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Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France
{sixiang.xu,damien.muselet,alain.tremeau}@univ-st-etienne.fr

Abstract. Fisher Score has been shown to be accurate global image
features for classification. Most of time, it is based on a Gaussian mix-
ture model (GMM). Nevertheless, recent studies show that GMM does
not fit well high dimensional data such as the ones extracted by deep
convolutional networks. In this paper, we propose to resort to a sparse
representation of the centers of the Gaussian functions in order to bet-
ter cover the high dimensional feature space. This solution has already
been used in a framework constituted by independent and off-the-shelf
modules and the contribution of this paper is to embed these steps in an
end-to-end deep neural network so that all the modules work together for
the sole purpose of improving classification performance. Experimental
results show that this solution clearly outperforms many alternatives in
the context of material, indoor scenes or fine-grained image classification.

Keywords: Fisher Score · Sparse Coding · Orderless Pooling · Classifi-
cation.

1 Introduction

Deep neural networks have emerged as an essential solution for performing clas-
sification tasks. In these networks, convolutional layers extract accurate local
features that are pooled to a local feature vector which is sent to fully connected
layers for classification. The first networks neglected the pooling step and di-
rectly sent the set of local features in the dense layers [20], while the series of
ResNet apply a global average pooling to decrease the dimension of the global
feature vector and hence reduce the number of parameters of the network [8].
Orderless pooling was widely used before convolutional neural networks (CNN)
with the bags of visual words (BOW) [12], VLAD [10] or Fisher Vectors [21] and
has shown to provide good results when applied to CNN features [4, 6]. Among
them, the Fisher Vectors (FV) were the most promising because they generalize
the VLAD and BOW. The main idea of FV is to model the distribution of the
training data with a Gaussian mixture and to characterize each data point with
the derivatives over the model parameters. This coding approach is referred as
Gaussian Mixture Model based Fisher Vector Coding(GMMFVC). Nevertheless,
a Gaussian Mixture Model (GMM) seems not to be well adapted to the deep
local features since they are lying in a very high dimensional space and require
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Fig. 1. Discriminative power
and representative power
of the Gaussian Mixture
Model (GMM), the Off-the-
shelf Sparse Coding solution
(SCFVC) proposed in [15]
and our solution. See text for
details.

to many Gaussians to be accurately modeled [15]. Liu et al. proposed a smart
solution to overcome this problem which consists in sampling the center of each
Gaussian from a subspace and therefore benefiting from an infinite number of
Gaussians to fit the data distribution [15]. The authors show that this problem
can be solved by a classical sparse coding method. Unfortunately, their approach
can not take advantage of the main interest of the CNN, i.e. training end-to-end
the feature extraction, the pooling and the classification layers. In this paper,
we propose a solution to embed all these modules in a deep CNN that can be
trained end-to-end. This way, we take advantage of the sparse coding solution
of [15] to improve the representative power of our model (compared to the clas-
sical GMM) thanks to an infinite number of Gaussians and we also improve the
discriminative power (over [15] and GMM) of the different elements (subspace
bases and sparse codes) thanks to the end-to-end training.

For illustration, Fig. 1 displays the representative and discriminative pow-
ers of the GMMFVC, the Off-the-shelf Sparse Coding solution (SCFVC) pro-
posed in [15] and our solution. These values are evaluated on the MIT indoor
dataset [18] with AlexNet [11]. The representative power is evaluated as 100−d,
where d is the average distance between the data points and their respective
nearest Gaussian center. The discriminative power is the classification accuracy
of the method. This Figure clearly shows that inserting the sparse coding and
Fisher vector extraction in the network allows to improve both criteria.

The classical sparse coding problem presented in [15] is a regression with
L1 norm regularization (called LASSO regression). Using proximal gradient de-
scent, it can be solved with an iterative algorithm with soft-thresholding, called
ISTA [5]. Gregor and Lecun have proposed in [7] to approximate this solver
with an unfolded module (LISTA) that can be inserted in a deep network. In
this paper, we use LISTA to learn a discriminative dictionary and to extract an
adapted sparse code for each input data. These dictionary and sparse code allow
us to evaluate the corresponding Fisher vector that is the input of the classifi-
cation layers. By backpropagating the gradient of the classification loss, we are
able to make all these modules (local feature extraction, LISTA, Fisher Vector
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and classification) collaborate with the sole objective of improving the perfor-
mance of the classification task. Experimental tests on three different datasets
and three different backbone architectures show that our solution outperform
many alternatives.

