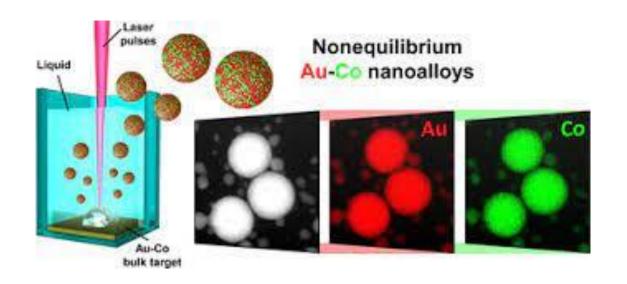
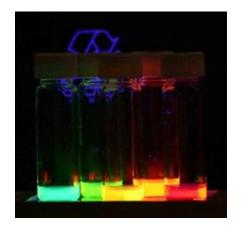

Numerical studies of thermoplasmonic effects and nanoalloy formation in ultra-short laser interactions with nanoparticles

Tatiana E. Itina¹ and Anton Rudenko^{1,2}

¹ Laboratoire Hubert Curien, UJM/Université de Lyon, 42000 Saint-Etienne, France University of Arizona in Tucson, USA

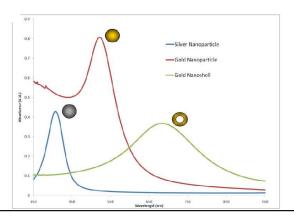

* tatiana.itina@univ-st-etienne.fr



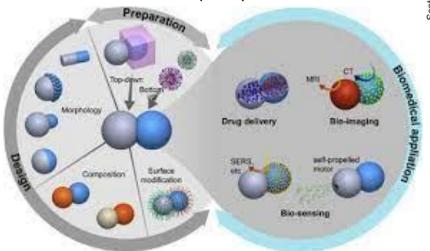
Y Andreeva et al. J. Phys. Chem. C 124 (18), 10209-10219, 2020

Typical experiments

Vincenzo Amendola et al.
Kinetically Stable Nonequilibrium Gold-Cobalt Alloy
Nanoparticles with Magnetic and Plasmonic
Properties


Laser-induced ablation/fragmentation in liquids

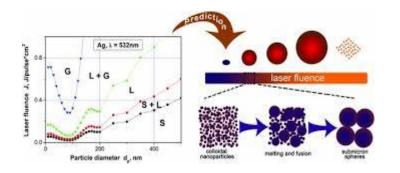
The mechanisms involved are still not enough understood...


How modeling can help?

Motivation

Tailoring optical and or magneto-optical properties: medical applications, imaging, photo-acoustics, photonics, etc.


Optical properties (solid nanoparticles and hollow nanoshells) R. W. Day, Materials Science (2009)



From tunable core-shell nanoparticles to plasmonic drawbridges C. P. Byers et al. Science Advances 04 Vol. 1, no. 1 (2015)

Why Lasers?

- 1. Green synthesis methods, bio-compatibility
- 2. Easy control over NP properties
- 3. Scaling-up possibilities
- 4. Possibility to create stable ultra-structures

Laser is a versatile tool that can be used for

formation of nanoparticles

in vacuum in gas in liquid in a solid

modification of nanoparticles

fragmentation—tailoring of sizes sintering – can create nanohybrides and nanocomposites, thus tailoring their optical, magnetic, and acoustic properties

We can also form alloy NPs composed of normally immiscible species, high-entropy alloys

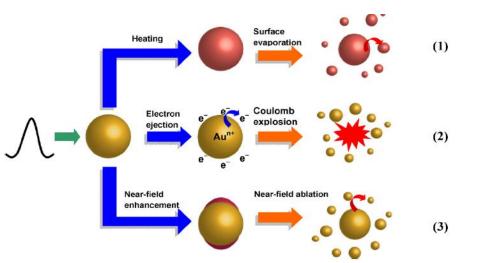
Both laser-induced nanoparticle formation and laser-based modifications of nanoparticles involve many physical and chemical process.

