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A B S T R A C T

Fisher scores have been shown to be accurate global image features for classification. However, their
performance is very dependent on the quality of the input features as well as the normalization steps applied
to them. In this paper, we propose to embed the Fisher scores in an end-to-end trainable deep network by
concentrating on two elements: adapting the encoding to the deep features and normalizing the extracted
second-order statistics. Therefore, we make use of a deep sparse coding module that allows to sample the
center of each Gaussian function from a learned subspace and thus to better fit the high dimensional data
distribution. Second, we introduce a new normalization module that computes an approximate square root
matrix normalization well adapted to the Fisher scores. These processing steps are embedded in a deep
network so that all the modules work together for the sole purpose of improving classification performance.
Experimental results show that this solution outperforms many alternatives in the context of material, indoor
scene and fine-grained image classification.
. Introduction

Deep neural networks have emerged as an essential solution for
erforming classification tasks. In these networks, convolutional layers
xtract accurate local features that are pooled to a global feature vector
hich is sent to fully connected layers for classification. The first
etworks neglected the pooling step and directly sent the set of local
eatures in the dense layers (Simonyan and Zisserman, 2015), while
he series of ResNet apply a global average pooling to decrease the
imension of the global feature vector and hence reduce the number
f parameters of the network (He et al., 2016). Orderless pooling was
idely used before convolutional neural networks (CNN) with bags
f visual words (BOW) (Lazebnik et al., 2006), VLAD (Jégou et al.,
012) or Fisher vectors (Sánchez et al., 2013) and has shown to provide
ood results when applied to CNN features (Cimpoi et al., 2015).
mong them, Fisher vectors (FV)1 were the most promising because

hey generalize VLAD and BOW. The main idea of FV is to model the
istribution of the training data with a Gaussian mixture and to charac-
erize each data point with the derivatives over the model parameters.
t appears that two main steps are crucial in such an approach (Sánchez
t al., 2013): the data distribution has to be accurately fitted by the
aussian mixture and the provided second-order statistics have to be
arefully normalized. In this paper, we propose to embed the Fisher
epresentation in an end-to-end trainable network by concentrating on
hese two steps.

∗ Corresponding author.
E-mail address: sixiang.xu@univ-st-etienne.fr (S. Xu).

1 FV is the Fisher score scaled by the inverse square root of Fisher Information Matrix (FIM). Since the impact of FIM is small (Perronnin et al., 2010), there
s not a large difference between FV and Fisher score.

First, a Gaussian Mixture Model (GMM) seems not to be well
adapted to the deep local features since they are lying in a high
dimensional space and the space requires too many Gaussians to be
accurately modeled (Liu et al., 2014). The authors proposed a solution
to overcome this problem which consists in sampling the center of each
Gaussian from a subspace and therefore benefiting from an infinite
number of Gaussians to fit the data distribution. And they showed
that this problem can be solved by a classical sparse coding method.
Unfortunately, their approach cannot take advantage of end-to-end
training of the feature extraction, the pooling and the classification
layers. To cope with this problem, we propose in this paper, to make
use of a deep sparse coding module proposed in the work (Gregor and
LeCun, 2010).

Second, a recent study has shown that the normalization of second-
order statistics has a strong impact on classification performance (Lin
and Maji, 2017). The authors proposed in particular to use a square-
root matrix normalization combined with element-wise square-root and
𝑙2 normalization for bilinear pooling. Unfortunately, unlike the bilinear
pooling (Lin et al., 2015), our Fisher score representation does not
provide a square matrix, thus rendering the solution (Lin and Maji,
2017) unusable. In this paper, we propose to adapt the square-root
matrix normalization to non-square matrices and to embed this original
module in a deep network.

By combining these two main contributions, we propose an original
end-to-end trainable deep network that extracts accurate features from
ttps://doi.org/10.1016/j.cviu.2022.103436
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images, pools them into a deep Fisher representation and normalizes
the representation. By backpropagating the gradient of the classifica-
tion loss, we can make all these modules collaborate with the sole
objective of improving the performance of the classification task. Exper-
imental tests on three different datasets and three different backbone
architectures show that our solution outperforms many alternatives.

This paper is an extended version of our previous work (Xu et al.,
2021), called hereafter E2E-SCF for End-to-End Sparse Coding Fisher
score, where only the sparse coding has been addressed. Our contribu-
tions are fourfold:

• We propose to produce Fisher score representation via sparse
coding in an end-to-end trainable deep network.

• We make use of a deep sparse coding module that allows to better
fit high dimensional data distribution.

• We introduce a new normalization module and mean vector
subtraction which improve the Fisher score representation.

• Our solution outperforms many alternatives on three datasets for
material, indoor scene and fine-grained image classification.

2. Related works

2.1. Orderless pooling

Orderless pooling was widely used before the emergence of CNN-
based solutions. The most popular approaches were based on bags
of visual words (BOW) (Lazebnik et al., 2006), VLAD (Jégou et al.,
2012) or Fisher vectors (Sánchez et al., 2013). Inspired by these early
methods, some works have evaluated the Fisher vectors or VLAD from
deep features for texture or image classification (Cimpoi et al., 2015).
They show improvements over the SIFT-based counterparts but, in
their workflow, the dictionary or Gaussian mixture model is learned
independently from the deep features and the classifier, providing
opportunities for significant improvements.