2 Related Works

Orderless pooling was widely used before the emergence of the CNN-based
solutions. The most popular approaches were based on bags of visual words
(BOW) [12], VLAD [10] or Fisher Vectors [21]. Inspired by these early methods,
some works have evaluated the Fisher vectors or VLAD from deep features for
texture or image classification [4, 6]. They show improvements over the SIFT-
based counterparts but, in their workflow, the dictionary or Gaussian mixture
model are learned independently from the deep features and from the classifier,
leaving a large margin of progression.

Thus, the next works have focused on embedding orderless pooling in deep
networks to allow end-to-end training. Passalis and Tefas have inserted a Bag-
of-Features pooling in deep neural networks thanks to radial basis function neu-
rons [17]. The output of the pooling module is a histogram of the visual words
(0th order statistic) learned on the training set.

Instead of counting the occurrences of the visual words in one image, VLAD-
based approaches aggregate the residuals between the local features and their
nearest visual words (1st order statistic). NetVLAD is the first network that
solves this task with an end-to-end training [1] and is later improved by Zhang
et al. with Deep Ten [26]. It has been show that first order statistics are more
accurate to characterize images in classification tasks and the Fisher vectors
go further by using first and second order statistics. Deep FisherNet is an em-
bedded implementation of the GMM Fisher vector [22]. [14] introduces NetFV
which extends NetVLAD by appending the second order statistics. The main
disadvantage of all these approaches is that they rely on a limited number of
codewords or Gaussian centers, which prevents accurate modeling of the data
distribution in the high-dimensional deep feature spaces [15].

One interesting solution to cope with this problem has been proposed by Li et
al [13]. The authors compute Fisher vectors from a mixture of factor analyzers
(MFA), instead of the classical GMM. Their solution is embedded in a deep
network which is trainable end-to-end. The idea of MFA is to approximate the
data manifold by low dimensional linear spaces and, in this sense, is similar to the
idea of sparse coding [15]. Nevertheless, even if the MFA module is embedded in
a deep network, the authors show that an accurate initialization of the weights of
the network is required to obtain good performance. This initialization consists
in running an Expectation-Maximization algorithm on the set of local features
that have to be saved in memory. Furthermore, it appears that this second order
representation requires high computation costs, high number of parameters to
learn and occupies a very large memory space (500k dimensions which is more
than the image itself) [9].
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Fig. 2. Workflow of the proposed solution.

Another group of second-order pooling works is based on bilinear coding,
such as BCNN [14] which is also an end-to-end trainable network and aggre-
gates feature vectors by sum-pooling their outer products. Since this pooled
representation always has cumbersome size, SMSO[25] proposes to compress the
bilinear pooled features and improves the classification performance.

Our method is inspired by the work of Liu et al. [15], detailed in the next
section,. More recently, they have also proposed an improved version of their
work in [16], called HSCFV. It uses two dictionaries to code input features and
consequently, doubles dimension size of the Fisher vector. Nevertheless, their
approach is not embedded in a deep CNN for end-to-end training.

Our method combines all the benefits of these previous solutions: it is em-
bedded in an end-to-end trainable network, it samples an infinite number of
Gaussian centers from a learned subspace and it does not require any heavy
computation or storage to initialize the weights.

3 Deep sparse coding Fisher vector

Fig. 2 illustrates the complete workflow of our solution whose successive steps
are detailed in the next sections.

3.1 From subspace sampling to sparse coding

In order to increase the number of Gaussians that model the distribution of the
data, we take advantage of the idea from [15] that sample the Gaussian mean
vectors in a subspace spanned by a set of bases. Each mean vector is coded in this
”dictionary” B with a code u drawn from a zero-mean Laplacian distribution
(to enforce sparsity). Then each local feature vector x extracted from the images
and associated with the code u is drawn from a Gaussian distribution N (Bu,Σ)
centered on Bu. Fig. 3 illustrates the interest of this approach.