Mechanism of pulse laser interaction with colloidal nanoparticles A. Pyatenko et al., Laser&Phot. Rev. 2013

Ultra-short Laser Interactions with NPs

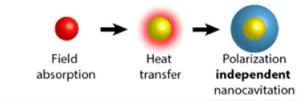
Propagation, absorption, local field enhancement

Local ionization and heating of the matter/liquid near NP plasma-mediated nanobubbles

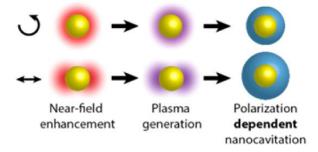

NP heating, heat transfer to the ambient medium thermo-mediated nanobubbles

NP heating, melting, reshaping, sintering, evaporation

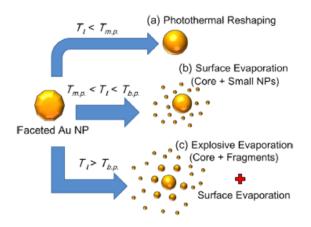
Electron ejection, injection in the ambient


NP fragmentation

Laser pulse



Hashimoto et al. J. PhotChem&PhotBiology (2012)


Thermo-mediated nanobubbles

Plasma-mediated nanobubbles

Lachaine et al. Photonics (2013)

Strasser et al, . J. Phys.Chem. C 118, 25748 (2014)

Laser Interaction with NPs in Ambien Medium

« Classical » Multi-Physics

Maxwell equations

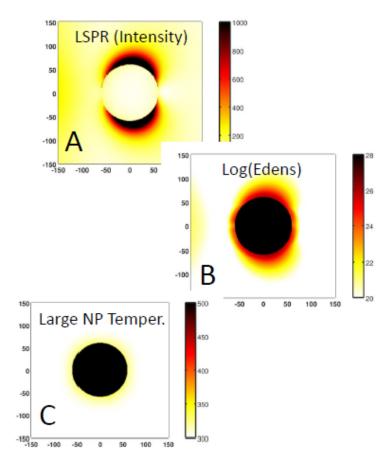
$$\frac{\partial \vec{E}}{\partial t} = \frac{\nabla \times \vec{H} - \vec{J}}{\varepsilon_0}$$

$$\frac{\partial \vec{H}}{\partial t} = -\frac{\nabla \times \vec{E}}{\mu_0}$$

Polarization current

$$\frac{\partial \vec{J}}{\partial t} = -\vec{J}\gamma + \frac{ne^2}{m}\vec{E}$$

 $\frac{\partial \vec{H}}{\partial t} = -\frac{\nabla \times \vec{E}}{\mu_0}$ Charge conservation, incompressible Fermi flow Photo-ionization Avalanche


$$\frac{\partial n}{\partial t} = -\frac{1}{e} \nabla [\vec{J} + \overrightarrow{J}_{em}] + w_{PI}(I) + w_{AI}(I)$$

Electrons
$$C_e \frac{\partial T_e}{\partial t} = \nabla \cdot (k_e \nabla T_e) - \gamma_{ei} (T_e - T_i) + \vec{J} \cdot \vec{E}$$

Nanoparticle
$$\rho_{NP}C_{NP}\frac{\partial T_{NP}}{\partial t} = \nabla \cdot (k_{NP}\nabla T_{NP}) + \gamma_{ei}(T_e - T_{NP}) + \frac{3h(T_m - T_{NP})}{R_{NP}}$$
Modium 27

$$\frac{\text{Medium}}{\rho_m C_m} \frac{\partial T_m}{\partial t} = \nabla \cdot (k_m \nabla T_m) + \gamma_{ei} (T_e - T_m) + 3h(T_{NP} - T_m)/R_{NP}$$

 C_e , C_{NP} , C_m - heat capacities; k_e , k_{NP} , k_m - thermal conductivities; T_e , T_{NP} , T_m - temperatures; $\vec{l} \cdot \vec{E}$ - Joule heating source (absorption); γ_{ei} , h - energy transfer rates; ρ_{NP} , ρ_m - ion densities.