Thus, the next works have focused on embedding orderless pooling
in deep networks to allow end-to-end training. Passalis and Tefas
(2017) have inserted a Bag-of-Features pooling in deep neural networks
thanks to radial basis function neurons. The output of the pooling
module is a histogram of the visual words (0th order statistics) learned
on the training set. And their variations also achieve remarkable per-
formance in other tasks, such as color constancy (Laakom et al., 2020),
visual information analysis (Krestenitis et al., 2020) and human action
recognition (Yang et al., 2020).

Instead of counting the occurrences of the visual words in one
image, VLAD-based approaches aggregate the residuals between the
local features and their nearest visual words (1st order statistics).
NetVLAD (Arandjelović et al., 2016) is the first network that imple-
ments VLAD and allows end-to-end training for image retrieval tasks
while Deep Ten and its variants transform VLAD as a residual module
for image classification (Zhang et al., 2017; Hu et al., 2019; Mao et al.,
2021). It has been shown that first-order statistics are more accurate
to characterize images in classification tasks and the Fisher vectors go
further by using first- and second-order statistics. Deep FisherNet (Tang
et al., 2019) is an embedded implementation of the GMM Fisher vector.
NetFV (Lin et al., 2017) extends NetVLAD by appending the second-
order statistics. End-to-end trainable Fisher vectors are also applied to
action recognition (Wang et al., 2019; Wang and Koniusz, 2021). The
main disadvantage of all these approaches is that they rely on a limited
number of codewords or Gaussian centers, which prevents accurate
modeling of the data distribution in the high-dimensional deep feature
spaces (Liu et al., 2014).

One interesting solution to cope with this problem has been pro-
posed in the work (Li et al., 2017). The authors compute Fisher scores
from a mixture of factor analyzers (MFA), instead of the classical GMM.
Their solution is embedded in a deep network which is trainable end-
to-end. The idea of MFA is to approximate the data manifold by low

dimensional linear spaces and, in this sense, is similar to the idea of

2

sparse coding (Liu et al., 2014). Nevertheless, even if the MFA module
is embedded in a deep network, the authors show that an accurate
initialization of the weights of the network is required to obtain good
performance. This initialization consists in running an Expectation–
Maximization algorithm on the set of local features that have to be
saved in memory. Furthermore, it appears that this second-order rep-
resentation has high computation costs, requires a high number of
parameters to learn and occupies a very large memory space (500k
dimensions which is more than the image itself) (Jacob et al., 2019).

Another group of second-order pooling works is based on bilinear
pooling. For example, B-CNN is also an end-to-end trainable network
and aggregates feature vectors by average-pooling their outer products
(Lin et al., 2017). Since this pooled representation always has a large
size, the approaches SMSO (Yu and Salzmann, 2018), RUN (Yu et al.,
2020) and SRM (Yu et al., 2021) propose to compress the bilinear
pooled features and improve the classification performance. The re-
sults of these methods will be compared with ours in the following
experiments.

Our method is inspired by SCFVC (Liu et al., 2014), detailed in
the next section. More recently, these authors have also proposed an
improved version of their work, called HSCFV (Liu et al., 2017). It uses
two dictionaries to encode input features and consequently, doubles
the dimension size of the Fisher score. Nevertheless, their approach is
not embedded in a deep CNN for end-to-end training. Sparse coding is
also used in CNN-DL (Liu et al., 2018) and SCN (Sun et al., 2019) for
extracting image features, but these methods do not use second-order
statistics to characterize the images.

Our method combines all the benefits of these previous solutions: it
is embedded in an end-to-end trainable network, it samples an infinite
number of Gaussian centers from a learned subspace and it does not
require any heavy computation or storage to initialize the weights.

2.2. Normalization

As a post-processing step, after orderless pooling, normalization
plays an important role in improving the performances. Perronnin
et al. (2010) found that Fisher vector representation is degraded by
burstiness issues where important but relatively rare visual features
are overwhelmed by those that are more frequent. To alleviate this
problem, some papers propose element-wise signed square rooting and
L2-normalization (Perronnin et al., 2010; Arandjelovic and Zisserman,
2013). This normalization combination is also widely adopted in sev-
eral successive orderless pooling works (Arandjelović et al., 2016; Lin
et al., 2017; Liu et al., 2014).