Then, assuming a constant and diagonal covariance matrix as σ and using
pointwise maximum to approximate the integral of the distribution, Liu et al.
show that the logarithm of the likelihood of x can be estimated as [15]:

log(P (x|B)) = min
u

1

σ2
||x−Bu||22 + λ||u||1, (1)
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Gaussian Mixture Sparse Coding

Fig. 3. Some data in a high dimensional space (illustrated by the sphere). Left: With
GMM the data distribution is not well fitted because of the limited number of Gaus-
sians. Right: With Sparse Coding, the Gaussian centers are coded sparsely in an
adapted basis (green arrows) allowing to create unlimited number of Gaussians and
so to fit better the data distribution. The sparsity is illustrated by the low number of
basis required to code each center position (lines, planes or parallelograms).

where λ is the scale parameter of the Laplacian distribution of u.

Interestingly, this equation represents the classical problem of sparse coding.
Liu et al. proposed to use an off-the-shelf sparse coding solver to learn the
dictionaryB and infer the code u [15]. Obviously, making use of such independent
solver is a good solution to minimize the reconstruction error of x with a sparse
code, but it neglects the main goal which is to improve the performance of the
classification task.

Hence, we propose in the next section to embed a sparse coding module in a
deep neural network that is trained end-to-end. The main advantage of such an
approach is that it is learning a dictionary and sparse codes that are accurate
to discriminate the different categories in the current dataset.

3.2 Embedding sparse coding with LISTA

Our aim is to find a solution for the following equation:

min
u
f(u) + λ||u||1 (2)

where f(u) = ||x − Bu||22, x is a data point, B the dictionary and u the sparse
code of x.

One way to solve this equation is to resort to an Iterative Shrinkage/Thresholding
Algorithm (ISTA) [5] that iteratively approximates the solution with:

uk = Tλtk(uk−1 − tk∇f(uk−1)), (3)

where Tα is a component-wise vector shrinkage function such that [Tα(v)]i =
(|vi| − α)+sign(vi), tk is the step size at iteration k and ∇ is the gradient
operator.
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Fig. 4. Block diagrams of ISTA and LISTA. LISTA is an unfolded version of ISTA (2
iterations here).

Evaluating the gradient of f(u) defined above, we get:

uk = Tλtk(uk−1 − 2tkB
T (Buk−1 − x)),

= Tλtk((I − 2tkB
TB)uk−1 + 2tkB

Tx),

= Tλtk(Suk−1 +Wx),

where S = I − 2tkB
TB and W = 2tkB

T .
As mentioned in [7], this equation can be illustrated as a recurrent block di-

agram as in Fig. 4, left. Fortunately, Gregor and Lecun proposed a fast approxi-
mation of ISTA called Learned ISTA (LISTA) [7]. This is an unfolded version of
ISTA with a fix number of iterations and that can be plugged into a neural net-
work to provide a sparse code (see Fig.4, right). Embedding this LISTA module
in our CNN is a smart solution to learn a dictionary and sparse codes that help
to discriminate between the categories of the current task.

3.3 Dictionary based Fisher coding

When a classical GMM is used to model the data distribution, the Fisher code
is based on the partial derivatives of the posterior probabilities with respect to
the weights, the mean and the standard-deviation parameters of the model [21].
In our case, the model is based on a learned dictionary and we use a particular
Fisher coding, as in [15], evaluated as the partial derivative of the log probability
of the local features with respect to the dictionary itself:

∂log(P (x|B))

∂B
=
∂ 1
σ2 ||x−Bu∗||22 + λ||u∗||1

∂B
= (x−Bu∗)u∗

T

, (4)

where u∗ = argmaxuP (x|u,B)P (u) (see [15] for details).
This module is very easy to insert in our deep network and provides the

pooled features from the input image. These features are then sent to the last
fully connected layers for classification. All these modules are constituting our
CNN which can be trained end-to-end (see Fig. 2).

4 Experiments

In this section, we are running experimental tests on different datasets and com-
pare our results with those of many alternatives. The datasets and their re-
spective experimental settings are detailed in Sections 4.1 and 4.2. The training
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strategy of our network is presented in Section 4.3. Finally, the results and com-
parisons are commented in Section 4.4.

