
HAL Id: ujm-03275572
https://ujm.hal.science/ujm-03275572

Submitted on 1 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speckle reduction in matrix-log domain for synthetic
aperture radar imaging

Charles-Alban A Deledalle, Loïc Denis, Florence Tupin

To cite this version:
Charles-Alban A Deledalle, Loïc Denis, Florence Tupin. Speckle reduction in matrix-log domain for
synthetic aperture radar imaging. Journal of Mathematical Imaging and Vision, 2022, 64, pp.298-320.
�10.1007/s10851-022-01067-1�. �ujm-03275572�

https://ujm.hal.science/ujm-03275572
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Speckle reduction in matrix-log domain for synthetic aperture
radar imaging

Charles-Alban Deledalle · Löıc Denis · Florence Tupin
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Abstract Synthetic aperture radar (SAR) images are
widely used for Earth observation to complement opti-
cal imaging. By combining information on the polariza-
tion and the phase shift of the radar echos, SAR images
offer high sensitivity to the geometry and materials that
compose a scene. This information richness comes with
a drawback inherent to all coherent imaging modalities:
a strong signal-dependent noise called “speckle”.

This paper addresses the mathematical issues of
performing speckle reduction in a transformed domain:
the matrix-log domain. Rather than directly estimat-
ing noiseless covariance matrices, recasting the denois-
ing problem in terms of the matrix-log of the covari-
ance matrices stabilizes noise fluctuations and makes
it possible to apply off-the-shelf denoising algorithms.
We refine the method MuLoG by replacing heuristic
procedures with exact expressions and improving the
estimation strategy. This corrects a bias of the original
method and should facilitate and encourage the adap-
tation of general-purpose processing methods to SAR
imaging.
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1 Introduction

SAR imaging is a key technology in airborne and
satellite remote sensing. This active imaging technique
based on time-of-flight measurement and coherent pro-
cessing (the so-called aperture synthesis) has a night
and day capability and can produce images through
clouds [30]. Beyond intensity images, many SAR sys-
tems offer polarimetric information, i.e., they measure
how the polarization of the wave is affected by the back-
scattering mechanisms occurring when the electromag-
netic radar wave interacts with the illuminated scene.
Backscattered radar waves collected from slightly dif-
ferent points of view can be combined, in a process
called interferometry, to perform 3-D reconstructions or
to recover very small displacements. In contrast to con-
ventional optical imaging, SAR imaging gives access to
both the amplitude and the phase of the backscattered
wave. Interferometry uses this phase information to re-
late a phase shift observed between two SAR images
to a change in the optical path (i.e., the path length
traveled by the wave in its round-trip from the SAR
antenna to the scene and back). Figure 1(a) illustrates
the geometry of SAR imaging. Depending on the na-
ture of the information available at each pixel, several
names are used to describe SAR images:
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SAR imaging systems use antennas to emit radio waves (with wave-
lengths ranging from a few centimeters to a meter) and then collect
the wave back-scattered by the illuminated scatterers, see (a). When
polarimetric information is collected, the radar antenna alternatively
emits vertically then horizontally linearly polarized waves. The ver-
tical and horizontal components of the backscattered wave are then
measured. In SAR interferometry, the back-scattered wave is col-
lected on two antennas (represented as black dots 1 and 2), either
simultaneously (mono-pass interferometry, depicted in the figure) or
with a single-antenna system at two different times (multiple-pass
interferometry). All the scatterers located within the rectangular re-
gion highlighted in the Figure produce radar echoes that are col-
lected simultaneously on the antenna. These echoes interfere and the
resulting complex amplitude measured by the antenna is highly fluc-
tuating, depending on the destructive and constructive interferences.
The simplest SAR systems do not record polarimetric or interfero-
metric information, only a single complex amplitude vk is measured
at pixel k. Polarimetric systems collect the back-scattered ampli-
tude in different configurations: for a horizontally linearly polar-
ized emission and horizontally linearly polarized reception (HH), the
cross-polarization corresponding to a horizontal emission and verti-
cal reception (HV), or the converse (VH), and for vertically polarized
waves in emission and reception (VV). Due to the symmetry of the
system, HV and VH measurements are very similar and only one of
them is generally considered. A polarimetric SAR image thus con-
tains a vector vk ∈ C3 at pixel k. SAR interferometry combines
echoes collected for two distinct locations of the antenna. Two com-
plex amplitudes are collected per pixel: vk ∈ C2. Polarimetry and
interformetry can be combined, the diffusion vector vk then contains
6 complex amplitudes: vk ∈ C6.

The term “speckle” denotes the strong fluctuations of SAR ampli-
tudes from one pixel to the next in homogeneous areas. Due to the
coherent illumination, the complex amplitudes of the echoes returned
by all the scatterers seen within a given pixel interfere. This corre-
sponds to a random walk in the complex plane, depicted in (b).
By the central limit theorem, it follows that, in the limit of a large
number of independent elementary scatterers each introducing a uni-
formly distributed phase shift in ]− π, π], the resulting complex am-
plitude is distributed according to a circular complex Gaussian [22].
Speckle is a signal-dependent phenomenon: it is stronger in areas
with larger reflectivities. This is illustrated in (c) where a polarimet-
ric SAR image is displayed. Regions (c.1) and (c.3) correspond to two
homogeneous areas with different reflectivities. Stronger fluctuations
can be noted in area (c.1), whose underlying reflectivity is larger (the
estimated reflectivity is shown in (c.2)), while region (c.3) displays
smaller fluctuations, in line with a lower reflectivity (the estimated
reflectivity of this region is shown in (c.4)).

Fig. 1 A short introduction to the physics of SAR imaging and to the speckle phenomenon.
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– SAR denotes single-channel images: each pixel k
contains the complex amplitude vk ∈ C backscat-
tered by the scene. When no interferometric pro-
cessing involving other single-channel SAR images
is to be performed, the phase of vk can be discarded
and only the amplitude |vk| or the intensity |vk|2 is
considered;

– PolSAR denotes multi-channel polarimetric im-
ages: each pixel k contains a vector vk =
(v1
k, v

2
k, v

3
k) ∈ C3 of 3 complex amplitudes backscat-

tered by the scene under different polarizations (hor-
izontally or vertically linearly polarized components
at emission or reception, see Figure 1(a));

– InSAR denotes multi-channel interferometric im-
ages: each pixel k contains a vector vk ∈ C2 formed
by the 2 complex amplitudes backscattered by the
scene on the two antenna positions, multi-baseline
and tomographic SAR are extensions of SAR inter-
ferometry to more than two images;

– PolInSAR denotes multi-channel polarimetric and
interferometric images: each pixel k contains a vec-
tor of 6 complex amplitudes vk ∈ C6 and corre-
sponds to the combination of polarimetric and in-
terferometric information.
Polarimetric images are generally displayed in false

colors using Pauli polarimetric basis, by combining the
complex amplitudes collected under the different po-
larimetric configurations (the red channel corresponds
to 1

2 |v
1
k − v3

k|2, the green channel to 2|v2
k|2 and the blue

channel to 1
2 |v

1
k + v3

k|2), see [30]. Figure 2 shows air-
borne images of the same area obtained with each SAR
modality (image credit: ONERA). Different structures
are visible in the images: cultivated fields, roads (ap-
pearing as dark lines in SAR images due to the low
reflectivity of such smooth surfaces), trees and several
farm buildings (in the bottom left quarter of the image).
The SAR illumination comes from the left hand side of
the images, shadows are thus visible on the right of all
elevated elements (in particular, trees). A striking pe-
culiarity of SAR images is the strong noise observed in
all SAR modalities. This noise is unavoidable because
it originates from the coherent illumination that is es-
sential to the synthetic aperture processing. The SAR
antenna collects at each time sample several echoes that
interfere with each other, see Figure 1(b) and (c). The
resulting complex amplitude vk ∈ CD is distributed,
under the well-established speckle model due to Joseph
Goodman [22], as a circular complex Gaussian distri-
bution:

pV(vk;Σk) = 1
πD|Σk|

exp
(
−v∗kΣ−1

k vk
)
, (1)

where ∗ denotes the conjugate transpose, and the
complex-valued covariance matrix Σk carries all the

information about the backscattering process: in SAR
imaging (D = 1), Σk corresponds to the reflectivity
at pixel k, in PolSAR Σk ∈ C3×3 characterizes the
reflectivity in each polarimetric channel (diagonal of
Σk) and the scattering mechanism (matrix Σk can
be decomposed into a sum of matrices corresponding
to elementary phenomena such as surface scattering,
dihedral scattering and volume scattering), in InSAR
Σk ∈ C2×2 and diagonal elements correspond to re-
flectivities while the off-diagonal elements indicate the
phase shift arg(Σ1,2

k ) from one antenna to the other
(due to the difference in path length) and the coher-
ence