Besides the burstiness issue, Lin and Maji (2017) argued that the
output of bilinear pooling should be normalized by matrix-logarithm
functions in order to preserve the distances between elements in the
manifold. Such normalization has been applied with success in many
works (Carreira et al., 2012; Ionescu et al., 2015; Huang and Van Gool,
2017) with linear classifiers for semantic segmentation and image clas-
sification. The logarithm scales the eigenvalues in the Singular Value
Decomposition (SVD) of a Symmetric Positive Definite (SPD) matrix
𝐴 as log(𝐴) = 𝑈 log(𝛴)𝑈𝑇 . Unfortunately, the SVD decomposition is
computed inefficiently on GPUs (Lin and Maji, 2017), slowing down the
network inference speed. Nevertheless, Lin and Maji (2017) proposed
a fast alternative approach with comparable performances and based
on a variant of Newton iterations. This solution approximates square-
root matrix and can be embedded in a network that can be trained
end-to-end.

Unfortunately, this approach is exclusively designed for SPD matri-
ces such as the outputs of the bilinear pooling but it cannot directly
be applied to our Fisher representations which are rectangular and
non-symmetric matrices. Thus, we propose, in this paper, a new nor-
malization step for such second-order statistics matrices and it can also

be embedded in a deep network.
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Fig. 1. Workflow of the proposed end-to-end trainable solution. First, deep features 𝑥𝑖 are extracted with a classical CNN backbone and normalized (zero mean, see Section 3.1.4).
hen they are encoded into their sparse codes 𝑢𝑖 with a sparse coding module called LISTA presented in Section 3.1.2. Next, a Fisher score representation is produced (Eq. (5))
nd normalized with our proposed approach detailed in Section 3.2.2.
m
a
s
i

3

m

Fig. 2. Some data in a high dimensional space (illustrated by the sphere). Left: With
MM the data distribution is not well fitted because of the limited number of Gaussians.
ight: With Sparse Coding, the Gaussian centers are encoded sparsely in an adapted
asis (green arrows) allowing to create an unlimited number of Gaussians and so to
it better the data distribution. The sparsity is illustrated by the low number of basis
equired to encode each center position (lines, planes or parallelograms).

. Our approach

Fig. 1 illustrates the complete workflow of our solution whose
uccessive steps are detailed in this Section. Our network starts with

pre-trained backbone of convolutional layers, on top of which an
terative sparse coding module called LISTA is applied, detailed in
ection 3.1.2. Then, a Fisher score is extracted from these features and
ormalized with our proposed solution. Lastly, a dense layer provides
he predicted categories.

.1. Sparse Fisher encoding

.1.1. From subspace sampling to sparse coding
To increase the number of Gaussians that model the distribution of

he data, we take advantage of the idea (Liu et al., 2014) that samples
he Gaussian centers in a subspace spanned by a set of bases. Each
ean vector is encoded in this dictionary 𝐵 with a code 𝑢 drawn from a

zero-mean Laplacian distribution (to enforce sparsity). Then each local
feature vector 𝑥 extracted from the images and associated with the code
𝑢 is drawn from a Gaussian distribution  (𝐵𝑢,𝛴) centered on 𝐵𝑢. Fig. 2
illustrates the interest of this approach.

Then, assuming a constant and diagonal covariance matrix as 𝜎 and
using pointwise maximum to approximate the integral of the distribu-
tion, Liu et al. (2014) showed that the logarithm of the likelihood of 𝑥
can be estimated as:

𝑙𝑜𝑔(𝑃 (𝑥|𝐵)) = min
𝑢

1
𝜎2

‖𝑥 − 𝐵𝑢‖22 + 𝜆‖𝑢‖1, (1)

here 𝜆 is the scale of the Laplacian distribution of 𝑢.
Interestingly, this equation represents the classical problem of

parse coding. Liu et al. (2014) proposed to use an off-the-shelf sparse
oding solver to learn the dictionary 𝐵 and infer the code 𝑢. Obviously,
aking use of such an independent solver is a good solution to mini-
ize the reconstruction error of 𝑥 with a sparse code, but it neglects

he main goal which is to improve the performance in the classification
ask.
3

Hence, we propose in the next section to embed a sparse coding
odule in a deep neural network that is trained end-to-end. The main

dvantage of such an approach is that it is learning a dictionary and
parse codes that are accurate to discriminate the different categories
n the current dataset.

.1.2. Embedding sparse coding with LISTA
Our aim is to find a solution for the following equation:

in
𝑢

𝑓 (𝑢) + 𝜆‖𝑢‖1 (2)

where 𝑓 (𝑢) = ‖𝑥 − 𝐵𝑢‖22, 𝑥 is a data point, 𝐵 is the dictionary and 𝑢 is
the sparse code of 𝑥.

One way to solve this equation is to resort to an Iterative Shrink-
age Thresholding Algorithm (ISTA) (Daubechies et al., 2004) that
iteratively approximates the solution with:

𝑢𝑘 = 𝜆𝑡𝑘 (𝑢𝑘−1 − 𝑡𝑘∇𝑓 (𝑢𝑘−1)), (3)

where 𝛼 is a component-wise vector shrinkage function such that
[𝛼(𝑣)]𝑖 = (|𝑣𝑖|−𝛼)+𝑠𝑖𝑔𝑛(𝑣𝑖), 𝑡𝑘 is the step size at iteration 𝑘 and ∇ is the
gradient operator.