Advantages: rather easy equations, estimations of temperatures Limitations: hard to correctly account for electron excitation, ejection/injection

Ultra-Short Laser Interaction with Metallic NPs

Non-Equilibrium Electron Sub-system

Conduction band (free) electrons in metals

Boltzmann equation

$$\frac{\partial f(E)}{\partial t} = \left(\frac{\partial f(E)}{\partial t}\right)_{e-e} + \left(\frac{\partial f(E)}{\partial t}\right)_{e-ph} + \left(\frac{\partial f(E)}{\partial t}\right)_{\substack{abs\\intra/inter}}$$

 $E_{max} = E_F + \varphi$

Terms for e-e, e-ph scattering & absorption

$$\left(\frac{\partial f(E)}{\partial t}\right)_{e-e} \cong \frac{f(0)C_{ee}}{\sqrt{E}} \frac{\partial}{\partial E} \left[f(E)\left(1-f(E)\right) + k_B T_e \frac{\partial f}{\partial E}\right]$$

$$\left(\frac{\partial f(E)}{\partial t}\right)_{e-nh} \cong \frac{C_{ep}}{\sqrt{E}} \frac{\partial}{\partial E} \left[f(E) \left(1 - f(E)\right) + k_B T_i \frac{\partial f}{\partial E} \right]$$

$$\left(\frac{\partial f(E)}{\partial t}\right)_{\substack{abs\\intra/inter}} \cong \frac{P_{abs(t)}}{K}[f(E-\hbar\omega)-2f(E)+f(E+\hbar\omega)]$$

Definitions of electron & lattice temperatures

$$k_B T_e = \frac{1}{f(0)} \int_0^{E_{max}} f(E) (1 - f(E)) dE$$

$$\rho_{NP}C_{NP}\frac{\partial T_{NP}}{\partial t} = -A\int_{0}^{E_{max}} \left(\frac{\partial f(E)}{\partial t}\right)_{e-ph} E^{3/2} dE$$

Here, we can transit back to spatial TTM model to add spatial thermal diffusion etc.

Ultra-Short Laser Interaction with Metallic NPs

Can we account for electron emission/injection into ambient medium?

At metal-water interface

Nonequilibrium approach

Thermionic photo-emission

(electrons with energies exceeding E_{max} leave metal)

$$\left(\frac{\partial N_e}{\partial t}\right)_e = AC_{ee}k_BT_e\left(\frac{\partial f(E)}{\partial E}\right)_{E=E_{max}}$$

 $\left(\frac{\partial N_e}{\partial t}\right)_{i} = AC_{ep}k_BT_i\left(\frac{\partial f(E)}{\partial E}\right)_{E-E}$

Charge transfer

 $\frac{\partial N_e}{\partial t} = -\frac{1}{2}\nabla \vec{J}$

Photoelectric effect/Photo-emission

$$\left(\frac{\partial N_e}{\partial t}\right)_{ph} = A \int_{E_{max}-h\nu}^{E_{max}} \left(\frac{\partial f(E)}{\partial t}\right)_{intra} \sqrt{E} dE$$

Fowler formulas for current density

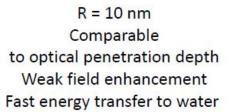
Generalized Fowler-DuBridge theory of photoemission

$$J_n(T_e) = a_n \left(\frac{e}{h\nu}\right)^n I^n T_e^2 F\left(\frac{nh\nu - \varphi}{k_B T_e}\right)$$

Thermionic emission (Richardson law)

$$J(T_e) = A_0 T_e^2 exp\left(-\frac{\varphi}{k_B T_e}\right)$$

Fowler-Nordheim theory for field emission

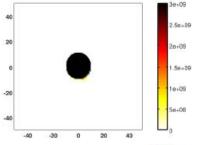

(threshold occurs to be above the optical breakdown in water for ultrashort pulse)

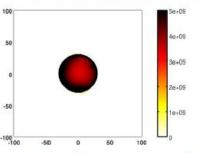
$$J(E) = \frac{a}{\varphi} E^2 exp\left(-\frac{v(E)b\varphi^{3/2}}{E}\right)$$

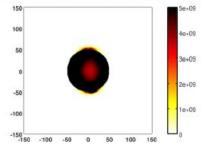
Ultra-Short Laser Interaction with Au NPs in Water

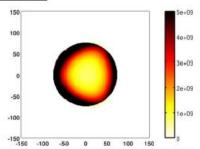
fs laser $\lambda = 515 \text{ nm}$

What changes when nanoparticle size inceases?