∣∣Σ1,2
k

∣∣/√Σ1,1
k Σ2,2

k (i.e., the remaining correlation
between the complex amplitudes v1

k and v2
k: this corre-

lation drops when the two images are captured at two
dates that are more separate or when the scene has
evolved between the two acquisitions, e.g., due to veg-
etation growth). Since the covariance matrix Σk con-
tains all the useful information, it has to be estimated
from the diffusion vector vk to characterize the radar
properties of the scene at each pixel. This is classically
done by computing the sample covariance Ck inside a
small window centered at pixel k:

Ck = 1
L

∑
`∈Nk

v` v
∗
` , (2)

where Nk is the set of pixel indices within the window
centered at pixel k and L = Card(Nk) is the num-
ber of pixels in the window. If the speckle is spatially
independent and all pixels in the window follow a dis-
tribution with a common covariance matrix Σk, the
samples v` are independent and identically distributed.
When L > D, the sample covariance matrix is then
distributed according to a complex Wishart distribu-
tion: Ck ∼ W(Σk, L), and its multi-variate probability
density function is given by [21]

pC(Ck;Σk, L) = LLD|Ck|L−D

ΓD(L)|Σk|L
exp(−L tr(Σ−1

k Ck)) ,

(3)

where ΓD(L) = πD(D−1)/2∏D
k=1 Γ (L − k + 1). In the

case of single-channel SAR images (D = 1), Ck corre-
sponds to an intensity Ik andΣk is the pixel reflectivity
Rk. The SAR intensity is then distributed according to
a gamma distribution:

pI(Ik;Rk, L) =
LLIL−1

k

Γ (L)RLk
exp(−LIk/Rk) . (4)

The speckle in SAR intensity images is known to be a
multiplicative noise in the sense that Var[Ik] = R2

k/L,
so that the standard deviation of speckle fluctuations is
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proportional to the pixel reflectivity, and the speckle-
corrupted intensity Ik may be modeled using a genera-
tive model of the form: Ik = Rk Sk with Sk a random
variable distributed according to a gamma distribution
with a mean equal to 1 and a variance equal to 1/L.
In the multi-variate case (D > 1), the generative model
becomes Ck = Σ

1/2
k SkΣ

1/2
k with Sk ∼ W(I, L), see

[13]. The variance of Ci,jk (the element of matrix Ck at
row i and column j) is equal to 1

LΣ
i,i
k Σ

j,j
k , i.e., the stan-

dard deviation of Ci,jk is proportional to the geometric
mean of the reflectivities in channels i and j and is thus
also signal-dependent.

The ubiquity of speckle noise in SAR images, the
multiplicative nature of the fluctuations and heavy-
tailed behavior of Wishart distribution has fueled nu-
merous developments of specific image processing meth-
ods to reduce speckle. The vast majority of these works
considered single-channel SAR images, and adapted
techniques based on pixel selection (based on range se-
lection with Lee’s σ-filter [25], window selection [27]
or region growing [37]), variational techniques (total
variation minimization [1,18,35], curvelets [19]), patch-
based methods derived from the non-local means [14,7,
15,32,16], or more recently deep-learning based meth-
ods (using supervised [8], semi-supervised [11] or self-
supervised [28] learning strategies). The adaptation of
a novel image denoising technique to the specificities
of SAR imaging is a thorough process that includes re-
placing steps to account for the statistics of speckle and
the nature of SAR images where many bright structures
reach intensities several orders of magnitude larger than
the surrounding area. This slows down the transfer
of successful denoising techniques to the field of SAR
imaging. In order to circumvent this adaptation pro-
cess, we recently proposed a generic framework [13],
named MuLoG, derived from the general “plug-and-
play ADMM” strategy [6] which is related to a wider
family of approaches using denoisers to regularize in-
verse problems [33]. When an image restoration prob-
lem is stated in the form of a variational problem and
then solved using the alternating directions method of
multipliers (ADMM, see for example [3]), or proximal-
splitting techniques [9], one step of the algorithm that
improves the fidelity to the prior model corresponds
to the denoising of an image corrupted by additive
white Gaussian noise. The key idea of “plug-and-play
ADMM” is then to replace this step by an off-the-shelf
Gaussian denoiser.

The flexibility of MuLoG with respect to various
SAR modalities (see the despeckling results obtained
with MuLoG in Figure 2) and its ability to benefit
from the latest developments in additive Gaussian de-
noising makes the method very useful for SAR appli-

cations (e.g., multi-temporal filtering [42], deformation
analysis [20], height retrieval [41], or despeckling us-
ing pre-trained neural networks [12]). The original Mu-
LoG algorithm in [13] is based on approximations that
can lead, however, to estimation biases. This paper
starts with a brief summary of MuLoG framework in
Section 2. We then perform a rigorous analysis of the
optimization problem involved and establish the exact
closed-form expression for the first and second direc-
tional derivatives of the matrix exponential mapping.
We discuss the important problem of initialization and
regularization of the covariance matrices, in particular
in the rank-deficient case L < D. We introduce sev-
eral modifications and show that they suppress the bias
of the original method. Beyond their use in MuLoG’s
generic framework, these mathematical developments
can benefit other variational methods for the restora-
tion or segmentation of multi-channel SAR images, as
well as hybrid methods that combine deep learning and
an explicit statistical model of speckle by algorithm un-
rolling [29].

2 An overview of MuLoG framework

In order to give a self-contained presentation of our de-
velopments, we recall in this section the principle of
MuLoG, as first introduced in [13]. MuLoG’s approach
to multi-channel SAR despeckling is built around two
key ideas:

– a non-linear transform that decomposes the field of
D × D noisy covariance matrices {Ck}k=1..n into
D2 real-valued images with n-pixels; this transform
approximately stabilizes speckle fluctuations and
decorrelates the channels so that each can be de-
noised independently;

– implicit regularization using a plug-and-play
ADMM iterative scheme where the proximal oper-
ator associated to the prior term is replaced by an
off-the-shelf Gaussian denoiser.

The non-linear transform is defined in three steps:
(i) a matrix-log is applied to map each speckled covari-
ance matrix Ck to a Hermitian matrix with approxi-
mately stabilized variance; (ii) the real and imaginary
parts of these Hermitian matrices are separated, form-
ing D2 real-valued channels; (iii) an affine transform,
identical for all pixel locations k, whitens these chan-
nels. The noisy covariance matrix Ck ∈ CD×D is then
re-parameterized by yk ∈ RD2 , and similarly the co-
variance matrix of interest Σk is defined through the
real-valued vector xk ∈ RD2 :

Ck = eΩ(yk) and Σk = eΩ(xk) (5)
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Fig. 2 Synthetic aperture radar imaging offers rich information of a scene but suffers from speckle. The combination of images
acquired with slightly different incidence angles (InSAR) or various polarization states (PolSAR) leads to a D-dimensional complex-
valued vector per pixel. Reduction of the speckle fluctuations requires appropriate statistical modeling. This paper is devoted to
the mathematical analysis of a generic approach for speckle reduction based on matrix-log decompositions. The images shown were
obtained with the X-band airborne imaging system SETHI of the French aerospace lab ONERA [2] (after our pre-processing to
achieve a trade-off between sidelobe attenuation and speckle decorrelation, the pixel size is ≈ 70cm × 70cm, the area shown is
≈ 300m× 370m). The Gaussian denoiser used in the despeckling algorithm is BM3D [10].
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where the exponential corresponds to a matrix-
exponential and the affine invertible mapping Ω:
RD2 → CD×D can be decomposed as Ω(x) =
K(WΦx+ b), with K : RD2 → CD×D the linear oper-
ator that transforms a vector of D2 reals into a D×D
Hermitian matrix:

K

 α1

...
αD

2

=



α1 αD+1+jαD+2
√

2 . . . α
D2−1+jαD

2
√

2
αD+1−jαD+2

√
2 α2

...
. . .

