behavior of the materials in terms of photosensitivity
where the polymerization threshold remains strictly the same with and without the photo-initiator.
This behavior can be explained by the DMPA amount of 0.7 wt.% used for this experiment that is too
low and that more important concentrations should be investigated in the future to see a potential
difference. FTIR measurements evidence the positive impact of X-rays through a stronger densification
of the inorganic network induced by the decomposition of Si-OH and Si-O-CH3 bonds compared to
UV photons. These promising results show that hard X-ray micro- or nano-beams can be considered in
the future as an efficient tool in order to microstructure or nanostructure complex patterns on hybrid
TiO2-SiO2 beyond the UV light diffraction limit.
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