Evaluating the gradient of 𝑓 (𝑢) defined above, we get:

𝑢𝑘 = 𝜆𝑡𝑘 (𝑢𝑘−1 − 2𝑡𝑘𝐵𝑇 (𝐵𝑢𝑘−1 − 𝑥)),

= 𝜆𝑡𝑘 ((𝐼 − 2𝑡𝑘𝐵𝑇𝐵)𝑢𝑘−1 + 2𝑡𝑘𝐵𝑇 𝑥),

= 𝜆𝑡𝑘 (𝑆𝑢𝑘−1 +𝑊 𝑥),

(4)

where 𝑆 = 𝐼 − 2𝑡𝑘𝐵𝑇𝐵 and 𝑊 = 2𝑡𝑘𝐵𝑇 .
This equation can be illustrated as a recurrent block diagram as

in Fig. 3, left. Fortunately, Gregor and LeCun (2010) proposed a fast
approximation of ISTA called Learned ISTA (LISTA). This is an unfolded
version of ISTA with a fixed number of iterations and it can be plugged
into a neural network to provide a sparse code (see Fig. 3, right).
Embedding this LISTA module in our CNN is an effective way to learn
a dictionary and sparse codes that help to discriminate between the
categories of the current dataset.

3.1.3. Dictionary based Fisher encoding
When a classical GMM is used to model the data distribution,

the Fisher score is based on the partial derivatives of the posterior
probabilities with respect to the weights, the mean and the standard-
deviation parameters of the model (Sánchez et al., 2013). In our case,
we use a particular Fisher encoding, which is evaluated as the partial
derivative of the log probability of the local features with respect to the
dictionary itself:

𝜕𝑙𝑜𝑔(𝑃 (𝑥|𝐵))
𝜕𝐵

=
𝜕 1
𝜎2
‖𝑥 − 𝐵𝑢∗‖22 + 𝜆‖𝑢∗‖1

𝜕𝐵
= (𝑥 − 𝐵𝑢∗)𝑢∗

𝑇
, (5)

where the sparse code 𝑢∗ = argmax𝑢 𝑃 (𝑥|𝑢, 𝐵)𝑃 (𝑢) (see Liu et al. (2014)
for details).

Sparse Fisher encoding module is very easy to insert into our deep
network and provides the pooled features. These features are then sent,
after normalization, to the last fully connected layer for classification.
All these modules are constituting our CNN which can be trained
end-to-end (see Fig. 1).
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Fig. 3. Block diagrams of ISTA (left) and LISTA (right). ISTA evaluates the sparse code 𝑢 of 𝑥 with the iterative process detailed in Eq. (4). The shrinkage function is denoted by 
n this equation and in the block diagrams. LISTA is an unfolded version of ISTA (2 iterations here) that can be embedded in an end-to-end trainable network. In our framework,
he matrices 𝑆 and 𝑊 are learned and initialized thanks to our warm-up step, detailed in Section 4.3.
Fig. 4. Square-root matrix estimation with the Newton method. The inputs are a symmetric positive definite (SPD) matrix 𝐴 and the identity 𝐼 . After 𝑛 iterations the outputs 𝑌𝑛
nd 𝑍𝑛 converge into the square root matrix 𝐴1∕2 and the inverse square root matrix 𝐴−1∕2 of the input matrix 𝐴. Each iteration corresponds to Eq. (6).
.1.4. Mean vector subtraction
It is worth mentioning that, for each image, the input local feature

ectors 𝑥𝑖 are centered to have a zero mean before applying previous
parse Fisher encoding 𝑥′𝑖 = 𝑥𝑖 −

1
𝐻𝑊

(

∑𝐻𝑊
𝑖=1 𝑥𝑖

)

, where 𝐻𝑊 is the
umber of feature vectors 𝑥𝑖.

This pre-processing is similar to an instance normalization (Ulyanov
t al., 2016) without additive parameters to learn. It improves the
eneralization property of the model as observed in the experimental
esults (see more details in Section 4.4).

.2. Fisher score normalization

As mentioned earlier, the second-order statistics tend to excessively
mphasize very few coordinates, ignoring potential important features
Lin and Maji, 2017). To cope with this problem, many normalization
olutions have been proposed. In this paper, we take advantage of
he approach (Lin and Maji, 2017) to normalize our Fisher scores.
elow, we first detail this approach and then, explain its extension to
on-square matrices.

.2.1. Bilinear square matrix normalization
Assuming that a network backbone provides a feature map 𝑋 ∈

𝐷×𝐻×𝑊 (see Fig. 1), where 𝐷, 𝐻 , 𝑊 are the depth, height and width.
his set of local feature vectors can be pooled into a global feature
ector by using bilinear pooling (Lin et al., 2015), regardless of their
patial coordinates. Therefore, the feature map 𝑋 is reshaped to a 2D
atrix of size 𝐷×𝐻𝑊 where each column 𝑥𝑖 is a local feature vector of
dimensions. Then, the output of the bilinear pooling is evaluated as
= 1

𝐻𝑊

(

∑𝐻𝑊
𝑖=1 𝑥𝑖𝑥𝑇𝑖

)

, where 𝐴 is a symmetric positive definite (SPD)
atrix of size 𝐷 × 𝐷. While element-wise square-root normalization
elps improving the performance of the complete framework, Lin and
aji have shown that the results can be further boosted by applying
spectral normalization, i.e. scaling the eigenvalues of the associated

ovariance matrix (Lin and Maji, 2017). One way to do that is to
ransform the matrix 𝐴 to its square-root 𝐴1∕2 = 𝑈𝛴1∕2𝑈𝑇 , where
𝐴 = 𝑈𝛴𝑈𝑇 is the singular value decomposition (SVD) of 𝐴.