...

αD
2−1−jαD

2
√

2 . . . αD


,

(6)

W ∈ RD2×D2 a (whitening) unitary matrix, Φ ∈
RD2×D2 a diagonal positive definite matrix (used to
weight each channel) and b ∈ RD2 a real vector (for
centering). To compute the real-valued decomposition
x of a covariance matrix Σ, the inverse transform can
be applied: x = Φ−1W−1(K−1(log(Σ))− b). A princi-
pal component analysis is used to compute matrix W
and vector b:

bi = 1
n

n∑
k=1

αik , (7)

with αik = K−1(log(Ck)), the i-th real-value extracted
from the log-transformed covariance C̃k = log(Ck), and
the columns of matrix W are unit-norm eigenvectors of
the Gram matrix:

1
n

n∑
k=1

(αik − bi)(α
j
k − bj) . (8)

The i-th diagonal element of Φ corresponds to the noise
standard deviation of the i-th channel estimated via the
median absolute deviation (MAD) estimator.

Figure 3 illustrates the channels obtained with the
transform Ω−1. Fluctuations due to the speckle noise
have a variance that is approximately stabilized in the
channels of y. Due to the principal component anal-
ysis, most of the information is contained in the first
channels.

The neg-log-likelihood of the re-parameterized co-
variance matrix can be derived from the Wishart dis-
tribution given in Eq.(3):

− log pY(yk|xk) = L tr
[
Ω(xk) + e−Ω(xk)eΩ(yk)]+ Cst,

(9)

where xk and yk are the D2-dimensional real-
valued vectors corresponding respectively to the re-
parameterization of the noiseless and noisy covariance
matrices, while Cst is a constant independent of xk.

noisy polarimetry restored polarimetry

noisy channel 1 restored channel 1

noisy channel 2 restored channel 2

noisy channel 3 restored channel 3
...

...

noisy channel 9 restored channel 9

Fig. 3 Illustration of the matrix-log decomposition of a polari-
metric SAR image into 9 real-valued channels (airborne image
from ONERA-SETHI, see the caption of Figure 2).
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MuLoG is detailed in Algorithm 1. In practice, a
fixed number of steps is generally used to stop the main
loop (typically 6 steps provide a good trade-off between
computational cost and restoration quality). Parameter
β is increased within the loop, line 11, to ensure the
convergence (we use the adaptive update rule given in
equation (15) of paper [6] which consists of increasing
β whenever the norm of the primal and dual residu-
als decreases too slowly between two successive steps).
Several steps playing an important role in MuLoG al-
gorithm are revisited in this paper:

– the initial estimate used for x̂k, line 4, computed
from the matrices {C(init)

k }k=1..n defined line 1: an
adequate initialization speeds up the convergence as
discussed in Section 4.1;

– the regularization of the noisy covariance matrices,
set line 2, that impacts the minimization problem
line 10: regularization strategies can avoid badly be-
haved cost functions that are hard to minimize but
can also lead to estimation biases, see Section 4.2;

– the choice of the denoiser used line 8: as illustrated
in the discussion (Section 6), each denoiser suffers
from specific artifacts;

– the minimization technique to compute, at each
pixel k, the D2-dimensional vector x̂k line 10: this
paper develops in Section 3 a new algorithm based
on exact derivatives to improve this crucial step.

3 Improved computation of the data-fidelity
proximal operator

Line 10 of Algorithm 1 involves solving n independent
D2-dimensional minimization problems of an objective
function of the form

F (x) = β

2 ‖x− u‖
2 + L tr(Ω(x) + eΩ(y)e−Ω(x)) . (10)

This corresponds to computing the data-fidelity proxi-
mal operator [9]:

proxdata(u) = arg min
x

β

2 ‖x− u‖
2 − log pY(y|x)︸ ︷︷ ︸
F (x)

, (11)

where x, y and u are vectors in RD2 . We recall that y
corresponds to the noisy log-channels defined in equa-
tion (5) and shown in the first column of Figure 3, while
u = ẑk + d̂k in line 10 of Algorithm 1. Efficient mini-
mization methods require the computation of the gra-
dient g = ∇F (x) of F at x.

Algorithm 1: MuLoG algorithm
input : a bidimensional field of

speckle-corrupted covariance matrices C
input : a denoiser function fσ : Rn → Rn to

remove additive white Gaussian noise
with standard deviation σ in n-pixels
single-channel images

output: a bidimensional field of estimated
covariance matrices Σ̂

initialization:
1 estimate {C(init)

k }k=1..n (initial estimation)

2 estimate {C(reg)
k }k=1..n (enforces PSD matrices)

3 compute b and W (Eqs.(7) and (8))

4
{
x̂k ← Ω−1(logC(init)

k

)}
k=1..n (initial estimation)

5
{
yk ← Ω−1(logC(reg)

k

)}
k=1..n (noisy channels)

6
{
dk ← 0D2

}
k=1..n (initial scaled multipliers)

7 β ← 1 + 2
L (initial value)

repeat
8

{
ẑi ← fβ−1/2(x̂i − d̂i)

}
i=1..D2 (denoise channels)

9 d̂← d̂+ ẑ − x̂ (update multipliers)

10
{
x̂k ← argmin

xk

β
2 ||xk − ẑk − d̂k||

2 −

log pY(yk|xk)
}
k=1..n (data-fidelity prox)

11 update β

until convergence;
12
{
Σ̂k ← eΩ(x̂k)}

k=1..n (final estimation)

As shown in [13] and recalled in Appendix A for the
sake of completeness, this gradient is given by

g = β(x− z) + LΘ

(
IdD −

∂eΣ

∂Σ

∣∣∣∣∗
−Ω(x)

[eΩ(y)]
)
, (12)

where the linear operator Θ is defined by

Θ(·) = ΦW ∗K∗(·) (13)

and ∂eΣ

∂Σ

∣∣∣∗
−Ω(x)

[eΩ(y)] is the adjoint of the directional
derivative of the matrix exponential in the direction
eΩ(y) taken at −Ω(x). We recall that the directional
derivative of a differentiable function f at X in the
direction A is defined as
∂f(X)
∂X

∣∣∣∣
X

[A] = lim
ε→0

1
ε

(f(X + εA)− f(X)) . (14)

The directional derivative is a linear mapping with re-
spect to the direction A. The computation of the gra-
dient thus requires computing the adjoint of such linear
mapping for the matrix exponential.
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In the original derivation of MuLoG algorithm [13],
we used an integral expression for the adjoint of the
directional derivative of the matrix exponential

∂eΣ

∂Σ

∣∣∣∣∗
Σ

[A] =
∫ 1

0
euΣAe(1−u)Σdu (15)

to derive an approximation based on a Riemann sum:

∂eΣ

∂Σ

∣∣∣∣∗
Σ

[A] ≈ 1
Q

Q∑
q=1

euqΣAe(1−uq)Σ (16)

where uq = (q − 1/2)/Q. In practice, we were using
only Q = 1 rectangle to get a fast-enough approxima-
tion. In the next paragraph, we derive a closed-form
expression of the gradient to avoid this approximation,
then we obtain the closed-form expression of second-
order directional derivative of F in order to obtain an
improved minimization method for the computation of
proxdata in equation (11).

3.1 Closed-form expression of the gradient

We leverage studies from [26,17,5] regarding the deriva-
tives of matrix spectral functions. As shown in Ap-
pendix B, these leads to a closed-form expression for
this directional derivative of the matrix exponential as
described in the next proposition.

