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Abstract: The purpose of this paper is to present a new and accurate, fully explicit finite-difference
time-domain method for modeling nonlinear electromagnetics. The approach relies on a stable
algorithm based on a general vector auxiliary differential equation in order to solve the curl Maxwell’s
equation in a frequency-dependent and nonlinear medium. The energy conservation and stability
of the presented scheme are theoretically proved. The algorithms presented here can accurately
describe laser pulse interaction with metals and nonlinear dielectric media interfaces where Kerr and
Raman effects, as well as multiphoton ionization and metal dispersion, occur simultaneously. The
approach is finally illustrated by simulating the nonlinear propagation of an ultrafast laser pulse
through a dielectric medium transiently turning to inhomogeneous metal-like states by local free-
electron plasma formation. This free carrier generation can also be localized in the dielectric region
surrounding nanovoids and embedded metallic nanoparticles, and may trigger collective effects
depending on the distance between them. The proposed numerical approach can also be applied to
deal with full-wave electromagnetic simulations of optical guided systems where nonlinear effects
play an important role and cannot be neglected.

Keywords: finite-difference time-domain method (FDTD); nonlinear propagation; Raman effect
simulation; Kerr effect simulation; light propagation in a photoionizable media; plasma; Maxwell
equations solver; laser pulse interaction; general vector auxiliary differential equation (GVADE)

1. Introduction

The finite difference time-domain (FDTD) method enables the computation and mod-
eling of light propagation and scattering processes in linear and nonlinear dispersive
materials possessing wavelength-dependent and intensity-dependent properties. This
ranks the method among the most universal and powerful numerical tools for optics, elec-
trodynamics, antennas, and waveguides theory. In this context, the general vector auxiliary
differential equation (GVADE) method, which has been reported in [1] and improved in [2],
is one of the most popular methods to deal with nonlinear media. However, the method
suffers from some drawbacks that limit its speed and stability due to the semi-implicit
updating relation for the current polarization densities. In summary, the method is not
appropriate or recommended for a broad range of problems, especially those that address
the designs with complex 3D topology, where iterative solutions of coupled nonlinear equa-
tions can be unstable and resource-demanding [3]. Some direct or explicit methods take
into consideration the Kerr effect in the Born–Oppenheimer approximation [4]. The Kerr ef-
fect arises from the nonlinear third-order electric susceptibility. In [3], the authors take into
consideration the Kerr effect in an explicit form. Other direct methods [5] require excessive
computational burdens, especially for the consideration of complex geometries. When
metal–dielectric interfaces are treated, especially at nanometric scales, plasmonic effects
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appear [6,7] and generate high concentrations or high local densities of the electromagnetic
field [8]. Since dielectrics experience nonlinear optical processes, the treatment of these
regions in the interfaces is particularly challenging.

In this manuscript, we develop an algorithm that permits solving a nonlinear dielectric
medium in which Kerr and Raman’s effects [9] occur simultaneously. The Raman effect
arises from the scattering caused by the conversion of photon energies into vibrational
energy of molecules. The scattered photons have less energy than the incident photons
corresponding, therefore lowering frequency fields [2]. We also assume that this takes
place in an inhomogeneous dielectric environment that can potentially include metallic
heterogeneities with specific optical properties. Along with the laser propagation, provided
that the intensity is sufficient to ensure nonlinear absorption, the medium can also turn into
a metallic state as a free electron population is generated during multiphoton absorption
(MPA) or tunneling and avalanche ionization processes. It is well known that the electron
transition from the valence band (VB) to the conduction band (CB) is followed by various
processes, including heating in the CB, impact ionization, and various kinds of electron
collisions. The purpose of this work consists of computing all these events in a full
explicit form. The carrier generation rate G(~r, t) has been computed owing to the BVkP
approach implying Bloch–Volkov states [10]. The algorithms presented in this manuscript
are especially suitable for simulations dealing with confinements and guiding high-energy
pulsed beams. In summary, in this work, we coupled Maxwell equations and the electric
charge carriers conservation equation in which the quantum ionization and recombination
are governed by BVkP self-consistently.

In the next sections, by following and enriching some pioneers’ works [11–13], we
detail a fully explicit, stable algorithm based on GVADE FDTD, able to solve the curl
Maxwell’s equation in a frequency-dependent way for a nonlinear medium. In order
to illustrate the combination of all these nonlinear effects occurring simultaneously in
a simulation, we have modeled a Bessel beam traveling through dielectric fused silica,
where some metal inclusions are modeled in a similar form as in Ref. [14]. In Section 2, we
introduce the theoretical model, which describes the nonlinear effects. Section 3 presents
the algorithms that discretize in time and space the main magnitudes, electromagnetic
fields and electric charge. Appendix A is devoted to the stability condition assessment for
these algorithms, which imposed numerical limits to the simulation performance. These
limits are studied in Section 4, where we specify the validity framework considering natural
limits imposed by physics. In Section 5 we present the simulation outcomes provided
by the full numerical modelling and in Section 6 the conclusions are drawn. Finally, the
stability conditions are derived in Appendix A and the used computational resources are
presented in Appendix B.

2. Modeling Electromagnetic Fields in Nonlinear Media

The Equations (1)–(3) model the laser beam propagation by means of the electromag-
netic fields ~E(~r, t) and ~H(~r, t). Throughout the light propagation path, fields generate and
couple with the density of free charges as free electrons n f e−(~r, t), which in turn interact
with the local field. In the given form, nonlinearities are determined by the electric dis-
placement field ~D(~r, t) in the Ampère-Maxwell Equation (1). Meanwhile, the evolution
of the free-electron density or medium conductivity is described by Equation (3), where
G(~r, t) is the carrier generation rate and R(~r, t) is the carrier recombination rate.

∇∧ ~H(~r, t) =
∂~D(~r, t)

∂t
(1)

∇∧ ~E(~r, t) = −µ
∂~H(~r, t)

∂t
(2)

∂n f e−(~r, t)
∂t

= G(~r, t)− R(~r, t) (3)
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The electric displacement field is composed by the electric field contribution plus the
polarization vectors ~D(~r, t) = ε0ε∞~E(~r, t)+∑ ~P(~r, t) [2]. The magnitude ε∞ is the non-unity
high-frequency relative permittivity of the media. On the right hand side of the displace-
ment electric field, the sum of polarization vectors in the model that we are considering
∑ ~P(~r, t) is the contribution of four terms, the metal polarization ~PMetal(~r, t), the Kerr effect
polarization ~PKerr(~r, t), the Raman polarization ~PRaman(~r, t) and the free charge polarization
vector ~Pf e−(~r, t) such as ∑ ~P(~r, t) = ~PMetal(~r, t) + ~PKerr(~r, t) + ~PRaman(~r, t) + ~Pf e−(~r, t) with
the detail of each term below:

~PMetal(~r, t) =
ε0a

jω + b
~E(~r, t) a, b ∈ C (4)

~PKerr(~r, t) = αε0χ
(3)
0

~E(~r, t)
∫ t

−∞
δ(t− τ)|~E(~r, τ)|2dτ (5)

~PRaman(~r, t) = Ψ~E(~r, t)
∫ t

−∞
e
−(t−τ)

τ2 sin(
t− τ

τ1
)U(t− τ)|~E(~r, τ)|2dτ (6)