4.1 Datasets

In order to show the versatility of our solution for image classification tasks, we
run experiments on three datasets, which vary between tasks and scales. Note
that we always make use of official training-test splits released with the datasets.

MINC-2500 [2] is a large-scale material dataset containing 23 commonly-seen
material categories, such as water, wood or paper. There are in total 2, 500 images
per category among which 2, 350 are used for training. MIT Indoor 67[18] is a
medium but widely-accepted benchmark for indoor scene classification task with
67 indoor categories and 100 images in each category. 80 images per category
are used for training. CUB-200-2011[23] consists of 11, 788 images with 200 bird
species and is always considered as a fine-grained classification dataset because
inter-class difference between bird species is very subtle.

4.2 Experimental settings

Depending on the tested dataset, we use different backbones for fair comparison
with other works. Our deep pooling module (DPM) is constituted by a 1 × 1
convolution layer, a LISTA module with two iterations (see Fig. 4) and the
Fisher encoding layer. Then the last layer is a fully connected layer with softmax
activation for classification. The loss is the classical cross-entropy.

When testing on MIT-67 and CUB-200 2011 datasets, we follow the settings
adopted by the state of the art methods [25, 14]. The input image size is 448x448
and the backbone networks are either the pretrained VGG-D (a.k.a VGG-16) or
Alexnet. Our DPM is plugged on the last convolutional layer for VGG-D and on
the Fc6 layer for Alexnet. The 1 × 1 convolutional layer in our DPM does not
change the input feature size and the sparse code in LISTA has 100 elements.

For the tests on MINC-2500, the network backbone is the pretrained ResNet-
50[8]. The 1 × 1 convolutional layer in our DPM reduces the input feature size
to 128 and the provided sparse code in LISTA has 32 elements. While training,
we follow the data augmentation settings of [24]: the input image is resized to
256x256, 8% to 100% of the area of the of image is cropped with a random aspect
ratio between 3

4 and 4
3 and the crop is resized to 224x224. 50% chance horizontal

and vertical flip is applied. At test time, we use central crop of 224x224 as input.

4.3 Training details

For training our network, three consecutive steps are conducted. First, we run
a PCA on a small subset of feature vectors (around 10, 000) extracted from
the backbone outputs and initialize the 1 × 1 convolutional layer of our DPM
with these PCA parameters. Second, inspired by [3], we apply a warming-up
process that consists in training our DPM and FC layer (while the backbone
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Table 1. Comparison of the classification accuracy (%) with closed-related alter-
natives on three datasets and three backbone architectures.

Approaches MIT MIT CUB CUB MINC
AlexNet VGG16 AlexNet VGG16 ResNet50

O
ff

-s
h
el

f Baseline 58.4[19] 53.3[19] 60.4[14]
GMMFVC 64.3[15] 72.6a[16] 61.7[15] 70.1a[16]
SCFVC 68.2[15] 77.6a[16] 66.4[15] 77.3a[16]
HSCFVC 79.5a[16] 80.8 [16]

E
n
d
-t

o
-e

n
d

Baseline 64.51[25] 70.4[14] 79.1[25]
Deep Ten 80.4[24]
NetVLAD 81.9[14]
NetFV 78.2[14] 79.9[14]
FisherNet 76.4[13]

MFAFVNet 69.89b[13] 78.01b[13]
B-CNN 77.6[14] 84.0[14] 79.05[25]
SMSO 79.45[25] 85.01[25] 81.3[25]
Our 70.3 80.22 73.4 84.28 81.5

a These methods were trained with VGG19 (not VGG16) with 2 scales, whereas
the other approaches from the column are trained with a single scale.

b Since MFAFVNet works on patches and not on images, we have selected in [13]
the results provided with the nearest patch scale from our settings (160× 160).

is frozen) with an objective function which is the sum of the cross-entropy loss
and the sparse coding loss (see Eq. (1)). Finally, the whole network is fine-tuned
end-to-end under the supervision of the sole cross-entropy loss.