However, the computation of the SVD is poorly supported on GPUs
and Lin and Maji suggest applying a variant of the Newton method to
solve 𝐹 (𝑍) = 𝑍2 − 𝐴 = 0. Their approach is an iterative process where
each iteration is as follow:

𝑌𝑘+1 =
1
2
𝑌𝑘(3𝐼 −𝑍𝑘𝑌𝑘) and 𝑍𝑘+1 =

1
2
(3𝐼 −𝑍𝑘𝑌𝑘)𝑍𝑘. (6)

By initializing 𝑌0 = 𝐴 and 𝑍0 = 𝐼 , 𝑌𝑘 and 𝑍𝑘 converge to 𝐴1∕2 and
𝐴−1∕2 (see Fig. 4) in very few iterations (even one). And the process
requires only matrix multiplications (no inverse).

This matrix normalization clearly improves the accuracy and effi-
ciency of the bilinear pooling CNN (Lin and Maji, 2017), but it cannot
be directly applied to our Fisher representation, as shown in the next
section.
4

3.2.2. Matrix normalization for Fisher score representation
As previously explained, our Fisher representation is also a second-

order matrix that could benefit from spectral normalization. From
Eq. (5), we know that it is expressed as:

𝐴 = 1
𝐻𝑊

(𝐻𝑊
∑

𝑖=1
(𝑥′𝑖 − 𝐵𝑢𝑖)𝑢

𝑇
𝑖

)

, (7)

where 𝐵 ∈ R𝐷×𝐶 is a dictionary (with 𝐶 codewords) and 𝑢𝑖 ∈ R𝐶×1 is
the sparse code of 𝑥′𝑖 .

This matrix 𝐴 ∈ R𝐷×𝐶 is neither square nor symmetric and thus,
cannot be used as input for the Newton normalization that is restricted
to SPD matrices. Indeed, since 𝐴 is not SPD, its SVD is given as 𝐴 =
𝑈𝛴𝑉 𝑇 , where 𝑈 ≠ 𝑉 and where 𝛴 ∈ R𝐷×𝐶 is not square.

In order to apply spectral normalization, we propose to estimate
a so-called pseudo square root matrix 𝐴1∕2

𝑝𝑠𝑒𝑢𝑑𝑜 defined as 𝐴1∕2
𝑝𝑠𝑒𝑢𝑑𝑜 =

𝑈𝛴1∕2
𝑝𝑠𝑒𝑢𝑑𝑜𝑉

𝑇 , where 𝛴1∕2
𝑝𝑠𝑒𝑢𝑑𝑜 is calculated by square rooting the diagonal

elements of 𝛴. Note that there is no matrix 𝛴1∕2 such that 𝛴 =
𝛴1∕2𝛴1∕2.

Inspired by Lin and Maji (2017), to avoid SVD computation, we re-
sort to the Newton method to evaluate such a 𝐴1∕2

𝑝𝑠𝑒𝑢𝑑𝑜 matrix. But, since
this solution only accepts SPD square matrix as input, we transform 𝐴
into a square SPD matrix 𝐷:

𝐷 = 𝐴𝑇𝐴 = 𝑉 𝛴𝑇𝑈𝑇𝑈𝛴𝑉 𝑇 = 𝑉 𝛴𝑇𝛴𝑉 𝑇 . (8)

Note that this transform does not depend on 𝑈 .
Since 𝛴 is not symmetric, we introduce a helper matrix 𝐻 =

[𝐼𝐶 |0]𝑇 ∈ R𝐷×𝐶 , with 𝐼𝐶 the 𝐶 ×𝐶 identity matrix, such that 𝛴 can be
expressed as 𝛴 = 𝐻�̃�, where �̃� is a 𝐶 × 𝐶 square diagonal matrix.

Hence, Eq. (8) can be derived into:

𝐷 = 𝑉 𝛴𝑇𝛴𝑉 𝑇 = 𝑉 �̃�𝑇𝐻𝑇𝐻�̃�𝑉 𝑇 = 𝑉 �̃�2𝑉 𝑇 . (9)

This equation is the SVD of the matrix 𝐷.
Feeding the previous Newton workflow with 𝐷 and an identity

matrix, we obtain 𝐷1∕2 = 𝑉 �̃�𝑉 𝑇 and 𝐷−1∕2 = 𝑉 �̃�−1𝑉 𝑇 and feeding
again this workflow with 𝐷1∕2 and an identity matrix, we obtain 𝐷1∕4 =
𝑉 �̃�1∕2𝑉 𝑇 and 𝐷−1∕4 = 𝑉 �̃�−1∕2𝑉 𝑇 .