Proposition 1 Let Σ be a D × D Hermitian matrix
with distinct eigenvalues. Let Σ = E diag(Λ)E∗ be
its eigendecomposition where E is a unitary matrix of
eigenvectors and Λ = (λ1, . . . , λD) the vector of corre-
sponding eigenvalues. Then, for any D ×D Hermitian
matrix A, denoting Ā = E∗AE, we have

∂eΣ

∂Σ

∣∣∣∣
Σ

[A] = E
[
G� Ā

]
E∗ (17)

where � is the element-wise (a.k.a, Hadamar) product,
and, for all 1 6 i, j 6 D, we have defined

Gi,j =
{

eλi−eλj
λi−λj if i 6= j ,

eλi otherwise .
(18)

Note that Proposition 1 assumes the eigenvalues ofΣ to
be distinct. In practice, we observe instabilities when λi
and λj are close to each other. To solve this numerical
issue we use that, for λi > λj ,

eλj 6
eλi − eλj
λi − λj

6 eλi (19)

since exp is convex and increasing. Then, whenever an
off-diagonal element Gi,j is out of this constraint we

Algorithm 2: Exact evaluation of the gradient ∇F
input : a vector x ∈ RD2

input : a vector y ∈ RD2

input : a vector u ∈ RD2

input : the affine map Ω : x 7→ K(WΦx+ b)
output: the gradient g of F (x) defined in (10)

1 compute the eigenvalue decomposition:
−Ω(x) = E diag(Λ)E∗

2 compute G (Eq.(18))
3 {Gi,j ← Proj(Gi,j)}i,j=1..D2

(projection on [eλj , eλi ])
4 A← eΩ(y)

5 Ā← E∗AE

6 g ← β(x− u) + LΘ(IdD −E[G� Ā]E∗)

project its value on the feasible range [eλj , eλi ]. Equa-
tion (19) shows that limλj→λi

eλi−eλj
λi−λj = eλi . In the case

of duplicate eigenvalues, we use the continuous expan-
sion obtained by replacing the condition i 6= j with
λi 6= λj . We checked numerically that this continuous
expansion is working for matrices with repeated eigen-
values.

Proposition 1 gives us an exact closed-form formula
for the directional derivative. The next corollary shows
that this formula is also valid for its adjoint (see proof
in Appendix C).

Corollary 1 Let Σ be a Hermitian matrix with dis-
tinct eigenvalues. The Jacobian of the matrix exponen-
tial is a self-adjoint operator

∂eΣ

∂Σ

∣∣∣∣∗
Σ

= ∂eΣ

∂Σ

∣∣∣∣
Σ

. (20)

Based on the closed-form expressions provided by
Proposition 1 and Corollary 1, we define Algorithm 2
for an exact evaluation of the gradient of F .

3.2 A refined quasi-Newton scheme

The computation of the proximal operator requires the
minimization of function F (x). This can be performed
using quasi-Newton iterations:

x← x− Ĥ−1g (21)

where Ĥ is an approximation of the Hessian H of F at
x, i.e., the real symmetric matrix defined by

H = ∂2F (x)
∂x2 = ∂

∂x
∇xF (x) . (22)
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While in [13] a heuristic was used to define a diag-
onal approximation to the matrix H, we consider here
the following approximation:

Ĥ = γIdD2 with γ = d∗Hd and d = g

||g||
(23)

where γ corresponds to the exact second derivative of
F at x in the direction d of the gradient g.

As proved in Appendix D, this second order deriva-
tive is given by:

γ = β + L

〈
Θ∗(d), ∂

2eΣ

∂Σ2

∣∣∣∣
−Ω(x)

[eΩ(y), Θ∗(d)]
〉
, (24)

where Θ∗(·) = K(WΦ ·) is the adjoint of linear opera-
tor Θ and for any matrices X and Y , the matrix dot
product is defined as 〈X, Y 〉 = tr(X∗Y ). This choice
for approximating the Hessian leads to a quasi-Newton
step that is exact when restricted to the direction of
the gradient. As F has some regions of non-convexity,
we consider in practice half the absolute value of the
scalar product in (24) in order to avoid some local min-
ima and ensure that quasi-Newton follows a descent
direction. Note that, like with the original formulation
of MuLoG, we recover the exact Newton method in the
mono-channel case (D = 1).

The computation of γ thus requires computing the
second-order directional derivative of the matrix ex-
ponential. We recall that the second-order directional
derivative of a function f : CD×D → CD×D at X in
the directions A and B is the D ×D complex matrix
defined as

∂2f(X)
∂X2 [A,B] = (25)

lim
ε→0

1
4ε2

[
f(X + εA+ εB)− f(X − εA+ εB)

− f(X + εA− εB) + f(X − εA− εB)
]
.

The closed form expression for the second-order direc-
tional derivative of the matrix exponential is given in
the following Proposition (see proof in Appendix E):

Proposition 2 Let Σ be a D × D Hermitian matrix
with distinct eigenvalues. Let Σ = E diag(Λ)E∗ be
its eigendecomposition where E is a unitary matrix of
eigenvectors and Λ = (λ1, . . . , λD) the vector of corre-
sponding eigenvalues. For any D×D Hermitian matri-
ces A and B, denoting Ā = E∗AE and B̄ = E∗BE,
we have

∂2eΣ

∂Σ2

[
A,B

]
= E[F (Ā, B̄)]E∗ (26)

Algorithm 3: Iterative method to compute proxdata

input : a noisy vector y ∈ RD2

input : a vector u ∈ RD2

input : the affine map Ω : x 7→ K(WΦx+ b)
input : the linear map Θ : α 7→ ΦW ∗K∗α
output: the approximate minimizer of F (x)

1 x← β
β+1u+ 1

β+1y (initialization)
repeat

2 g ←Algorithm 2(x,y,u, Ω) (gradient)
3 d← g/||g|| (gradient direction)
4 B̄ ← E∗Θ∗(d)E
5 compute F (Ā, B̄) (Eq.(27))
6 γ ← β + L|

〈
B̄, F (Ā, B̄)

〉
| (inverse step size)

7 x← x− 1
γg (quasi-Newton step)

until convergence;

where, for all 1 6 i, j 6 D, we have

F (Ā, B̄)i,j =
D∑
k=1

ϕi,j,k(ĀikB̄
∗
jk + B̄ikĀ

∗
jk) (27)

with ϕi,j,k =


Gik−Gjk
λi−λj if i 6= j ,
Gii−Gik
λi−λk if i = j and k 6= i ,
Gii
2 if i = j = k .

(28)

As in Proposition 1, Proposition 2 assumes the eigenval-
ues to be distinct. We checked on numerical simulations
that the result is still valid for Hermitian matrices with
duplicate eigenvalues by simply defining Gij in Propo-
sition 1 using the condition λi 6= λj instead of i 6= j.

Algorithm 3 details the quasi-Newton optimization
scheme to solve the minimization problem (11). The al-
gorithm starts with an initial value for x, line 1, ob-
tained by approximating the data likelihood with a
Gaussian (i.e., Wiener).

3.3 Numerical validation

In order to validate the correctness of the derived
closed-form expressions of the gradient and the di-
rectional second derivative, we leverage that for g =
∇F (x) and γ = d∗ ∂

2F (x)
∂x2 d, the following two identities

regarding the first and second directional derivatives
hold true

〈g, u〉 = lim
ε→0

F (x+ εu)− F (x)
ε

, ∀u ∈ RD
2
, (29)

and

γ = lim
ε→0

F (x+ εd)− 2F (x) + F (x− εd)
ε2 . (30)
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(a) (b)

(c) (d)
Fig. 4 Evolution with respect to the quasi-Newton iterations of (a) the loss function F (x), (b) the square norm of its gradient
g = F (x), (c) the directional derivative 〈g, u〉 for a random direction u evaluated in closed-form and by finite diferences, (d) the
second directional derivative γ = d∗

∂2F (x)
∂x2 d for the direction d = g/||g||2 evaluated in closed-form and by finite diferences. The

curves are provided for the six iterations of Plug-and-Play ADMM.