For training, we use stochastic gradient descent as optimization algorithm
with a mini-batch size of 64, a weight decay of 5e−4 and a momentum of 0.9. The
learning rate is 0.004 during the warming-up. During the end-to-end finetuning,
it starts from 0.004 and is divided by 10 when the training loss meets a plateau.

4.4 Results

The top-1 classification accuracy of our approach and many alternatives are
resumed in Table 1. The results of the related works are extracted from different
papers that are referenced in this table. Note that our CNN is trained on single-
scale images while many state-of-the-art approaches are training on multi-scales,
so we have carefully selected the results that allows fair comparisons, even if some
results in Table 1 are from multi-scale training.

The methods called ’Off-the-shelf’ use independent modules that are not
fine-tuned together while the ’Finetuned’ group contains approaches that use
end-to-end trainable networks. We notice that the results provided by fine-tuned
networks overall outperform those of the Off-the-shelf solutions. This shows that
it is always better to make the modules work together to optimize the same
loss instead of independently optimizing them. Also our approach is built upon
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SCFVC which produces more discriminant second-order pooled features than
the classical Fisher vector or VLAD. The proposed smart combination of these
two advantages make our method outperform most of the alternatives for all the
datasets and backbones.

5 Conclusion

Fisher vectors are very accurate features for classification but require many
Gaussians when applied on high-dimensional deed features. One way to cope
with this problem is to code sparsely the Gaussian centers in an adapted basis
in order to increase the number of available Gaussians and better fit the data
distribution. In this paper, we have shown that this coding can be embedded in
a deep network allowing to adapt the basis and sparse code such that they op-
timize the classification performance. We have also proposed a training strategy
that can easily and quickly initialize the network parameters before finetuning.
With the support of the end-to-end learning and a powerful Fisher score repre-
sentation, our method outperforms many alternatives on three different datasets.
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gating local image descriptors into compact codes. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 34(9) (2012)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25,
1097–1105 (2012)

12. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06). vol. 2, pp.
2169–2178 (2006)

13. Li, Y., Dixit, M., Vasconcelos, N.: Deep scene image classification with the
mfafvnet. In: Proceedings of the IEEE International Conference on Computer Vi-
sion. pp. 5746–5754 (2017)

14. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear convolutional neural networks for
fine-grained visual recognition. IEEE transactions on pattern analysis and machine
intelligence 40(6), 1309–1322 (2017)

15. Liu, L., Shen, C., Wang, L., Hengel, A.v.d., Wang, C.: Encoding high dimensional
local features by sparse coding based fisher vectors. In: Advances in Neural Infor-
mation Processing Systems(NIPS) (2014)

16. Liu, L., Wang, P., Shen, C., Wang, L., Van Den Hengel, A., Wang, C., Shen, H.T.:
Compositional model based fisher vector coding for image classification. IEEE
transactions on pattern analysis and machine intelligence 39(12), 2335–2348 (2017)

17. Passalis, N., Tefas, A.: Learning bag-of-features pooling for deep convolutional neu-
ral networks. In: 2017 IEEE International Conference on Computer Vision (ICCV).
pp. 5766–5774 (2017)

18. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. pp. 413–420. IEEE (2009)

19. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-
shelf: An astounding baseline for recognition. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) Workshops (June
2014)

20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proc. International Conference on Learning Representations
(ICLR’15) (2015)

21. Sánchez, J., Mensink, T., Verbeek, J.: Image classification with the fisher vector:
Theory and practice. International Journal of Computer Vision 105 (12 2013)

22. Tang, P., Wang, X., Shi, B., Bai, X., Liu, W., Tu, Z.: Deep fishernet for image
classification. IEEE transactions on neural networks and learning systems 30(7),
2244–2250 (2019)

23. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. Tech. Rep. CNS-TR-2011-001, California Institute of
Technology (2011)

24. Xue, J., Zhang, H., Dana, K.: Deep texture manifold for ground terrain recogni-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 558–567 (2018)

25. Yu, K., Salzmann, M.: Statistically-motivated second-order pooling. In: Proceed-
ings of the European Conference on Computer Vision (ECCV). pp. 600–616 (2018)

26. Zhang, H., Xue, J., Dana, K.: Deep ten: Texture encoding network. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 708–717
(2017)