Finally, we have access to 𝐴1∕2
𝑝𝑠𝑒𝑢𝑑𝑜 thanks to:

𝐴𝐷−1∕4 = 𝑈𝛴𝑉 𝑇 𝑉 �̃�−1∕2𝑉 𝑇 = 𝑈𝛴�̃�−1∕2𝑉 𝑇 = 𝑈𝐻�̃��̃�−1∕2𝑉 𝑇 ,

= 𝑈𝐻�̃�1∕2𝑉 𝑇 = 𝑈𝛴1∕2
𝑝𝑠𝑒𝑢𝑑𝑜𝑉

𝑇 = 𝐴1∕2
𝑝𝑠𝑒𝑢𝑑𝑜.

(10)

Hence, without any SVD computation, this solution allows us to
spectrally normalize a non-SPD matrix A as 𝐴1∕2

𝑝𝑠𝑒𝑢𝑑𝑜 very efficiently.
Furthermore, this workflow can be easily embedded in an end-to-end
trainable deep network.

Thus, we propose to apply this new spectral normalization to our
Fisher score representation for classification tasks. All the frameworks
can be trained end-to-end. In the next section, we propose to run

extensive tests on different datasets to assess the quality of this method.
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4. Experiments

In order to show that our solution generally helps the classifica-
tion performance, we run experiments on three datasets, which vary
between tasks and scales. The three datasets and their experimental
settings are detailed in Sections 4.1 and 4.2. Next, the training strategy
of our network is shown in Section 4.3. In Section 4.4, the results and
comparisons will be discussed.

4.1. Datasets

Orderless pooling methods were originally designed for texture and
material recognition tasks (Lin et al., 2017; Yu and Salzmann, 2018;
Zhang et al., 2017). So we have first selected a reference material
dataset. Then, these approaches have also been shown to provide good
results on scene classification as well as fine-grained image classifica-
tion (Liu et al., 2017; Lin et al., 2017; Li et al., 2017; Yu et al., 2021).
Thus, we have also selected two dedicated datasets for these tasks. The
choice of these three datasets (detailed hereafter) is also a good way to
validate the versatility of our solution for different image classification
tasks.

The dataset MINC-2500 (Bell et al., 2015), containing 23
ommonly-seen material categories and 2,500 images per category, is
challenging large-scale dataset with large intra-class variability. The

ataset MIT Indoor 67 (Quattoni and Torralba, 2009) is a medium but
idely accepted benchmark for indoor scene classification task with 67

ndoor categories and 100 images in each category. The dataset CUB-
00-2011 (Wah et al., 2011) provides 11,788 images of 200 bird species
nd is considered as a fine-grained classification dataset because the
nter-class differences between bird species are subtle and sometime
arely noticeable. In our experiments, we do not use the available
bject bounding boxes and part annotations. And we make use of
fficial training-test splits released with these datasets.

.2. Experimental settings

Deep Pooling Module (DPM) - Our DPM is composed of a 1 × 1
onvolution layer, a LISTA module with two iterations (see Fig. 3),
he Fisher encoding layer (see Section 3.1.3) and normalization process
hich includes matrix normalization(see Section 3.2.2), element-wise

quare root and 𝑙2 normalization. Then, the DPM is followed by a fully
onnected layer with softmax activation for classification.

Depending on dataset scales and for a fair comparison with other
orks, we use different backbones and training strategies.
MIT-67 and CUB-200 settings - We adopt the settings of the state-

f-the-art (Yu and Salzmann, 2018; Lin et al., 2017). The input image
ize is 448 × 448 and the backbone networks are the pre-trained VGG-D
a.k.a VGG-16), AlexNet and ResNet-50 (He et al., 2016). Our DPM is
lugged after the ReLU activation of the last convolutional layer. The
× 1 convolutional layer in the DPM does not change the input feature

ize for AlexNet and VGG-D, and reduces the size to 512 for ResNet-50.
he sparse code in LISTA has 100 elements.
MINC-2500 settings - The network backbone is the pre-trained

esNet-50 and VGG-D. With the 1 × 1 convolutional layer in the DPM,
the input feature size is reduced to 128 and the size of sparse code in
ISTA is 32. While training, we follow the data augmentation settings
rom Xue et al. (2018). First, the input image is resized to 256 × 256.
hen we crop each image at (i) a random location with (ii) a random
ize (between 8% to 100% of the image area) and (iii) a random aspect
atio (between 3/4 and 4/3). The crop is resized to 224 × 224 and used
s the network input. 50% chance horizontal and vertical flip is also
pplied. At test time, we use a central crop of 224 × 224 as input.