During the iterations of the proposed quasi-Newton
scheme, we evaluate the left-hand sides of these equal-
ities by running Algorithm 2 and 3 to compute g and
γ. Independently, we evaluate the right-hand sides of
these equalities by finite difference with a small non-
zero value of ε. The direction u was chosen as a fixed
white standardized normal vector.

Figure 4 shows the evolution of these four quanti-
ties during the iterations of the proposed quasi-Newton
scheme for an arbitrary choice of the image y, initializa-
tions and constant L and β. In addition, the evolution
of F (x) and ||g||22 = ||∇F (x)||22 are also provided. On
the one hand, we can notice that the proposed first and
second directional derivatives are very close to the ones
estimated by finite differences, which shows the validity
of our formula. On the other hand, the objective F (x)
is decreasing and its gradient converges to 0, showing
that the obtained stationary point is likely to be a local
minimum. Furthermore, one can notice that the second
directional derivative varies less than 20% showing that

the loss F is nearly quadratic in the vicinity of its min-
imizers.

4 Initialization and regularization of
rank-deficient matrix fields

Multi-channel SAR images with n pixels are provided
in the form of a bidimensional field of either n diffusion
vectors vk ∈ CD (single-look data) or n covariance ma-
trices Ck ∈ CD×D (multi-look data), see Figure 1. The
statistical distribution of speckle is defined with respect
to full-rank covariance matrices Σk. The initial guess
for this matrix must be positive-definite, which requires
an adapted strategy. We discuss different strategies for
this initialization in Paragraph 4.1. Then, we describe
in Paragraph 4.2 how the noisy covariance matrices Ck
can be regularized so that the neg-log-likelihood is bet-
ter behaved.
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4.1 Initialization

Under the assumption that the radar properties of
the scene vary slowly with the spatial location, a spa-
tial averaging can be used to estimate a first guess
of the covariance matrix Σk

def= E[vkv∗k]. At pixel
k, the so-called radar coherence between channels i

and j of the D-channels SAR image is defined by
ρk,i,j = |[Σk]i,j |/

√
[Σk]i,i[Σk]j,j , i.e., the correlation

coefficient between the two channels. This coherence
is notably over-estimated by the sample covariance es-
timator when L is small, see [36]. In the extreme case
of L = 1, Ck = vkv

∗
k and the coherence equals 1, see

Figure 5. Some amount of smoothing is necessary to ob-
tain more meaningful coherence values and to guarantee
that the covariance matrix C(init)

k be positive definite.
The coherence is estimated by weighted averaging with
Gaussian weights:

ρ̂k,i,j =
|
∑
` wk,`[C`]i,j |√(∑

` wk,`[C`]i,i
)(∑

` wk,`[C`]j,j
) , (31)

where the weights wk,` are defined, based on the spa-
tial distance between pixels k and `, using a Gaussian
kernel with spatial variance τ/2π. Spatial parameter τ
is chosen in order to achieve a trade-off between bias
reduction and resolution loss. Figure 5 shows coherence
images ρ̂ of a single-look interferometric pair (L = 1
and D = 2) for different values of τ . We use the em-
pirical rule τ = D/min(L,D) to increase the filtering
strength with the dimensionality of SAR images and
reduce it for multi-look images.

The estimated coherence values ρ̂k,i,j are then used
to define a first estimate Ĉk of the covariance matrix
at pixel k:

[Ĉk]i,j = ρ̂k,i,j

√
[C`]i,i[C`]j,j
|[C`]i,j |

[Ck]i,j . (32)

Note that on-diagonal entries are unchanged:
∀i, [Ĉk]i,i = [Ck]i,i, while the magnitude of off-
diagonal entries becomes equal to ρ̂k,i,j and the phase
of off-diagonal entries is preserved. In practice, the
coherence ρ̂k,i,j is smaller than 1 for all values of τ
larger than 0. In order to guarantee that the covariance
matrix Ĉk actually is positive definite, off-diagonal
entries can additionally be shrunk toward 0 by a small
factor (by multiplication by a factor .99 for example).
The filtering step applied in equations (31) and (32)
largely improves the conditionning of covariance matrix
Ĉk, which helps performing the principal component
analysis required to define transform Ω (by producing
a more stable analysis).

(a) no spatial filtering (b) filtering with τ = 1

(c) filtering with τ = 2 (d) filtering with τ = 3

Fig. 5 Estimation of the interferometric coherence by local
Gaussian filtering, for different filtering strengths. In the ab-
sence of spatial filtering, the coherence is equal to 1 everywhere.
All images are displayed using the same graylevel scale with a
zero coherence displayed in black and a unit coherence displayed
in white. The area shown corresponds to the images of Figure
2.

In contrast to intensity data for which E{[Ck]ij} =
[Σk]ij for all channels i and j, the average of log-
transformed data is known to suffer from a systematic
bias [38] that can be quantified on diagonal elements,
for all 1 6 k 6 D, by

E[logCkk]− logΣkk = ψ(L)− logL , (33)

where ψ is the di-gamma function. MuLoG does not
estimate logΣ by averaging, but by iterating the lines
8 to 11 in Algorithm 1. The sequence of these iterations
leads to an unbiased estimate. However, at the first it-
eration, the Gaussian denoiser function fσ is applied to
the initial guess C(init)

k . This denoiser performs an aver-
aging of the values in homogeneous areas. Convergence
to the final values is faster if the bias is pre-compensated
in the initial guessC(init), as done in line 5 of Algorithm
4.

4.2 Regularization

The previous paragraph described the strategy to build
an initial guess C(init)

k of the covariance matrix at pixel
k. This guess serves as a starting point for the itera-
tive estimation procedure conducted by Algorithm 4.
Line 2 of Algorithm 4, a regularized version C(reg)

k of
the covariance matrix is defined to compute vector y
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Algorithm 4: Initial estimation of the covariances
input : a bidimensional field of

speckle-corrupted covariance matrices C
output: the initial guess C(init)

(to be used line 1 of Algorithm 1)

1 τ ← D/min(L,D) (filtering strength)

2 C(filt) ← Gaussian filter(C, τ/2π)
(filter with a Gaussian kernel of variance τ/2π)

3

{
ρ̂k,i,j ←

∣∣[C(filt)
`

]i,j
∣∣√

[C(filt)
`

]i,i[C(filt)
`

]j,j

}
k=1..n, i,j=1..D
(estimate coherences)

4

{
[Ĉk]i,j ← ρ̂k,i,j

√
[C`]i,i[C`]j,j
|[C`]i,j | [Ck]i,j

}
k=1..n, i,j=1..D

(impose the estimated coherences)

5
{
C

(init)
k ← exp(logL− ψ(L))Ĉk

}
k=1..n

(pre-compensate bias)

(line 5) and then used to define the data-fidelity prox-
imal operator (line 10). Although a rank-deficient ma-
trix Ck such as vkv∗k could possibly be used to define
the proximal operator (by replacing exp(Ω(y)) by this
rank-deficient matrix in the definition of F (x) in equa-
tion (10)), rank-deficient or ill-conditioned covariance
matrices lead to cost functions F (x) that are harder
to minimize. On the other hand, we show in the sequel
that the spatial smoothing strategy used in Algorithm
4 to build our initial guess C(init)

k should not be used
to compute C(reg)

k (as done in the original algorithm
MuLoG [13]) since this may lead to significant biases.

In order to control the condition number of the co-
variance matrices C(reg)

k , we adjust the eigenvalues by
applying an affine map that rescales the eigenvalues
from the range [λmin, λmax] to the range [λmax/c̄, λmax],
with c̄ = min(c, λmax/λmin). This transformation en-
sures that the resulting covariance matrix has a condi-
tion number at most equal to c. Moreover, the largest
eigenvalue λmax is left unchanged and the ordering of
the eigenvalues is preserved by this strictly increasing
mapping (provided that c > 1). It seems that this lat-
ter property is beneficial to limit the bias introduced
by the covariance regularization scheme. If the condi-
tion number is larger than the actual condition number
of Ck, the affine map corresponds to the identity map.
The computation of the regularized covariance matrices
is summarized in Algorithm 5. We use in the following
the value c = 103.