~Pf e−(~r, t) =
∫ t

−∞
σf e−(~r, t)~E(~r, t)dτ (7)

where Ψ = ε0χ(3)(1− α)
τ2

1 +τ2
2

τ1τb
2 yte,intent(in)::types2

is a coefficient gathering parameters depend-

ing on the considered medium. Expressions Equations (5) and (6) providing the Kerr
effect polarization and Raman polarization, respectively, are taken from [9]. Here, α is a
real-valued constant in the range α ∈ [0, 1] that parameterizes the relative strengths of
Kerr and Raman contributions, δ(t) refers to the Dirac delta function that models the Kerr
nonresonant virtual electronic transitions, which is medium dependent and in the order

of few femtoseconds for fused silica, U(t) is the Heaviside unit step function, e
−t
τ2 sin( t

τ1
)

models the impulse response of a single Lorentzian relaxation centered on the optical
phonon frequency 1/τ1 and having a bandwidth of 1/τ2. Finally χ

(3)
0 is the strength of the

third-order nonlinear electric susceptibility.
The upper limit of the integrations in Equations (5)–(7) extends only up to t because

the response function must be zero for τ > t to ensure causality [3]. Moreover, free-
charge polarization is introduced by using a free-charge density of current, which will be
defined later. Finally, to model the metal, we consider a complex electrical permittivity
ε̃(ω) = a

jω+b where a and b are complex numbers that fit experimental data [15]. To model
the dispersive media, we assume an electric permittivity, which is frequency-dependent as
the calculations are devoted to ultrafast laser propagation, with bandwidth-limited pulses
that exhibit wavelength dispersion.

In ref. [2], the general vector auxiliary differential equation technique allows consid-
ering nonlinearities or dispersive characteristics of a medium. They are introduced into
the Ampère–Maxwell equation by means of current densities. These currents correspond
intrinsically to the temporal variation of the polarization vectors. Thereby, the follow-

ing Equations (8)–(11) can be derived to correlate the currents ~JMetal(~r, t) = ∂~PMetal(~r,t)
∂t ,

~JKerr(~r, t) = ∂~PKerr(~r,t)
∂t ,~JRaman(~r, t) = ∂~PRaman(~r,t)

∂t ,~J f e−(~r, t) =
∂~Pf e− (~r,t)

∂t with the electric field:

~JMetal(~r, t) =
aε0

b

~E(~r, t)
∂t

− 1
b

~JMetal(~r, t)
∂t

(8)

~JKerr(~r, t) = αε0χ
(3)
0

∂

∂t

[
~E(~r, t)

∫ t

0
δ(t− τ)|~E(~r, τ)|2dτ

]
(9)

~JRaman(~r, t) = Ψ
∂

∂t

[
~E(~r, t)

∫ t

0
e
−(t−τ)

τ2 sin(
t− τ

τ1
)U(t− τ)|~E(~r, τ)|2dτ

]
(10)

~J f e−(~r, t) = σf e−(~r, t)~E(~r, t) (11)
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We define a free-charge density of current as an Ohmic current, where the conductivity
σf e−(~r, t) = qµ f e−n f e−(~r, t) is given by the following frequency dependent expression:

σ(~r, ω) =
qµ f e− fd(|~E|)nph−e−(|~E|)

jω + fr(|~E|)− fa(|~E|)− fη(|~E|)
(12)

where q is the electron charge, µ f e− the free carriers of charge mobility, n f e−(~r, t) the free-
charge density and nph−e−(~r, t) the photo-ionized electron density. This definition for
the density of current Equation (11) is similar to Equation (9) in [10]. In Equation (13),
we employ free-charge which is governed by Equation (3), or generation Equation (13)
and recombination Equation (14) rates. In [10], the authors explain that electron density
nph−e−(~r, t) produced in the conduction band only describes the interaction of an electron
with the laser electric field and accounts for the lattice periodicity, but does not account
for possible collisions with phonons, ions, or other electrons. Due to these collisions,
the coherence between the excited electron to the CB and its parent ion is destroyed and
may introduce deviations from the above-predicted evolution of the electron density in
the CB with respect to time. Indeed, without collisions, the produced electron density was
shown to oscillate with time as a conduction electron may go back and forth to the VB
through the action of the electromagnetic field [10,16]. Obviously, in an oscillation, the
energy stays constant [17]. Hence, the authors of [10] defined a free state as a state where
the electrons can be heated by inverse bremsstrahlung (IB) and are decorrelated from the
parent ion. The density of charge associated with this free state is called here density of free-
charge n f e−(~r, t), and its evolution along the time is modeled by Equation (3). Nevertheless,
the µ f e− , the free carriers of charge mobility, then we employ experimental data, which
allow the determination of this parameter. The method is explained in detail in Section 5.

G(~r, t) = fd(~r, t)nph−e−(~r, t) + n f e−(~r, t)
[

fa(~r, t) + fη(~r, t)
]

(13)

R(~r, t) = fr(~r, t)n f e−(~r, t) (14)

In the carrier generation rate, the term associated with the photo-ionized elec-
tron density nph−e−(~r, t) produced in the conduction band is a function of |~E(~r, t)|.

From Equation (5) in [10] we know that ∂
∂t

[
nph−e−(~r, t)− N0 ∑

c
|Tcv(t)|2

]
= 0 and hence

nph−e−(~r, t) − N0 ∑
c
|Tcv(t)|2 = cte. If this constant cte = 0, then nph−e−(~r, t) = 0 when

~E(~r, t) = 0̄. Combining this result with Equations (3) and (4) in [10], we calculate
nph−e−(~r, t) by Equation (15).

nph−e−(~r, t) =
W f

∑
ξi=0

∣∣∣∣∣∣∣∣∣
−
√

Eg
∫ t

0
|~E(~r,ϑ)|e−jϑ(Eg+ξi)(
1− j

Ω
∫ ϑ

0 |~E(~r,$)|d$
)2 dϑ

N−1
0 (Eg + ξi)

√
2m∗vc

∣∣∣∣∣∣∣∣∣
2

(15)

Finally the functions related to the generation by ionization fd(~r, t), impact fη(~r, t) and
avalanche fa(~r, t), as well as the function related to the recombination of the free-charge
fr(~r, t), are given by the Equations (16)–(19), respectively.

fd(~r, t) =


1
τd

if |~E(~r, t)| ≥ Emax
20

20|~E(~r,t)|
τdEmax

if |~E(~r, t)| < Emax
20

(16)

fη(~r, t) =

{
η if |~E(~r, t)| ≥ Emax

20
20|~E(~r,t)|η

Emax
if |~E(~r, t)| < Emax

20

(17)
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fa(~r, t) =


Θ|~E(~r,t)|2

ζ Harmonic field

Θ
(
~E(~r, t) ∧ ~H(~r, t)

)
· ẑ No harmonic field

(18)

fr(~r, t) =

{
1
τr

if |~E(~r, t)| ≥ Emax
20

20|~E(~r,t)|
τrEmax

if |~E(~r, t)| < Emax
20

(19)

In Equations (16)–(19), we find that the factor of maximum electric field reduction,
which is suggested twenty times by [10], is taken into consideration. Nevertheless, when
the photoionization process is considered in a truncated region where the magnitude of
|~E(~r, t)| is from the beginning higher than the threshold Emax

20 reference value, these logical
conditions can be suppressed in the nested loops, and this increases the algorithm perfor-
mance. In other words, this simplification is possible when we assume the description
with nonlinear effects in a particular region of the computational domain. So, the elec-
tromagnetic field that arrives at that region has a magnitude higher than the threshold
Emax

20 .