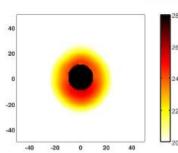


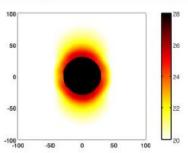

R = 30 nm Intermediate

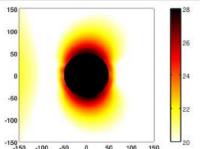

R = 50 nm Nearly resonant excitation Strong field enhancement

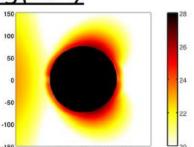

R = 75 nm
Particle >> skin depth
Slow energy transfer to water

How the energy is absorbed? (J/m³)









How many free carriers are generated? log(m-3)

Ultra-Short Laser Interaction with Au NPs in Water

Thee regimes are distiguished a function of nanoparticle sizes

Regime I

Laser heats Au NP; Au NP transfers heat to water

Regime II

E-ph emission from Au NP to water interface; **Emitted Carriers heat water**

Regime III

LSPR triggers water photo-ionization; Induced Carriers heat water

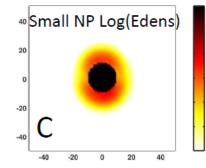
Maxwell equations

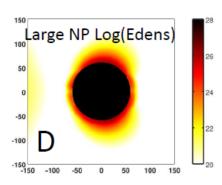
$$\frac{\partial \vec{E}}{\partial t} = \frac{\nabla \times \vec{H} - \vec{J}}{\varepsilon_0}$$
$$\frac{\partial \vec{H}}{\partial t} = -\frac{\nabla \times \vec{E}}{\mu_0}$$

Polarization current with quantum corrections

$$\frac{\partial \vec{E}}{\partial t} = \frac{\vec{\nabla} \times \vec{H} - \vec{J}}{\varepsilon_0}$$

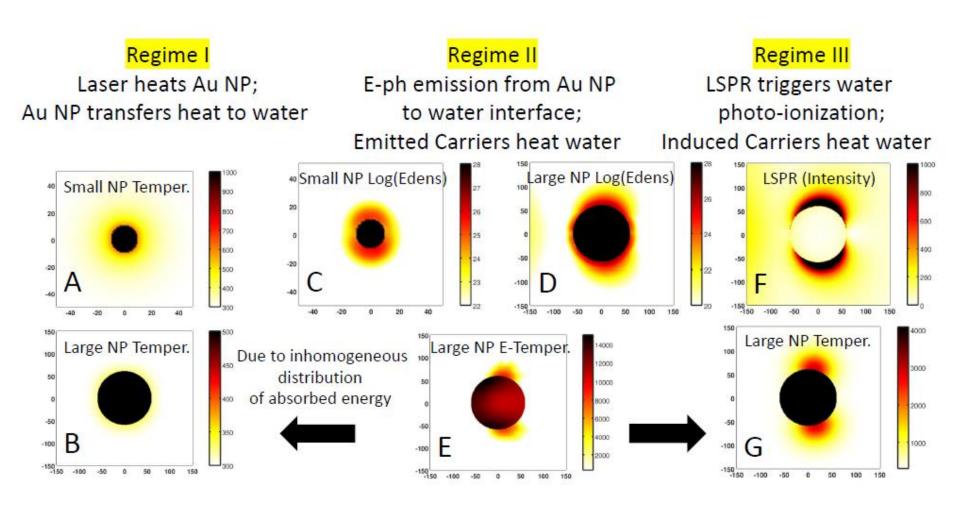
$$\frac{\partial \vec{H}}{\partial t} = -\frac{\vec{\nabla} \times \vec{E}}{\mu_0}$$