Algorithm 5: Regularization of covariance matrices
input : a covariance matrix Ck ∈ CD×D
input : a condition number c
output: a regularized matrix C(reg)

k ∈ CD×D

1 compute the eigenvalue decomposition:
Ck = E diag(Λ)E∗

2 λmin ← min(Λ) (smallest eigenvalue)
3 λmax ← max(Λ) (largest eigenvalue)
4 c̄← min(c, λmax/λmin) (targeted condition number)
5 {λk ← λk−λmin

λmax−λmin
λmax(1− 1/c̄) + λmax/c̄}k=1..D

(affine mapping of the eigenvalues)
6 C

(reg)
k ← E diag(Λ)E∗

(recomposition with the modified eigenvalues)

5 Numerical experiments

5.1 Simulated data

In a first experiment, we compare the impact of the
modifications introduced in Sections 3 and 4 with re-
spect to the original MuLoG algorithm in [13] on a sim-
ulated PolSAR image generated from optical satellite
images by building at each pixel index k the following
covariance matrix

Σk = 1
4

 (Gk +Rk)2 0 (G2
k −R2

k)(1 + j)
0 4B2

k 0
(G2

k −R2
k)(1− j) 0 (Gk −Rk)2

 ,

(34)

where Rk, Gk, and Bk are the Red-Green-Blue (RGB)
channels of the optical image, and the polarimetric
channels of the covariance matrix are organized in the
following order HH, HV , and V V . This way the opti-
cal image coincides with the RGB representation of Σ
when represented by fake colors in the Pauli basis, as
described page 3. This model considers that channel HV
is decorrelated from channels HH and VV, while chan-
nels HH and VV have a correlation of 1/

√
2 ≈ 0.71.

Given such a ground truth image Σ, we next simulated
noisy versions C with L looks by random sampling, at
each pixel index k,

Ck = Σ
1/2
k ZkΣ

1/2
k with Zk = 1

L

L∑
l=1

(v(l)
k )(v(l)

k )∗ ,

(35)

where Σ1/2
k denotes the Hermitian square root of Σ1/2

k ,
and v(l)

k are independent complex random vectors with
real and imaginary parts drawn according to a Gaussian
white noise with standard deviation 1/

√
2. By construc-

tion, this gives Zk ∼ W(IdD, L) and Ck ∼ W(Σ, L).
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L
=

1
L

=
2

L
=

3
L

=
10

L=
10

0

(a) C and Z = Σ−1/2CΣ−1/2 (b) Σ̂ and the residuals Ẑ for the original
MuLoG algorithm [13]

(c) Σ̂ and the residuals Ẑ for the modified
MuLoG algorithm (this paper)

Fig. 6 Comparisons of the original MuLoG algorithm [13] and the modified version introduced in this paper, for different values
of L. (a) Noisy image C and its noise component Z = Σ−1/2CΣ−1/2 simulated from the 2003 SPOT Satellite image of Bratislava.
(b-c) Estimates Σ̂ and the corresponding residuals Ẑ = Σ̂−1/2CΣ̂−1/2 (method noise) for the original and modified versions of
MuLoG. The residuals Z should ideally be as close as possible to the actual noise component Z. The ground truth is not displayed
but is extremely close to C when L = 100 (last row).

5.2 Evaluation with Simulations

Using the procedure described in the previous para-
graph, we simulated a PolSAR data Σ from a 2003
SPOT Satellite image of Bratislava (Slovakia)1. We sug-
gest performing first a visual comparison of the esti-
mated Σ̂ respectively obtained by the original version
of MuLoG and by the modified version introduced in
this paper, on noisy versions C obtained for five differ-

1 Provided by CNES under Creative Commons Attribution-
Share Alike 3.0 Unported license. See: https://commons.
wikimedia.org/wiki/File:Bratislava_SPOT_1027.jpg

ent numbers of looks: L = 1, 2, 3, 10 and 100. In addi-
tion, in order to get more insight into the behavior of
each estimator, we display the residuals (aka, method
noise [4]), defined by Ẑ = Σ̂−1/2CΣ̂−1/2 where Σ̂−1/2

is the inverse of the Hermitian square root Σ̂1/2. Should
the estimation be perfect, Σ̂ would exactly be equal to
Σ, and Ẑ would perfectly match the white speckle com-
ponent Z. Comparing Ẑ to Z is thus an efficient way
to assess the bias/variance trade-off achieved by the es-
timator. Areas of Ẑ that appear less noisy than Z indi-
cate an under-smoothing. If Ẑ contains structures not
present in Z, this indicates an over-smoothing. Wher-
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Fig. 7 Evolution of the symmetric KL divergence between the
ground-truth Σ and the estimated residuals Σ̂ obtained with
the original or the modified version of MuLoG. The divergence
is computed on the simulated PolSAR data obtained from the
2003 SPOT Satellite image of Bratislava shown on Figure 6, for
various number of looks L.

ever Ẑ has a different color than Z, this is a sign of
bias.

Results are provided in Figure 6. The estimated im-
ages Σ̂ obtained with the original version of MuLoG
and the modified version introduced in this paper are
visually very close. As expected, the quality of the re-
stored images improves with the number of looks along
with the signal-to-noise ratio in the speckle-corrupted
images. The residuals Ẑ clearly indicate a bias with the
original version of MuLoG. This bias is smaller with re-
spect to the speckle variance when the number of looks
L is lower.

The residuals Ẑ obtained with the modified Mu-
LoG algorithm are comparable to the true residuals Z:
no geometrical structure from the image is noticeable
in the residuals, which indicates that contrasted fea-
tures where not removed from the image by the de-
speckling processing. The levels of fluctuations in Ẑ

and Z seem similar. In order to perform a more quanti-
tative comparison of the residuals, we report in Figure
7 the symmetrical Kullback-Leibler divergence (KLD)
between the distribution of the residuals Σ and Σ̂ for
different numbers of looks ranging from L = 1 to 100.
The KLD, averaged over the pixel index k, between the
distributions W(Σk;L) and W(Σ̂k;L) is defined by

SDW(Σ̂k‖Σk) = L tr(ΣkΣ̂
−1
k +Σ−1

k Σ̂k)− 2LD .

(36)

A KLD of 0 indicates a perfect match while a larger
value indicates a discrepancy. The divergence increases
with the number of looks, which is expected because the
KLD is a measure of divergence relative to the signal-to-
noise ratio: the larger the signal-to-noise ratio, the more
conserving is the KLD. We observe that for all values
of L, the modified version of MuLoG leads to residuals
closer to the theoretical distribution of speckle residu-
als. This is in agreement with the behaviour observed

on Figure 6 where the bias is seen to become prominent
for large numbers of looks with the original version of
MuLoG.

We checked by comparing the average running time
on several images that the modifications introduced in
this paper do not slow down MuLoG: a slight speedup
was even observed in our experiments.

5.3 Evaluation with Real data

Figures 8, 9 and 10 compare the restoration perfor-
mance of the original MuLoG algorithm and of the
modified version introduced in this paper on PolSAR
images from 3 different sensors (AIRSAR from NASA,
PISAR from JAXA and SETHI from ONERA). The
equivalent numbers of looks, estimated by maximum
likelihood, are respectively equal to 2.7, 1.7 and 1 for
each image. From the 1 look image of SETHI, we build
a 4 looks image by spatial averaging and downsampling
by a factor 2 in the horizontal and vertical directions.

As previously observed on simulated data, while the
results of the two versions of the algorithm are similar
when the number of looks is small, a bias is visible in
the residuals with the original MuLoG algorithm for
larger equivalent numbers of looks.