In Equation (18), we assume that |
~E(~r,t)|2

ζ is the fluence with ζ being the medium
impedance. However, this is a particular case only valid when the electromagnetic field
is a harmonic function in time. In general, and assuming a propagation along the z-axis,
the power per surface is given by the Poynting vector.

3. Algorithms

The polarization vector due to the Kerr effect at the time t = ∆t

(
s− 1

2

)
can be written

as ~Ps− 1
2

Kerr = αε0χ
(3)
0 |~Es− 1

2 |2~Es− 1
2 ; however, afterwards, at the instant ∆t

(
s + 1

2

)
, in order

to define a full explicit approach, we have to make the approximation
∫ (s+ 1

2 )∆t
0 δ(t −

τ)|~E(~r, τ)|dτ '
∫ (s− 1

2 )∆t
0 δ(t− τ)|~E(~r, τ)|dτ. This approximation was demonstrated in [3]

and leads to:

~Ps+ 1
2

Kerr ' αε0χ
(3)
0

~Es+ 1
2

∫ (s− 1
2 )∆t

0
δ(t− τ)|~E(~r, τ)|dτ

This approximation ~Ps+ 1
2

Kerr ' αε0χ
(3)
0 |~Es− 1

2 |2~Es+ 1
2 is valid under particular physical

conditions explained in Section 4. To compute the nonlinear Raman effect, we make
an analogous approximation. Considering that in this case there is no instantaneous
cause–effect relationship, it is evident that the approximation is justified [18]. Therefore,
by defining the scalar magnitude |~Qa(~r, t)| that is defined from the vector ~Qa(~r, t), which
could be considered as an instantaneous anisotropic Raman conductivity, we can dis-
cretize the Raman polarization vectors at the instants ∆t

(
s− 1

2

)
and ∆t

(
s + 1

2

)
as follows:

~Ps− 1
2

Raman = |~Qs− 1
2

a |~Es− 1
2 and ~Ps+ 1

2
Raman = |~Qs− 1

2
a |~Es+ 1

2 . Where |~Qs+ 1
2

a | is updated from |~Qs− 1
2

a |
by means of:

|~Qs+ 1
2

a | = |~Qs− 1
2

a |+ g((s− nt(k))∆t)|~Es− 1
2 |2

where the Raman response function for a particular medium is modeled by

g(t) = Ψe−
t

τ2 sin
(

t
τ1

)
u(t) and the time delay nt(k) = nt0 − Hc(k−k0)∆znmedium

c0∆t ,

being nt0 = Hc
c0∆t

N
∑

i=1
`ini, depends on the refractive index of the media ni as well as the

location of the electromagnetic field in the media (Figure 1). Here u(t) is the Heaviside step
function:

u(t) =

{
0 if t ≤ 0
1 if t > 0
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Source

Scattering bodyTF/SF
CPML

Figure 1. Scheme of the calculation box, illustrating the delay nt0(k) that depends on the refractive
index of the media ni as well as the location of the electromagnetic field in the media.

In this way, we obtain the Raman current density and the Kerr current density:

~Jn
Kerr =

~Ps+ 1
2

Kerr − ~Ps− 1
2

Kerr
∆t

=
αε0χ

(3)
0 |~Es− 1

2 |2

∆t

(
~Es+ 1

2 − ~Es− 1
2

)

~Jn
Raman =

~Ps+ 1
2

Raman − ~Ps− 1
2

Raman
∆t

=
|~Qs− 1

2
a |
∆t

(
~Es+ 1

2 − ~Es− 1
2

)
The current density updating associated to the metal is given by the equation:

~Js+ 1
2

Metal = ga~J
s− 1

2
Metal + gb

(
~Es+ 1

2 − ~Es− 1
2

)
where ga = R

[
2−b∆t
2+b∆t

]
and gb = R

[
aε0

2+b∆t

]
. The operator R[] calculates the real part of

these complex numbers. Finally, the electric field updating is given by the algorithm:

~Es+ 1
2 = ~Es− 1

2 + Cs
B

(
∇∧ ~Hs − gc~J

s− 1
2

Metal

)
where the parameter Cs

B has different time-dependent values at the different locations:

Cs
B =


∆t

ε0ε∞+Υgb∆t
∂f̄

∆t(1−Υ)

ε0ε∞+σn
f e−+ε0χ

(3)
0 α|~Es− 1

2 |2+|~Q
s− 1

2
a |

D− ∂f̄

where ∂f̄ implicates any region in metals or CPMLs, meanwhile D− ∂f̄ represents any
computational region filled by a dielectric medium. Finally we have two parameters, gc
and Υ(~r), that are defined as follows:

gc = Υ
1 + ga

2

Υ(~r) =

{
1 ~r ∈ Metal
0 ~r /∈ Metal

Υ permits to switch the algorithm from dielectric to metal and vice versa. gc is a coefficient
gathering parameters for convenience in the metal current. Table 1 summarizes the algo-
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rithms presented in this section, and Figure 2 sketches the general flow chart. In the next
section, we discuss the stability conditions for these algorithms.

Table 1. The list of the new explicit algorithms added to the classical FDTD scheme in order to deal
with the nonlinear effects. The current list of algorithms is depicted in the form of a flow chart and it
is complemented by the global integration view shown in Figure 2.

Step 0: Update 6D-Discrete Incident Electric Field Array
↓

Step 1: Total field / Scattering field algorithm on ~E
↓

Step 2: |~Qs+ 1
2

a | = |~Qs− 1
2

a |+ g
(

s∆t − (k−k0)∆z
Hcc0

)
|~Es− 1

2 |2

↓
Step 3: ~Es+ 1

2 = ~Es− 1
2 + Cs

B

(
∇∧ ~Hs − gc~J

s− 1
2

Metal

)
↓

Step 4: ~Js+ 1
2

Metal = ga~J
s− 1

2
Metal + gb

(
~Es+ 1

2 − ~Es− 1
2

)
↓

Step 5: |~As+ 1
2 | = |~As+ 1

2 |+ |~Es+ 1
2 |∆t

↓
Step 6: TΣ

s+ 1
2

Time
ci = TΣ

s+ 1
2

Time
ci +

−∆t
√

Eg |~Es+ 1
2 |ej∆t(s+ 1

2 )(Eg+ξci )

(Eg+ξci)
√

2m∗vc

(
1− j

Ω |~A
s+ 1

2 |
) ∀ξci = 0, ..., W f

↓

Step 7: ns+ 1
2

ph−e− = N0

W f

∑
ξci=0

∣∣∣∣∣TΣ
s+ 1

2
Time

ci

∣∣∣∣∣
2

↓

Step 8:
ns+1

f e− =
2−∆t

(
f

s+ 1
2

r − f
s+ 1

2
a − f

s+ 1
2

η

)
2+∆t

(
f

s+ 1
2

r − f
s+ 1

2
a − f

s+ 1
2

η

)ns
f e− +

2 f
s+ 1

2
d ∆t

2+∆t

(
f

s+ 1
2

r − f
s+ 1

2
a − f

s+ 1
2

η

)ns+ 1
2

ph−e−

↓
Step 9: CPML on Magnetic Field

↓
Step 10: Update 6D-Discrete Incident Magnetic Field Array

↓
Step 11: Total field / Scattering field algorithm on ~H

↓
Step 12: ~Hs+1 = ~Hn − ∆t

µ ∇∧ ~E
s+ 1

2

↓
Step 13: CPML on Magnetic Field

↓
Step 14: ~Es− 1

2 = ~Es+ 1
2 ;~Js− 1

2
Metal =

~Js+ 1
2

Metal ;

ns
f e− = ns+1

f e− ; ~Hs = ~Hs+1; |~Qs− 1
2

a | = |~Qs+ 1
2

a |;

In Appendix A, we determine the stability conditions for the presented algorithms.
Table 2 summarizes the stability conditions of all these effects together or separately.
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Table 2. List of stability conditions. Note that Min[] selects the minimum value in a list.