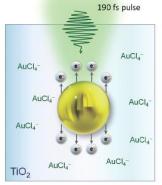

$$\frac{\partial \vec{J}}{\partial t} = -\vec{J}\gamma + \frac{ne}{m} [e\vec{E} + \nabla \frac{\delta G}{\delta n}]$$

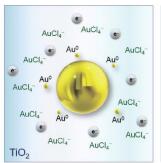

Quantum pressure
$$\frac{\delta G}{\delta n} = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} + \cdots$$

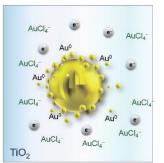
Thomas-Fermi Quantum kinetic energy for uniform gas

$$\frac{\partial n}{\partial t} = -\frac{1}{e} \nabla \vec{J} + w_{PI}(I) + w_{AI}(I)$$
Photo-ionization

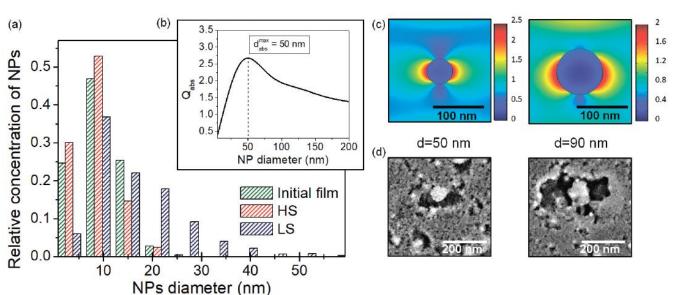

Avalanche ionization



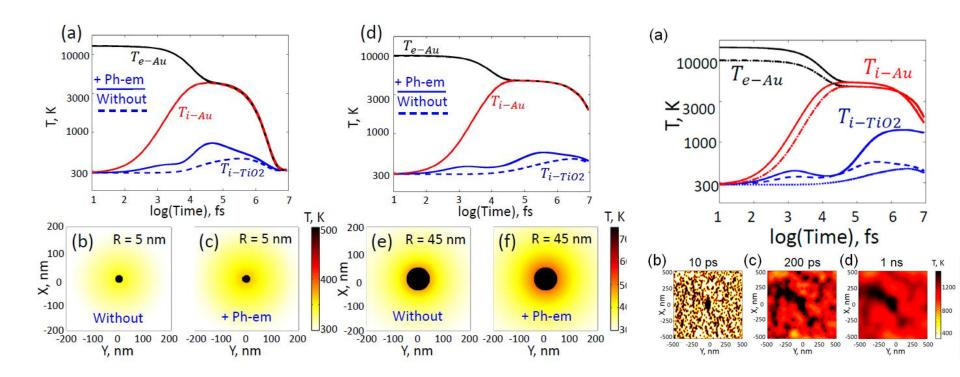

Laser Interaction with Au NPs in Water


Thee interaction regimes and the mechanisms involved

Au NPs in TiO2 under Ultra-Short Laser Irradiation



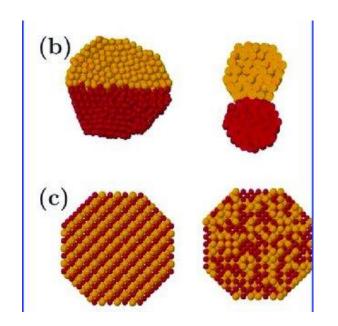
At the beginning, the matrix is solid

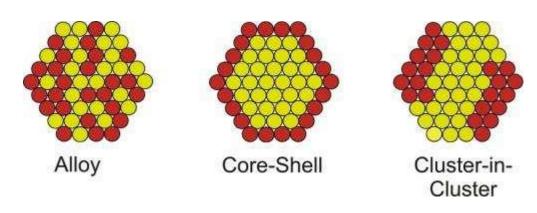

Y Andreeva et al. The Journal of Physical Chemistry C 124 (18), 10209-10219, 2020

fs laser $\lambda = 515 \text{ nm}$

- (a) Size distribution of gold NPs before and after laser treatment. Laser F = 57 mJ/cm2, scan speed for LS structures is 0.16 mm/s, for HS structures is 1.6 mm/s.
- (b) Calculated absorption efficiency of the nanocomposite based on TiO2 as a function of the diameter of gold NPs (refractive index of surrounding media n = 1.6).
- (c) Calculated fileId distribution of gold nanoparticles in TiO2 (n=1.6) for spheres with the diameters of 50 and 90 nm.
- (d) SEM images of the NPs produced in LS mode $(F=57 \text{ mJ/cm}^2, \text{Vsc} = 0.16 \text{ mm/s}).$