.3. Training details

In the training phase, three consecutive steps are conducted. First,

e run a PCA on a small subset of feature vectors (around 10,000)

5

Table 1
Ablation study of our workflow on the MIT-67 dataset. Essential elements in our
approach are progressively added and the accuracy(%) given by their different
combination is measured, showing their individual contribution to the classification.

LISTA Warm-up Mean Sub. Matrix Norm. Accuracy

76.72
� 77.16
� � 80.22
� � � 80.60

� � � 80.67
� � � � 81.24

Table 2
Inference time (ms) per mini-batch (64 samples) required by each element of our
framework on a GPU Titan RTX. Backb.: the convolutional layers used to extract the
deep features. Norm.: our matrix normalization step. Fisher : the Fisher encoding. Classif.:
a linear classifier.

Backb. Mean Sub. LISTA Fisher Norm. Classif.

Time 1493 0.7 5.3 3.7 30.9 0.8

extracted from the backbone outputs and initialize the 1 × 1 convolu-
tional layer of our DPM with these PCA parameters. Second, inspired
by Branson et al. (2014), we apply a warm-up process that consists in
training our DPM and FC layer (while the backbone is frozen) with an
objective function which is the sum of the cross-entropy loss and the
sparse coding loss (see Eq. (1)). Finally, the whole network is fine-tuned
end-to-end under the supervision of the sole cross-entropy loss.

The optimization algorithm is a gradient descent with a mini-batch
size of 64, a weight decay of 5𝑒−4 and a momentum of 0.9. The learning
rate is 0.004 during the warm-up. During the end-to-end finetuning, it
starts from 0.004 and is divided by 10 when the training loss meets a
plateau.

4.4. Results and discussions

In this section, we provide many results in order to assess the quality
of each contribution, to measure the impact of the hyperparameters and
to compare our whole framework with the state-of-the-art.

Ablation study - In order to measure the impact of each of our
different contributions, we propose to conduct an ablation study. The
tests are run on the MIT-67 dataset with the VGG-16 network and the
results are provided in Table 1.

For this study, we propose to start from the baseline network
without contributions and to consecutively add the proposed modules
in order to assess their individual impact on the results. When the LISTA
module is not in the network, it is replaced by a 1 × 1 convolutional
layer providing the codes 𝑢𝑖.

As introduced in Section 4.3, our warm-up process is one of the
three steps in the training phase. The goal is to train our DPM and the
FC layer before fine-tuning the whole network. We can see in Table 1,
that this training step boosts the performance from 77.16% to 80.22%,
showing that an accurate initialization is important for our DPM and
classifier.

Likewise, we notice that the proposed matrix normalization (called
Matrix Norm. in Table 1. see details in Section 3.2.2) is one key element
of our framework since it improves the accuracy from 80.60% to
81.24%.

Furthermore, centering the deep features (Mean Sub. in Table 1.
see details in Section 3.1.4) also provides a slight improvement from
80.22% to 80.60%.

Finally, the impact of the LISTA module is measured with two
different tests. Starting from the baseline and adding LISTA improves
the results from 76.72% to 77.16%. And adding LISTA to the whole
process helps to increase from 80.67% to 81.24%.

This ablation study is also a nice way to measure the improvement

of our contributions over our previous work called E2E-SCF (Xu et al.,
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Table 3
Comparison of the classification accuracy (%) with closed-related alternatives on three datasets and three backbone architectures.

Approaches MIT-67 CUB-200 MINC-2500

AlexNet VGG16 ResNet50 AlexNet VGG16 ResNet50 VGG16 ResNet50

Off-the-shelf

Baseline (Lin et al., 2017;
Sharif Razavian et al., 2014)

58.4 53.3 60.4

GMMFVC (Liu et al., 2014, 2017) 64.3 72.6a 61.7 70.1a

SCFVC (Liu et al., 2014, 2017) 68.2 77.6a 83.28 66.4 77.3a 78.86
HSCFVC (Liu et al., 2017) 79.5a 80.8a

Finetuned

Baseline (Lin et al., 2017;
Yu and Salzmann, 2018)

64.51 76.45 70.4 74.51 73.01 79.12

Deep Ten (Zhang et al., 2017) 71.3 80.6
NetVLAD (Lin et al., 2017) 81.9
NetFV (Lin et al., 2017) 78.2 79.9
FisherNet (Tang et al., 2019) 76.4
MFAFVNet (Li et al., 2017) 69.89b 78.01b

CNN-DL (Liu et al., 2018) 66.60 78.33
B-CNN (Lin et al., 2017;
Yu and Salzmann, 2018)

77.6 84.0 74.50 79.05

SMSO (Yu and Salzmann, 2018) 79.45 79.68 85.01 85.77 78.0 81.33
SRM (Yu et al., 2021) 80.3 85.5
RUN (Yu et al., 2020) 80.8 85.7
E2E-SCF (Xu et al., 2021) 70.15 80.22 84.85 76.8 84.28 84.47 76.56 81.5
Ours 70.60 81.24 85.52 77.49 85.8 87.38 76.60 81.8

aTrained with VGG19 (not VGG16) with 2 scales, while the other approaches from the column are trained with a single scale.
bSince MFAFVNet works on patches and not on images, we have selected in Li et al. (2017) the results provided with the nearest patch scale from our settings (160 × 160).
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Table 4
Impact of the number of iterations in LISTA on the accuracy (%).