Stability Conditions

All cases ∆t ≤ ni
c0

√
1

∆2
x
+ 1

∆2
y
+ 1

∆2
z

Metal R[a] ≥ 0 R[b] ≥ 0

Kerr |~̃E0| <
√

ε∞

D f χ
(3)
0

Min
[

1√
α

, 1√
1−α

]
Raman

Photoionization σf e− ≥ 0

ENDs=Nt
No Yes?

Update 6D-IFA 

TF/SF  

Begin magnitudes

CPML on Electric Field 

Update 6D-IFA 

CPML on Magnetic Field 

Swap components 

Update Magnetic Field 

Potencial vector  A

TF/SF  

Step 0

Step 1

Step 5

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Update 4D-Tcv 

Update Multi-photon ionization  

Update Free Charge

Step 6

Step 7

Step 8 P
la
sm

a
N

o
n
-L

in
e
a
r

E
ff

e
ct

s

Update Current-LD 

Update Electric Field Step 3

Step 4

Step 2Raman integrations

Figure 2. Global flow chart of the proposed GVADE-FDTD algorithm.
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4. Performance and Framework

Some approximations made here are not always applicable and, in this section, we will
establish the validity framework of the proposed algorithms. In particular, we should con-

sider the two approximations
∫ (s+ 1

2 )∆t
0 δ(t− τ)|~E(~r, τ)|dτ '

∫ (s− 1
2 )∆t

0 δ(t− τ)|~E(~r, τ)|dτ

and |~Qs+ 1
2

a | = |~Qs− 1
2

a |+ g((s− nt0(k))∆t)|~Es− 1
2 |2. Both expression are derived in [9] under

the Born–Oppenheimer approximation [4] where the Kerr non-resonant virtual electronic
transitions are in the order of 1fs, so it can be considered an instantaneous event, which is
modeled by the Dirac delta function. However, while the time stepping keeps beneath 1 fs,
we could model the medium reaction by using a time narrow Gaussian function with a
standard deviation of 1 fs. In our simulations, ∆t ∼ 0.1 fs, so we are adding in a fraction
of 1

10 the standard deviation. In this particular situation, the approximation is assumed

to be valid. We employ the full explicit form |~Qs+ 1
2

a | = |~Qs− 1
2

a |+ g((s− nt(k))∆t)|~Es− 1
2 |2

in the place of right implicit form |~Qs+ 1
2

a | = |~Qs− 1
2

a |+ g((s− nt(k))∆t)

∣∣∣∣ ~Es+ 1
2 +~Es− 1

2
2

∣∣∣∣2 based

on the same idea than before, ∆t � τ1 and ∆t � τ2 so e
−(t+∆t)

τ1
sin
(

t+∆t
τ2

)
w e

−(t)
τ1

sin
(

t
τ2

)
. This

expression is valid for all instant ∀t. Hence, we fix the limit for this full explicit approach in
the relation ∆t < 1 fs. The advantage of a fully explicit approach concerns the simulation
time. Due to the updating connection in an implicit scheme, most of the algorithms should
be re-updating to advance a time step. In classical FDTD, it is usually fixing the limits of the
index in all nested loops. In a significant computational domain, for instance, 1.2 G cells,
the updating demands 30 s. If the algorithm has to be repeated at least three times, the sim-
ulation should need around three times the the implicit scheme. Figure 3 shows the number
of simulation status updates on the abscissa axis and on the ordinate axis the time needed
in order to update these simulation states. Each step or update corresponds to executing
the 14 algorithms shown by Figure 2. In addition to these algorithms that are necessary
to perform a system status update, two numerical processes are employed. One exports
simulation data or results (every 40 updates) and the other exports the complete simulation
status (every 500 updates). The latter is done for two reasons. The first is to recover a
state of a simulation in case of computer collapse (for example a failure in the computer
electric power source). The second reason concerns the alteration of the computational
domain (electromagnetic properties or/and size of the computational domain) without
the need to restart the simulation from the first time stepping. In Appendix B the Table A1
lists the computational resources employed in the simulations. Under these conditions we
reach a performance which can be summarized by the computational burdens and some
performance parameters. Those relies on a computational domain size of 121.5 GBs in
RAM, a maximum number of Yee’s cell charged and computed of 1.2 Giga cells, a minimum
number of Yee’s cell computed of 13 Mega cells, a speed at minimum and maximum load
of 6.5 Mcells/s and 38 Mcells/s respectability, a probe exportation time of 1.47 s and a com-
putational domain backup time of 8.76 s. Therefore, Figure 3 depicts the time performance
for a simulation carried out with dynamics nested loops. In our scheme, the size of the
nested loops is provided by the information created. We know that our implementation
violates the second rule of NASA’s Ten-Rules for Developing Safety Critical Code [19].
In general, it is a good practice to arrange the loop indexes in the simulation beginning and
keep these ranges. By doing this, we fix, from the start, the nested loop size. Nevertheless,
the employment of a dynamic nested loop saves simulation time. Figure 3 depicts that we
save more than forty hours. In a simulation with the same characteristics and static nested
loop, we should have a constant duration per time step updating of 32 seconds which is
equal to the asymptotic value in Figure 3. The total simulation duration is the accumulated
time or area under the plot schematized in Figure 3. Hence, the triangle in gray color is the
time saved by means of dynamic nested loops.
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Figure 3. The figure shows the time per step in the simulation updating in a computational domain
with dynamics limits (index k is a dynamical magnitude). Furthermore, the number of threads in the
palatalization process is dynamics.

Finally, we close this section with some consideration on Equation (3). This equation is
a derivation from the charge/electrons continuity equation [20], which has the general form
∂ρ(~r,t)

∂t = q(G(~r, t)− R(~r, t))−∇ ·~J(~r, t), where we neglect the term∇ ·~J(~r, t)� qn f e−(~r, t).
We know from theory that ρ(~r, t) = qn f e−(~r, t) and~J(~r, t) = qµ f e−n f e−(~r, t)~E(~r, t). The key
is the extremely low mobility µ f e− ∼ 10−22, which is deduced from [21]. We can consider a
highly intense laser beam with |~E(~r, t)|2 ∼ 1013, which induces a free electron concentra-

tion in fused silica of n f e−(~r, t) ∼ 1026 and compare with ∇·
~J(~r,t)
q ∼

10−22×�q1026×1013/2

10−7

�q
∼ 1018.

Therefore, we can conclude that n f e−(~r, t) ∼ 108∇·~J(~r,t)
q and Equation (3) is a valid approxi-

mation in the present context.