6 Discussion

MuLoG is a generic framework that offers the possi-
bility of a straightforward application of denoisers de-
veloped for additive white Gaussian noise (i.e., optical
imaging). It suppresses the need for a time-consuming
adaptation of these algorithms to the specifics of SAR
imagery. Beyond a much faster transfer of state-of-the-
art denoising methods, it makes it easier to run several
denoisers in parallel and compare the restored images
obtained by each. Figure 11 illustrates such restoration
results obtained with 6 different denoising techniques.
Method-specific artifacts can be identified in the re-
sults: the total-variation denoiser [34] suppresses oscil-
lating patterns and creates artificial edges in smoothly
varying regions; BM3D [10], based on wavelets trans-
forms, is very good at restoring oscillating patterns but
it may also produce oscillating artifacts in some low
signal-to-noise ratio areas; DDID [23] creates oscillat-
ing artifacts and some ripples around edges; FEPLL
[31] tends to suppress low signal-to-noise ratio oscil-
lating patterns; DnCNN [39] produces smooth images
with some point-like artifacts and a suppression of the
low signal-to-noise ratio oscillating patterns; IRNCNN
[40] better restores some of the oscillating patterns but
introduces many artifacts in the form of fake-edges in
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(a) Speckled covariance C

(b) Restored Σ̂ (original) (c) Restored Σ̂ (this paper)

(d) Residuals Ẑ (original) (e) Residuals Ẑ (this paper)

Fig. 8 Despeckling performance comparison of the original al-
gorithm MuLoG and the modified version introduced in this
paper. AIRSAR polarimetric image of San-Francisco, USA
( c©NASA): (a) The original image; (b-c) the despeckling re-
sults; (d-e) the residuals.

homogeneous areas. We believe that the possibility to
include deep learning techniques with MuLoG is par-
ticularly useful to multi-dimensional SAR imaging for
which the supervised training of dedicated networks is
very difficult to achieve due to the lack of ground-truth
data and the dimensionality of the patterns (spatial
patterns that extend in the D2 real-valued dimensions
of the covariance matrices).

This paper introduced several modifications to the
MuLoG algorithm [13] based on the closed-form deriva-
tion of first and second order derivatives of data-fidelity
proximal operator. These mathematical developments
can benefit other algorithms than MuLoG, in par-
ticular the large body of methods derived from the
plug-in-ADMM strategy [6], algorithm unrolling [29] or
stochastic sampling techniques such as those based on
Langevin dynamics [24].

(a) Speckled covariance C

(b) Restored Σ̂ (original) (c) Restored Σ̂ (this paper)

(d) Residuals Ẑ (original) (e) Residuals Ẑ (this paper)

Fig. 9 Despeckling performance comparison of the original al-
gorithm MuLoG and the modified version introduced in this pa-
per. PISAR polarimetric image of Tsukuba, Japan ( c©JAXA):
(a) The original image; (b-c) the despeckling results; (d-e) the
residuals.
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(a) Speckled covariance C
(L = 1)

(b) Speckled covariance C
(L = 4)

(c) Restored Σ̂ (original)
(L = 1)

(d) Restored Σ̂ (original)
(L = 4)

(e) Restored Σ̂ (this paper)
(L = 1)

(f) Restored Σ̂ (this paper)
(L = 4)

(g) Residuals Ẑ (original)
(L = 1)

(h) Residuals Ẑ (original)
(L = 4)

(i) Residuals Ẑ (this paper)
(L = 1)

(j) Residuals Ẑ (this paper)
(L = 4)

Fig. 10 Despeckling performance comparison of the origi-
nal algorithm MuLoG and the modified version introduced in
this paper. SETHI polarimetric image of Nı̂mes area, France
( c©ONERA): first column, single-look image; second column,
4-looks image. (a,b) The original images; (c-f) the despeckling
results; (g-j) the residuals.
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Fig. 11 Many different Gaussian denoisers can be used in conjunction with MuLoG. A speckled polarimetric image (a) is restored
with MuLoG and conventional Gaussian denoisers: (b) total variation minimization [34]; (c) the block-matching collaborative 3D
filtering algorithm BM3D [10]; (d) the dual domain image denoising method DDID [23]; or more recent learning-based techniques:
(e) a fast algorithm based on a model of image patches as a mixture of Gaussians FEPLL [31]; and two deep neural networks: (f)
DnCNN [39] and (g) IRNCNN [40].
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A Gradient of the objective F

Proof (Proof of eq. (12)) Applying the chain rule to eq. (10)
leads to the following decomposition

g = ∇x
[
β

2 ‖x− z‖
2 + L tr(Ω(x) + eΩ(y)e−Ω(x))

]
(37)

= β(x− z) + L
∂Ω(x)
∂x

∣∣∣∗
x

(
∇X trX

∣∣∣∣
Ω(x)

(38)

− ∂eX

∂X

∣∣∣∣∗
−Ω(x)

∂eΩ(y)X

∂X

∣∣∣∣∗
e−Ω(x)

∇X trX
∣∣∣∣
eΩ(y)e−Ω(x)

)
.

Using that for any matrix A and B

∂AX

∂X

∣∣∣∗
e−Ω(x)

[B] = BA
∗ , (39)

∂Ω(x)
∂x

∣∣∣∗
x

[B] = Θ(B) , (40)

∇X trX
∣∣∣∣
eΩ(y)e−Ω(x)

= IdD . (41)

concludes the proof.

B Proof of Proposition 1

Let us start by recalling the following Lemma whose proof can
be found in [26,17,5].

Lemma 1 Let Σ be an Hermitian matrix with distinct eigen-
values. Let Σ = E diag(Λ)E∗ be its eigendecomposition where
E is a unitary matrix of eigenvectors and Λ = (λ1, . . . , λD) the
vector of corresponding eigenvalues. We have for a Hermitian
matrix A

∂Λ

∂Σ
[A] = diag(Ā) and ∂E

∂Σ
[A] = E

(
J � Ā

)
(42)

where Ā = E∗AE and J is the skew-symmetric matrix

Jij =
{

1
λj−λi if i 6= j ,

0 otherwise .
(43)

Proof (Proof of Proposition 1) Recall that expΣ =
E diag(eΛ)E∗. From Lemma 1, by applying chain rule, we have

∂eΣ

∂Σ
[A] = E

(
J � Ā

)
diag(eΛ)E∗ (44)

+E diag(eΛ)
(
J � Ā

)∗
E
∗ (45)

+E diag(eΛ) diag(Ā)E∗ . (46)

We have for i 6= j[(
J � Ā

)
diag(eΛ) + diag(eΛ)

(
J � Ā

)∗]
ij

(47)

=JijĀijeλj + eλiJjiĀji = JijĀije
λj − eλiJijĀij (48)

=JijĀij(eλj − eλi) = ĀijGij = [G� Ā]ij . (49)

For i = j, since Jii = 0, we conclude the proof.

C Proof of Corollary 1

Proof We need to prove that for any two D × D Hermitian
matrices A and B, we have〈
∂eΣ

∂Σ
[A], B

〉
=
〈
A,

∂eΣ

∂Σ
[B]
〉

(50)

for the matrix dot product 〈X, Y 〉 = tr[XY ∗]. According to
Proposition 1, this amounts to show

tr(E[G� (E∗AE)]E∗B∗) = tr(E[G� (E∗BE)]E∗A∗) (51)

where E and G are defined from Σ as in Proposition 1. Denot-
ing Ā = E∗AE and B̄ = E∗BE, this can be recast as

tr((G� Ā)B̄∗) = tr((G� B̄)Ā∗) (52)

Expanding the left hand side allows us to conclude the proof as
follows

tr((G� Ā)B̄∗) =
D∑
k=1

D∑
l=1

(G� Ā)kl(B̄∗)lk (53)

=
D∑
k=1

D∑
l=1

GklĀklB̄kl (54)

=
D∑
k=1

D∑
l=1

GklB̄kl(Ā)∗lk (55)

= tr((G� B̄)Ā∗) . (56)

D Hessian of the objective F

Proof (Proof of eq. (24)) Applying the chain rule to eq. (12)
leads to

H = ∂

∂x

[
β(x− z) + LΘ

(
IdD −

∂eΣ

∂Σ

∣∣∣∣∗
−Ω(x)

[eΩ(y)]

)]
(57)