Iter. number 0 1 2 3 4 5

Accuracy 80.67 81.04 81.24 81.34 81.04 80.30

2021). Indeed, in Table 1, the row with LISTA and Warm-up corre-
sponds to our E2E-SCF. We notice that the additive contributions help
to improve the accuracy from 80.22% to 81.24% on this dataset. Ad-
ditional comparisons with this previous paper are proposed in Table 3
with 3 architectures and 3 datasets.

After analyzing the contribution of each element, we propose to
iscuss their individual computational costs. Thus, we have measured
heir inference times on the MIT-67 dataset with the VGG-16 backbone.
ccording to Table 2, the feature extraction with the convolutional
ackbone (VGG-16, here) is clearly the bottleneck of the framework.
he inference times of our proposed blocks are negligible compared to
he one of the backbone. Among our proposed modules, the matrix nor-
alization, i.e. the Newton algorithm, has the highest computational

ost.
Hyperparameters - In order to go a step further in the analysis

f our framework, we propose to study the impacts of two hyper-
arameters on the results; namely the number of iterations in the LISTA
odule and the size of the dictionary in the sparse coding. Like the
revious experiment, the tests are conducted on the MIT-67 dataset
ith the VGG-16 network.

LISTA is an unfolded version of ISTA and the number of iterations is
hyper-parameter. We investigate the performance of our framework

cross different numbers of iterations from 0 to 5, where 0 means
hat the LISTA module is replaced by a 1 × 1 convolutional layer. In

Table 4, we notice that 2 or 3 iterations provide the best performance.
After 3 iterations, the results start decreasing. Our intuition is that
too many iterations of LISTA produce sparser codes at the expense of
classification accuracy. For all the other tests in this paper, 2 iterations
are used.

We also conducted an analysis on the number of codewords (dictio-
nary size) required in the LISTA module. We measure the classification
accuracy for a range of codeword numbers from 50 to 512 in Table 5.
We notice that, due to overfitting, when the number of codewords is
higher than 100, lower accuracy is observed. It appears that for larger
datasets, like MINC-2500, the optimal dictionary size is larger. The
default value for all the next tests is 100, unless it is specified.
 a

6

Table 5
Impact of the dictionary size on the accuracy (%).

Dataset Dictionary size

50 100 200 300 400 512

MIT-67 80.37 81.24 80.90 80.00 80.22 80.22
MINC-2500 76.00 76.37 76.45 76.89 77.08 76.90

Comparison with state-of-the-art - The top-1 classification accu-
racy of our approach and many alternatives are provided in Table 3.
The results of the related works are directly extracted from the ref-
erence papers cited in the Table. Note that our CNN is trained on
single-scale images while many state-of-the-art approaches are trained
on multi-scales, so we have carefully selected the results that allow
fair comparisons, but still some results in Table 3 are from multi-scale
training (see comments in Table 3).

The methods called Off-the-shelf use independent modules that are
ot fine-tuned together while the Finetuned group contains approaches
hat use end-to-end trainable networks. We notice that the results
rovided by fine-tuned networks overall outperform those of the Off-
he-shelf solutions. This shows that it is better to make the modules
ork together to optimize the same loss instead of independently
ptimizing them. We can also notice that the second order statistics,
uch as Fisher vectors (MFAFVNet, HSCFVC, . . . ) or bilinear pooling
SMSO, SRM, RUN, . . . ) provide the best results for the tested datasets.
ur approach is built upon Deep Fisher Score Representation via Sparse
oding (SCFVC Liu et al., 2014) and our E2E-SCF (Xu et al., 2021)
hich produce more discriminative second-order pooled features than

he classical Fisher vector. We can see in Table 3 that the proposed
mart combination of these two advantages makes our method outper-
orm the alternatives for almost all the tested datasets and backbones.
nd the improvement provided by our approach increases with feature
imension and the depth of the network (AlexNet ⟶ VGG16 ⟶

esNet50) which shows that it is well designed for complex and high
imensional features.

. Conclusion

In this paper, we have proposed a workflow to extract second-
rder statistics from images in the context of image classification. The
pproach is based on Fisher encoding which requires a data distribution
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fitting with Gaussians. We have first proposed to sparsely encode
the Gaussian centers with a learned basis in order to improve the
data fitting. Second, since the second-order features require a spectral
normalization before being used for classification, we have introduced
an original matrix normalization based on a Newton algorithm. The
main advantage of these two modules is that they can be embedded in
a deep network that can be trained end-to-end. We have also proposed
a training strategy that can easily initialize the network parameters be-
fore finetuning. Many experimental tests clearly show that our method
outperforms the recent alternatives on three different datasets. The
proposed non-SPD matrix normalization can be exploited to improve
other second order statistics features such as those provided by compact
bilinear pooling (Gao et al., 2015). This is the aim of our future works.
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