5. Results

An efficient technique to compute scattered fields in the context of FDTD modeling
is the total-field/scattered-field (TF/SF) incident wave source, which is employed by
most all current commercial FDTD solvers [2]. Fundamentally, the TF/SF technique is an
application of the well-known electromagnetic field equivalence principle [22]. By this
principle, the original incident wave of infinite extent and arbitrary propagation direction,
polarization, and time-waveform is replaced by electric and magnetic current sources
appropriately defined on a finite closed surface, called the Huygens surface [23], containing
the object of interest. The reformulated problem confines the incident illumination to
a compact total-field region and provides a finite scattered-field region external to the
total-field region that is terminated by an absorbing boundary condition (ABC) to simulate
the FDTD grid extending to infinity. In particular, we use convolutional perfectly matched
layers, a technique already used in other works [24]. In this work, we have used the
finite-difference time-domain discrete plane wave technique (FDTD-DPW), which is a
numerical approach based on TF/SF technique that allows one to propagate plane waves
quasi-perfectly isolated [25]. This means a propagation in the total field domain without
reflections to the scattered field domain on the order of machine precision (∼300 dB) [26].
This technique is valid for any angle of propagation, for any grid cell aspect ratio and even
for nonuniform grids [27]. Figure 4 illustrates the total field region where there are two
important elements, an axicon lens that generates the Bessel beam from the initial plane
waves and a block of fused silica. In this domain, the incident plane wave is generated by
the FDTD-DPW scheme.
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Figure 4. Computational domain.

The calculation domain contains a block of fused silica glass where the nonlinear
effects apply. The interaction between the incident plane wave and the axicon lens
results in a Bessel beam, which impinges the SiO2 block. We assume a pulsed laser
source of wavelength (800± 11) nm and a time full width at half maximum of σt = 40 fs.
The pulsed incident time-waveform is modeled by h(t) = A(t)sech2

(
t−t0

σt

)
sin(tω), where

A(t) =
(

tanh(tω)+1
2

)ς
with ς ≥ 1, is an appropriate way to avoid numerical instabilities

in the simulation beginning. The incident field six-dimensional array (IFA) that feeds the
FDTD-DPW is quite simple ~E(~rIFA,t) = E0h(t)x̂. In addition, there are other parameters
that characterized the media properties and are summarize in Table 3.

Table 3. Media main parameters.

Parameters

Name Symbol Value Unit Ref.

Gap energy Eg 9 eV [28]

Third-order elec-tric susceptibility χ
(3)
0 10−22 m2

V2 [28]

Raman sinusoidal time τ1 12.2 fs [29]

Raman response fraction 1− α 0.18 - [29]

Electron recombi-nation time τr 150 fs [10]

Mobility µ f e− 1.13 × 10−22 m2

Vs [21]

Density of valence electrons N0 1022 cm−3 [10]

Electron mass reduced particle m∗vc 0.5 m0 [10]

Work function W f 5 eV [28]

Avalanche ioniza-tion coefficient Θ 10−3 m2

Ws [28]

Raman decay time τ2 32 fs [29]

Kerr response fraction α 0.82 - [29]

Laser characteristic time for electrons production τd 3 ps [10]

Impact ionization efficiency η 0.01 - [28]

Fitting parameter for the spatial expansion of the valence wave function Ω 0.8 - [10]

Metal a 19.2 + j2.7 PHz
parameters b 1.3− j3.9 PHz [15]

Axicon refractive index na 1.45 - [30]

By using the developed irradiation strategy, the computational domain elements and
their properties as well as the algorithm we carried out, the obtained results can be divided
into three groups:
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• Low power regime: E0 = 104 V
m and I = 2.46 × 1014 W

m2 .
• Critical power regime: E0 = 3.5 × 105 V

m and I = 8.61 × 1016 W
m2 .

• High power regime: E0 = 106 V
m and I = 2.45 × 1018 W

m2 .

The power intensity I = Max( Ĩ(~r, t)) is calculated as the maximum power that flows
through a section of σ2

w, being σw the pulsed laser transverse waist, σ` the pulsed length in
the propagation direction and zp the central pulse location at the calculation time. Hence,

Ĩ(~r, t) =
σw∫∫
−σw

dxdy
zp+σ`∫

zp−σ`

dzẑ · ~S(~r,t)
σ2

w
.

To validate the algorithm, which includes nonlinear effects during light propagation,
we have investigated the features of the propagation regime depending on the laser
intensity. Figure 5a,b redraw the distribution evolution of the pulsed square electric
field module for simulation performed for different laser intensity sources. Figure 5a
plots the iso-slices that depicts |~E|2 inside the fused silica bulk for high laser power in the
system. From top to bottom, the time evolution sequence reveals the defocusing process
of the Bessel beam, which ends by forming some filamentation structures in the light
distribution. At the time t = 5720, ∆t = 1.52 ps, the pulsed square electric field module
begins to penetrate the interface air-fused silica. All successive time plots correspond to a
propagation inside the fused silica block. Figure 5b illustrates, for the same time moments,
but a higher initial power source, the square electric field module during the propagation
inside SiO2 material.

We complement the picture with a simulation carried out in the medium power regime.
From the instant of time, t1 = 1.67 ps to the instant t18 = 2.56 ps, Figure 5c illustrates the
antagonistic trade-off between the focusing and the defocusing process experienced by
the Bessel beam along with its travel through the bulk fused silica target. Figure 6b shows
the history of the power density at the critical threshold separating medium and high
power regimes, along with a few steps of time. In this figure we can identify the interface
air-fused silica due to the rings which record the history of a stationary wave formed after
the interaction. We can observe a strong focusing process in the entrance of the fused
silica block followed by an alternation of refocusing and the defocusing events induced
and governed by the photoionization and Kerr effect competition, and we know that
these are not diffraction artifacts because in the air, at the same laser intensity, we do not
observe them. At this stage, we have to give a clear definition of the pulsed power density
and the power history. The magnitude of pulsed power density is defined as ∇ · ~S(~r, t),
where ~S(~r, t) = ~E(~r, t) ∧ ~H(~r, t) is the Poynting vector [31]. Figure 6a sketches the pulsed
power density. From this magnitude ∇ · ~S(~r, t), we can calculate the delivered pulsed

electromagnetic density of energy
∫ t′

0 ∇ · ~S(~r, t)dt. Besides this, it is interesting to consider
the range of values in Figure 6a. We can identify a negative power density that requires
clarification. As the Poynting vector represents the flux of power through a given surface,
the divergence of this magnitude represents the power density that comes into/out a
particular point in a given region. In particular, in FDTD calculations, we are describing the
power flux through the computational nodes that discretized the computational domain.
In the density power accounting, the reference system is placed inside the cell that encloses
the nodes. In this way, a negative power density, in a particular instance of time, in a local
region, means a local sink of power ∇ · ~S(~r, t) < 0 in that region, and vice versa, we have a
local source of power as ∇ · ~S(~r, t) > 0. These oscillations in the density power magnitude
indicate a redistribution that is able to support the pulsed density power and the pulsed
density energy traveling.
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Figure 5. Propagation of the pulsed beam given by a time sequence of instants which has been
plotted before reaching the theoretical critical power, with an energy per pulse of 2.8 µJ allowing
to reach an electron density of 1027 m−3, the beam splits, enclosing the charge and defocusing the
beam. (a) Several instants of the pulsed square electromagnetic field when the power is beyond
the critical power (High power regime). (b) Pulse propagation sequences during the travel inside
the fused silica bulk for low power regime. (c) Sequence of frames that sketches the pulse along
during its travel inside the fused silica bulk from the instance t1 = 6290∆t to t18 = 9620∆t (where
∆t = 2.65765 × 10−16 s and Courant number 0.69). The difference between two time-steps is 200∆t

in the sequence. The power of this sequence is in the threshold between low and high power regimes
(critical power).
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Turning to the matter at hand, we define the history of the power density by applying
the absolute value to the divergence of the Poynting vector |∇ · ~S(~r, t)|.