= βIdD − LΘ

(
∂

∂x

(
∂eΣ

∂Σ

∣∣∣∣∗
−Ω(x)

[eΩ(y)]

)
[ · ]

)
(58)

= βIdD − LΘ

(
∂2eΣ

∂Σ2

∣∣∣∣
−Ω(x)

[
eΩ(y),

∂ −Ω(x)
∂x

[ · ]
])

(59)

= βIdD + LΘ

(
∂2eΣ

∂Σ2

∣∣∣∣
−Ω(x)

[
eΩ(y), Θ∗[ · ]

])
. (60)

If follows that

Hd = βd+ LΘ

(
∂2eΣ

∂Σ2

∣∣∣∣
−Ω(x)

[
eΩ(y), Θ∗[d]

])
(61)

and thus, as ||d||2 = 1, it follows that

d
∗
Hd = β + Ld∗Θ

(
∂2eΣ

∂Σ2

∣∣∣∣
−Ω(x)

[
eΩ(y), Θ∗[d]

])
(62)

= β + L

〈
d, Θ

(
∂2eΣ

∂Σ2

∣∣∣∣
−Ω(x)

[
eΩ(y), Θ∗[d]

])〉
(63)



Speckle reduction in matrix-log domain for synthetic aperture radar imaging 19

= β + L

〈
Θ∗[d], ∂

2eΣ

∂Σ2

∣∣∣∣
−Ω(x)

[
eΩ(y), Θ∗[d]

]〉
(64)

which concludes the proof.

E Proof of Proposition 2

Proof (Proof of Proposition 2) The second directional deriva-
tive can be defined from the adjoint of the directional derivative
as

∂2eΣ

∂Σ2 [A,B] = ∂

∂Σ

(
∂eΣ

∂Σ

∣∣∣∣∗
Σ

[A]
)

[B] . (65)

By virtue of Corollary 1, we have ∂eΣ

∂Σ

∣∣∣∗
Σ

= ∂eΣ

∂Σ

∣∣∣
Σ

, and then
from Proposition 1 it follows that

∂2eΣ

∂Σ2 [A,B] = ∂

∂Σ

(
E[G� Ā]E∗

)
[B] . (66)

In order to apply the chain rule on E[G � Ā]E∗, let us first
rewrite J and G in Lemma 1 and Proposition 1 as

J = (1D1
∗
D − IdD)� (IdD + 1DΛ

∗ −Λ1
∗
D) (67)

G = diag(eΛ)− (eΛ1∗D − 1De
Λ∗)� J (68)

where 1D is a D dimensional column vector of ones, � denotes
the element-wise division and eΛ

∗ must be understood as the
row vector (eΛ)∗. From Lemma 1, we have for a Hermitian
matrix B

∂

∂Σ
diag

(
eΛ
)

[B] = diag(eΛ)� B̄ (69)

∂

∂Σ

(
eΛ1∗D − 1De

Λ∗) [B] (70)

= diag(eΛ) diag(B̄)1∗D − 1D diag(B̄)∗ diag(eΛ)
∂

∂Σ

(
IdD +Λ1

∗
D − 1DΛ

∗) [B] = diag(B̄)1∗D − 1D diag(B̄)∗

(71)

where B̄ = E∗BE. By application of the chain rule, we get

∂J

∂Σ
[B] = −(diag(B̄)1∗D − 1D diag(B̄)∗)� J � J (72)

∂G

∂Σ
[B] = diag(eΛ)� B̄ (73)

−
[

diag(eΛ) diag(B̄)1∗D − 1D diag(B̄)∗ diag(eΛ)

−G�
(
diag(B̄)1∗D − 1D diag(B̄)∗

) ]
� J

where we used that
(
eΛ1∗D−1De

Λ∗
)
�J = −G�J . Let A be

a Hermitian matrix and Ā = E∗AE, by Lemma 1, we have

∂Ā

∂Σ
[B] =Ā

(
J � B̄

)
−
(
J � B̄

)
Ā . (74)

We are now equipped to apply the chain rule to E[G � Ā]E∗
in the direction B, which leads us to

∂2eΣ

∂Σ2 [A,B] = E[F (Ā, B̄)]E∗ (75)

with F (Ā, B̄) = F1 + F2 + F3 (76)

and F1 =
(
J � B̄

) (
G� Ā

)
−
(
G� Ā

) (
J � B̄

)
(77)

F2 = G�
[
Ā
(
J � B̄

)
−
(
J � B̄

)
Ā
]

(78)

F3 = ∂G

∂Σ
[B]� Ā . (79)

We have for all 1 6 i 6 D and 1 6 j 6 D

[F1]ij =
D∑
k=1

JjkGikĀikB̄
∗
jk + JikGjkB̄ikĀ

∗
jk (80)

and [F2]ij = −Gij
D∑
k=1

JjkĀikB̄
∗
jk + JikB̄ikĀ

∗
jk . (81)

Hence, we get

[F1 + F2]ij =
D∑
k=1

Jjk(Gik −Gij)ĀikB̄∗jk (82)

+
D∑
k=1

Jik(Gjk −Gij)B̄ikĀ∗jk .

• Assume i 6= j. We have

[F3]ij = −[GiiB̄ii −GjjB̄jj (83)
−Gij(B̄ii − B̄jj)]JijĀij

= Jij(Gjj −Gij)B̄jjĀij (84)
−Jij(Gii −Gij)ĀijB̄ii .

For k 6= i and k 6= j, we have

Jik(Gjk −Gij)− Jij(Gjk −Gik) (85)

= eλj − eλk
(λj − λk)(λk − λi)

− eλi − eλj
(λi − λj)(λk − λi)

(86)

− eλj − eλk
(λj − λk)(λj − λi)

+ eλi − eλk
(λi − λk)(λj − λi)

= (λi − λj)(eλj − eλk )− (λj − λk)(eλi − eλj )
(λi − λj)(λj − λk)(λk − λi)

(87)

+(λk − λi)(eλj − eλk ) + (λj − λk)(eλi − eλk )
(λi − λj)(λj − λk)(λk − λi)

= eλi(λk − λj + λj − λk)
(λi − λj)(λj − λk)(λk − λi)

(88)

+eλj (λi − λj + λj − λk + λk − λi)
(λi − λj)(λj − λk)(λk − λi)

+eλk (λj − λi + λi − λk + λk − λj)
(λi − λj)(λj − λk)(λk − λi)

= 0 . (89)

Similarly, we have Jjk(Gik − Gij) = Jij(Gjk − Gik). Hence,
we get the following

[F1 + F2]ij =
∑

k 6=i,k 6=j

Jij(Gjk −Gik)(ĀikB̄∗jk + B̄ikĀ
∗
jk)

− Jij(Gii −Gij)ĀiiB̄∗ji
+ Jij(Gjj −Gij)B̄ijĀ∗jj . (90)

It follows that

[F1 + F2 + F3]ij (91)

=
∑

k 6=i,k 6=j

Jij(Gjk −Gik)(ĀikB̄∗jk + B̄ikĀ
∗
jk)
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+ Jij(Gji −Gii)(ĀiiB̄∗ji + B̄iiĀ
∗
ji)

+ Jij(Gjj −Gij)(ĀijB̄∗jj + B̄ijĀ
∗
jj)

=
D∑
k=1

Jij(Gjk −Gik)︸ ︷︷ ︸
ϕi,j,k

(ĀikB̄∗jk + B̄ikĀ
∗
jk) . (92)

• Now assume that i = j. We have [F3]ii = GiiĀiiB̄ii. It
follows that

[F1 + F2 + F3]ii (93)

=
D∑
k=1

Jik(Gik −Gii)(ĀikB̄∗ik + B̄ikĀ
∗
ik) (94)

+GiiĀiiB̄ii (95)

=
∑
k 6=i

Jik(Gik −Gii)︸ ︷︷ ︸
ϕi,i,k

(ĀikB̄∗ik + B̄ikĀ
∗
ik) (96)

+ 1
2Gii︸︷︷︸
ϕi,i,i

(ĀiiB̄∗ii + B̄iiĀ
∗
ii)

which concludes the proof.
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