The bi-dimensional longitudinal cut of the history of the power density depicted in
Figure 6b permits one to identify the air–fused silica interface. There, in that interface, we
can appreciate the reflected beam and the strong focusing in the entrance due to the Kerr
effect. We assume the same refractive index for both the axicon lens and the fused silica
block in which the wave Bessel beam impinges.

Although we assume nonlinear media, in the simulation results presented up to this
point in the manuscript, we have considered that the fused silica is isotropic and homoge-
neous. However, in order to study the effect of micro- and nanopores in the fused silica,
650 regions or voids have been introduced that range in size from 200 to 650 nanometers
in radius. These spherical embedded cavities, that are plotted in Figure 7a, emulate a
nanoporous fused silica bulk. The traditional method of linear combined congruence
random number generators has been used to assign the size and location of these pores
of air/void particles. The linear congruential generator yields a sequence of pseudo-
randomized numbers calculated with a discontinuous piecewise linear equation. The most
important thing about the method is that, under the same seeds, the same random number
distributions will be obtained, which allows us to reproduce both size distributions and
particle locations. This will be useful to evaluate the effects resulting from another kind of
media, such as metal particles, which will allow us to make a point-to-point comparison
and infer conclusions from the results. In this setup, Figure 7b shows the history of the
power in the region where the particles are located. The simulation is stopped when the
nonlinear Bessel beam exits the porous fused silica region. Looking at Figure 7c, it appears
that a correlation can be made between the distribution of photoionized electrons and the
laser power density, in full consistency with our model. Figure 7c shows a history of the
density of the ionized electrons as a consequence of the Bessel beam, which travels through
the fused silica block. This result leads us to conjecture that both quantities look similar in
terms of spatial structure.

It is relevant to study the distribution or history of power in a non-homogeneous
dielectric, as is the present case. If we observe Figure 7b in detail, we see that the history of
power reveals the history of field intensity as it passes through the nanoporous medium
of SiO2. Due to a simple matter of impedance, the wavefront of the pulse is redistributed,
avoiding entering inside the voids. As we can see in the longitudinal section shown by
Figure 7b, the power vanishes inside the voids and the maximum power is not found at
the interface fused silica-void. The maximum is reached in the glass medium between
the pores. There is a visual explanation for this behavior. In some lenses, an anti-coating
multi-layer that matches the impedance of the lens with the surrounding media (in general,
glasses could be done for water or air), is coupled in order to remove the reflections. This
gradient in the refractive index is necessary to facilitate the flowing energy from the lens
to the environment. In the porous fused silica, there is an abrupt change in the refractive
index that explains our result.

There is a Supplementary Material consisting in a video animation (see the link
https://youtu.be/nvGdtxQ9E8o) that shows dynamically the ultrafast pulsed Bessel beam,
depicted by employing the pulsed electric field module, that crosses the interface air-fused
silica and travels through a fused silica block with air nanovoids.

https://youtu.be/nvGdtxQ9E8o
https://youtu.be/nvGdtxQ9E8o
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Figure 6. (a) Subsample taken from the computational domain in which we plot the pulsed density of
power and the history of the power density. (b) Power density power plotted by means of iso-slices
for a pulsed Bessel beam in power regime close to the critical value. the selected time corresponds
to the Bessel beam entrance inside the fused silica block. We consider all nonlinear effects in this
simulation. (c) History of the power density for a pulsed Bessel beam. At the interface between the
fused silica bulk and the air a modulation is observed in the history of power density.
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Figure 7. (a) Computational domain including clusters of spherical nanovoids, randomly located
inside the fused silica bulk. (b) Power history of the pulsed Bessel beam propagating inside the
nanoporous block. (c) History of the photo-ionized electrons density in the complete domain.

As stated above, we have followed identical reasoning and repeat the simulation,
this time replacing nanovoids with metal particles. The results are shown in Figure 8.
Figure 8a illustrates the power history under the same intensity of light. Along the pho-
toexcitation path, the maximum power occurs around the metal– fused silica interface,
enhancing and localizing the light coupling to the nanocomposite material. Even if the
non-diffractive behavior is still present, it is less observable, as the beam is strongly at-
tenuated by metal absorption. Moreover, the arrangement of the higher region of light
absorption follows the randomly distributed composition of the metallic sphere. This
indicates that contrary to dielectric–void interfaces, the dielectric-metal region fosters local



Appl. Sci. 2021, 11, 7429 17 of 24

effects, preventing any collective response of the medium. This statement may differ if
the particles are judiciously defined in terms of concentration and size in order to enhance
resonance effects as plasmonic modes. In Figure 9, we observe a pattern in the electron
photoionized history. In particular, Figure 9a depicts a weak structure of parallel planes,
which is more intense in some regions. Figure 9b shows a stronger pattern. The present
results, sketched by Figure 9a, reveal that ultrashort laser pulse interacting with distributed
performed scattering nanovoids induces local field enhancement that results in enhanced
nonlinear absorption and localized optical breakdown. At the void-SiO2 interface, the mul-
tiphotonic ionization process transforms the material into a thin layer of absorbing plasma
with metallic-like properties. The light coupling initiates the growth of nanoplates of
enhanced energy deposition, perpendicular to laser propagation direction, but parallel to
the polarization. This kind of arranged structure exhibiting a periodicity approximately the
wavelength of light in fused silica was commonly experimentally reported in conditions
of tightly focused and high repetition rate [32,33]. They directly emerge from the spatial
coherence of the waves scattered from the inhomogeneous material in the plane perpendic-
ular to the beam propagation direction. Note the relatively used large nanovoids associated
to the grid resolution do not allow to discriminate nanogratings of higher frequency per-
pendicular to the electric field. For propagation inside laser-induced nanoporous media,
the fused silica glass remains underdense, below the critical plasma concentration, and the
standing wave effect remains weak. However, the other simulation conditions, portrayed
in Figure 9b), clearly indicate that for metallic nanoparticles, local field enhancement occurs
near the metal-dielectric interface [34]. Upon electron–matrix energy coupling and void
deformation, the light pattern may result in elongated nanostructures [35]. This shows
that nanoplasmonic behavior dominates and opens the route for advanced applications as
embedded micro-reflectors for a stronger near-field interaction regime.
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density in the complete domain.
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Propagation and scattering through sphere inclusions with different optical properties
demonstrate that the current algorithms are stable and can model efficiently nonlinear
media with sharp dielectric interfaces among them. Moreover, nonlinear metal–dielectric
interface investigations are far reaching for technology-based photonics. For instance,
in a wider frequency spectrum, resonators, metasurfaces with designed cavities, metal–
dielectric waveguides or even coating optical fibers are composed of metal–dielectric
interfaces that may involve simultaneously nonlinear mechanisms of different nature. If we
imagine for a sake of simplicity an harmonic electromagnetic pulse, which is guided, for in-
stance, inside of a optical fiber, we should solve two coupled inhomogeneous Helmholtz’s

equations in the frequency domain∇2~̃E(~r) + ω2µε(~r)~̃E(~r) = −∇
(
~̃E(~r) · ∇(ln(ε(~r)))

)
and

∇2~̃H(~r) + ω2µε(~r)~̃H(~r)(~r) = (∇∧ ~̃H(~r)) ∧∇ ln(ε(~r)). In these equations, the refractive
index n(~r) =

√
εr(~r)µr, which is a dynamic magnitude along the pulsed beam propaga-

tion or simply a nonlinear magnitude, has to be taken into consideration. In this way,
the algorithms present here can be used to deal with this kind of problems.

525nm

525nm

a)

b)

2μm

2μm

Figure 9. Pattern observed in the history of the photo-ionized electron history for (a) voids and (b)
metal particles.

6. Conclusions

In this work, we have proposed a numerical approach for nonlinear laser beam
propagation based on the time-domain discretization of Maxwell equations in a fully
explicit scheme, including four nonlinear optical effects. The developed algorithms have
been benchmarked in three different ways. First, we have studied the algorithm’s stability
conditions by combining the von Neumann method with the Routh–Hurwitz criterion.
Second, we have established the physical framework for the algorithms, with special
attention given to the approximation carried out in the algorithm derivation. Third, we
have employed the algorithms in order to determine the transient optical properties of a
photoexcited media when a laser beam is focused inside a fused silica bulk. In particular, we
have considered a Bessel beam as a free-diffraction beam due to its stable and rebuildable-
like energy distribution along with electromagnetic pulse travel path. This non-diffractive
behavior has been observed numerically by tracking the power/energy history. This has
been determined by evaluating the absolute value of the power |∇ · ~S(~r, t)| and the density

energy history as
∫ t′

0 |∇ · ~S(~r, t)|dt. The main advantage of the present method consists
of its remarkable numerical performance (see Figure 3), that together with the tolerant
stability conditions found out and the accuracy results, under an also permissive physical
framework, made it valid for a wide range of applications (such as ultrafast laser processing
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which has been extensively applied to fabricate 3D photonic devices based on embedded
optical waveguides inscribed in glass materials by inducing permanent refractive index
changes in the focal volumes [36], optical couplers and splitters [37], volume Bragg gratings
[38], or even diffractive lenses [39] which have been efficiently inscribed by refractive-index
changes during light propagation) in which optical/electromagnetic nonlinear effects have
to be taken into consideration. Finally, our approach is generalizable to any nonlinear
electromagnetic problem with dielectric–metal interfaces. The proposed work elucidates
the simultaneous treatment of nonlinear effects and provides new routes toward the
simulation of light–matter interaction with sub-wavelength features for the optimization
of guided structures or loss-free metasurfaces.
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Appendix A. Stability

In this appendix, we study the stability of the algorithm by means of the combination
of the von Neumann method with the Routh–Hurwitz criterion [40]. The von Neumann
method employs a Fourier series expansion of the error at the mesh nodes at a given
time instant t = s∆t. Due to linearity, only a single term of this expansion needs to be
considered, i.e.,

~Es|i,j,k = ~̃E0ysej(i∆x k̃x+j∆y k̃y+k∆z k̃z) (A1)

~Ds|i,j,k = ~̃D0ysej(i∆x k̃x+j∆y k̃y+k∆z k̃z) (A2)

where ~̃E0 and ~̃D0 are complex amplitudes, indexes i, j, k denote the position of the nodes
in the mesh, ∆x, ∆y, ∆z are the sizes of the discretization cell, and k̃x, k̃y and k̃z are the
wavenumbers of the discrete modes. The factor y in (A1) and (A2) is a complex variable,
often called the amplification factor, which gives the growth of the error in a time updating.
To ensure that a finite-difference algorithm is stable, the error must not grow as the time
increases, thus, the condition |y| ≤ 1 must be satisfied. The stability condition for a
particular FDTD scheme leads to a characteristic polynomial in y:

Φ(y) =
Np

∑
`=0

a`yNp−` (A3)

Assuming that y` are the roots of Φ(y), the condition for stability implicates that the
roots y` must lie inside or on the unit circle in the Y-plane. In this stability purpose, the

https://youtu.be/nvGdtxQ9E8o
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Routh–Hurwitz criterion provides a method that ensures the roots y` on the unit circle
in the Y-plane. It establishes that the polynomial Φ(r) = ∑

Np
`=0 b`yNp−` with constant

real coefficients b` has no roots in the right-half of the r-plane if all the entries of the
first column of the Routh table are non-negative quantities. In [40], there is a error that
makes it impossible to build the Routh table, so we explain here how to build up the
Routh table. The first and second rows of the coefficients correspond to even and odd
powers of r, respectively. For simplicity in the notation, and without loss of generality, it is
usual assuming Np to be an even number, therefore c1,` = b2`, with `= 0, 1, 2, . . . , Np

2 and

c2,` = b2`+1, with `= 0, 1, 2, . . . , Np
2 − 1. The remaining entries of the table are obtained by

using the following expression cm,` =
cm−2,`+1cm−1,0−cm−2,0cm−1,`+1

cm−1,0
.

The Routh–Hurwitz criterion can be used to determine if any root of the stability
polynomial Φ(y) lies outside the unit circle in the y-plane. To this end, the bilinear trans-
formation y = r+1

r−1 is carried out in Φ(y). This transformation maps the exterior of the unit
circle in the y-plane onto the right-half of the r-plane. To satisfy the von Neumann stability
condition for a different scheme, as a function of the parameters of interest, all the entries of
the first column of the Routh table are forced to be non-negative quantities. Nevertheless,
before beginning the search for stability conditions, some definitions are necessary. We

define the following operators applied to Ξs: ∂̄t[Ξs] = Ξs+ 1
2−Ξs− 1

2
∆t

, ∆̄[Ξs] = Ξs+ 1
2 +Ξs− 1

2
2 ,

∂̄x[Ξs] = 2j sin
(

k̃x∆x
2

)
Ξs, ∂̄y[Ξs] = 2j sin

(
k̃y∆y

2

)
Ξs, and ∂̄z[Ξs] = 2j sin

(
k̃z∆z

2

)
Ξs, where Ξs

could be for instance ~Es or ~Ds.

Appendix A.1. Stability Condition on Metal

For dielectric–metal interface, we deal with the wave equation µ
∂2~D(~r,t)

∂t2 −∇2~E(~r, t) =
0̄ in dielectric and the differential equation for the metal writes (b + ∂

∂t )
~D(~r, t) =

ε0

(
bε∞ + a + ε∞

∂
∂t

)
~E(~r, t). After discretization, the wave equation is rewritten as [41],

µ
∂̄t

∆2
t

~Ds −
(

∂̄2
x

∆3
x
+

∂̄2
y

∆3
y
+

∂̄2
z

∆3
z

)
~Es = 0̄

and the auxiliary differential equation for the metal,(
b∆̄ + ∂̄t

)
~Ds = ε0

(
(bε∞ + a)∆̄ + ε∞∂̄t

)
~Es.

Now, we replace the electric field ~Es and the electric displacement field ~Ds in the last
two equations by the Equations (A1) and (A2). Hence, from the wave equation we obtain:

(y− 1)2 ~̃D0 + 4yε∞ε0ν2~̃E0 = 0

and from the differential equation for the metal:

(∆tb(y + 1) + 2(y− 1))~̃D0 = ∆tε0((bε∞ + a)(y + 1) + 2ε0ε∞(y− 1))~̃E0

where ν2 =
(

∆t√
µε∞ε0

)2 x,y,z
∑
℘

sin2
(

k̃℘∆2
℘

2

)
∆2
℘

. By combining both polynomials we determine the

characteristic polynomial Φ(y) = a∆t(y + 1)(y − 1)2 + ε∞
(
y
(
4ν2 + y− 2

)
+ 1
)
(b∆t(y +

1) + 2(y− 1)). In order to consider the Routh–Hurwitz criterion we apply the bilinear
transformation y = r+1

r−1 and determine the characteristic polynomial Φ(r) = b∆tε∞ν2r3 +

2ε∞ν2r2 + ∆t
(
a + bε∞

(
1− ν2))r + 2ε∞

(
1− ν2). The first column in the Routh table, which

should be positive, are c1,0 = b∆tε∞ν2, c2,0 = 2ε∞ν2, c3,0 = a∆t and c4,0 = 2ε∞
(
1− ν2).

From c1,0 and c3,0 we find out that R[a] ≥ 0 and R[b] ≥ 0. The condition over c4,0 ≥ 0
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means that 1− ν2 ≥ 0. This is the classic stability condition based on single-cubic FDTD [42]

where ∆t ≤ ni
c0

√
1

∆2
x
+ 1

∆2
y
+ 1

∆2
z
, where c0 is the speed of light in the vacuum and ni the

refractive index of the media.

Appendix A.2. Stability Condition on Kerr Effect

In addition to the wave equation, we have to deal with the differential equation
associated to the Kerr effect ∂

∂t
~D(~r, t) = ε0ε∞

∂
∂t
~E(~r, t) + ∂

∂t
~PKerr(~r, t). The discretization of

this equation by employing the operators results to

∂̄t~Ds =
(

ε0(ε∞ + αχ
(3)
0 |~E

s− 1
2 |2)

)
∂̄t~Es.

It is evident that |~Es− 1
2 |2 = ~̃E0~̃E

∗
0y2s−1 and this result leads to the characteristic

polynomial

Φ(y) = (y− 1)2(ε0(ε∞ + αχ
(3)
0 |~̃E0|2y2s−1)) + 4yε0ε∞ν2

Comparing this characteristic polynomial with this one obtained from the wave
difference differential equation Φ′(y) = (y − 1)2ε0ε∞ + 4yε0ε∞ν2, we see that they are

similar when ε∞ � αχ
(3)
0 |~̃E0|2y2s−1. Obviously, we assume that |y| < 1, but notice here

that we are not assuming the same thing that we want to demonstrate. We know that
Φ′(y), under the classical stability condition, leads to |y| < 1 and in general for ∀s ≥ 1

2 we

find that Φ(y) ≡ Φ′(y) when ε∞ � αχ
(3)
0 |~̃E0|2. We can identify the problem at a glance.

The stability depends on the laser intensity |~̃E0| through its propagation. In that case,
we find the classical condition for stability already presented. Therefore, we can impose
a condition to the laser intensity in order to preserve the stability; for instance, we can

define an arbitrary factor D f such that ε∞ ' D f αχ
(3)
0 |~̃E0|2. Therefore, to ensure the stability

|~̃E0| <
√

ε∞

D f αχ
(3)
0

. From the last expression, we see that stability is related to the medium,

optical properties as well as laser intensity. Hence a heuristic search helps to establish an
asymptotic limit for this factor D f ≥ 104.

Appendix A.3. Stability Condition on Raman Effect

Again, we consider the wave equation plus the below difference equation for the
Raman effect,

(1− α)ε0χ
(3)
0

τ2
1 + τ2

2
τ1τ2

2

(
∂

∂t
~E(~r, t)

∫ t

0
g(t− τ)|~E(~r, τ)|2dτ

+g(t)|~E(~r, t)|2~E(~r, t)
)
+ ε∞ε0

∂

∂t
~E(~r, t) =

∂

∂t
~D(~r, t)

By applying the operators, we determine the discretized expression:

ε0∂̄t~Es
(

ε∞ + Ψ
∫ s∆t

0
g(s∆t − τ)|~E(~r, τ)|2dτ

)
+ε0(1− α)χ

(3)
0

τ2
1 + τ2

2
τ1τ2

2
g(s∆t)∆̄

[
~Es|~Es|2

]
= ∂̄t~Ds
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We calculate the characteristic polynomial replacing equations Equations (A1) and (A2)
in the discretized wave equation and in the above expression. Then, we combine both
derivation in the same formula,

Φ(y) = (y− 1)2
(

ε∞ + y2s−1Ψ
(

y
∫ s∆t

0
g(s∆t − τ)dτ

+
∆tg(s∆t)

2
(y2 + y + 1)

)
|~̃E0|2

)
+ 4yε∞ν2

Under an approach analogous to the one utilizes in the previous case we have to link
the power laser to the medium. That means that the scheme should verify the inequality,

ε∞ � y2s−1Ψ
(

y
∫ s∆t

0
g(s∆t − τ)dτ +

∆tg(s∆t)

2
(y2 + y + 1)

)
|~̃E0|2.

We know that
∫ s∆t

0 g(s∆t − τ)dτ � ∆tg(s∆t)
2 , hence, a reasoning similar to the previous

section applies and we establish the stability condition |~̃E0| <
√

ε∞

D f (1−α)χ
(3)
0

τ2
1 +τ2

2
τ1τ2

2

∫ s∆t
0 g(s∆t−τ)dτ

.

Finally for a reason of normalization we find that |~̃E0| <
√

ε∞

D f (1−α)χ
(3)
0

, together with the

classic condition ∆t ≤ ni
c0

√
1

∆2
x
+ 1

∆2
y
+ 1

∆2
z

are the stability conditions in this case. Once again,

we observe that stability is related to the medium optical properties as well as the laser
intensity when the Raman nonlinear effect is present.

Appendix A.4. Stability Condition on Photoionization Effect

Together the wave equation we take into consideration the differential equation
∂
∂t
~D(~r, t) = ε∞ε0

∂
∂t
~E(~r, t) + σf e−(~r, t)~E(~r, t), which by means of the defined operators can

be discretized as follows,
∂̄t~Ds = ε∞ε0∂̄t~Es + σf e− ∆̄~Es

Again we combine the equation with the discretized wave differential equation with
the aim to determine the characteristic polynomial Φ(y) = 2ε0ε∞(1 + y

(
4ν2 − 2

)
+ y2) +

∆tσf e−
(
y2 − 1

)
in which we apply the bilinear transformation y = r+1

r−1 . Therefore, we
calculate the characteristic polynomial Φ(r) = 2ε0ε∞ν2r2 + σf e−∆tr + 2ε0ε∞

(
1− ν2) for

which the Routh-Hurwitz criterion can be applied. The first column of the Routh table are
formed by the coefficients c1,0 = 2ε0ε∞ν2, c2,0 = σf e−∆t and c3,0 = 2ε0ε∞

(
1− ν2). The later

coefficient provides the classical condition for stability. In addition, we know that σf e−

must be a positive magnitude so as to address the stability in the algorithm updating.

Appendix B. Computational Resources

Table A1 lists the computational resources employed in the simulations. The operative
system in which the simulations were carried out and runs on this hardware is Ubuntu
Bionic Beaver.

Table A1. Computational resources.

Computational Resources:

CPU: Intel Core i9-10980XE
MB: GIGABYTE X299X
RAM: Crucial CT32G4RF D4293 DDR4-2933
ROM: 2x Crucial P5 1TB PCIe M.2 2280SS SSD
GPU: GeForce GTX 1080 Ti
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