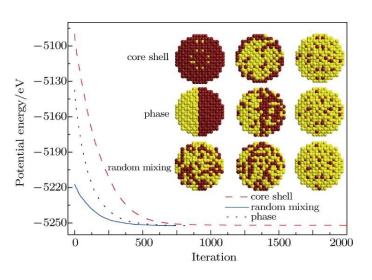
Au NPs in TiO2 under Ultra-Short Laser Irradiation

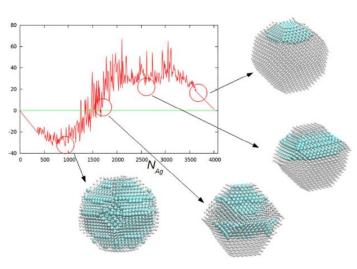

Electron (black solid) and ion temperature (red solid) of R=45 nm gold NP and titanium dioxide temperature (blue solid) in the vicinity of the contact upon F = 50 J/cm² irradiation. Blue dotted line indicates temperatures attained if only heating from single nanoparticle is considered and blue dashed line additionally includes electron photo-emission.


Y Andreeva et al. The Journal of Physical Chemistry C 124 (18), 10209-10219, 2020

Only when collective heating by smaller R=5nm nanoparticles, electron photo-emission from nanoparticles and free carrier generation by ionization processes in titanium dioxide are included, the ambient damage conditions are reached.

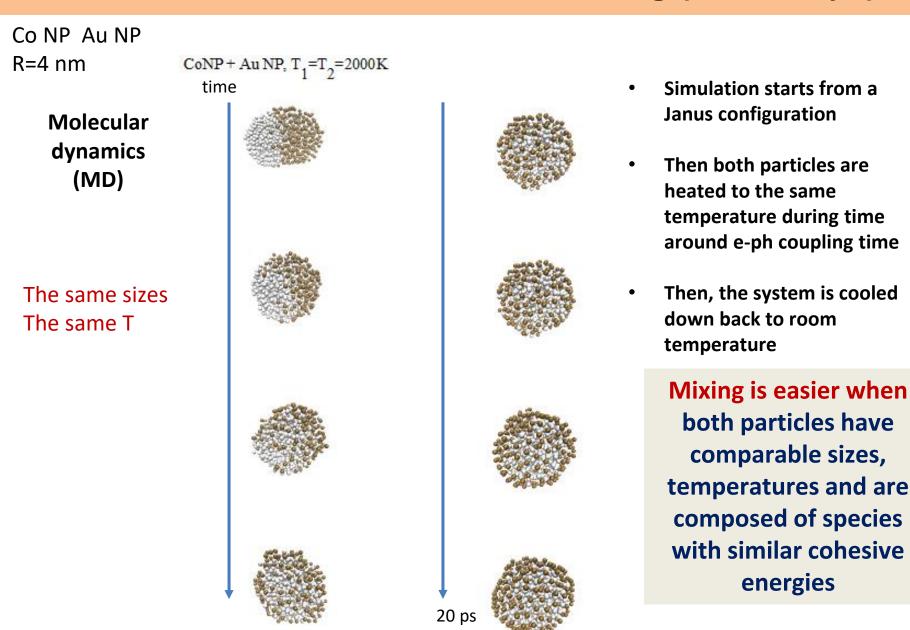
$$\frac{P^2}{2\rho_m c_0^2} + \frac{\rho_m \epsilon^2 s^2}{120} \ge \frac{3K^2}{\rho_m c_0^2 s}$$

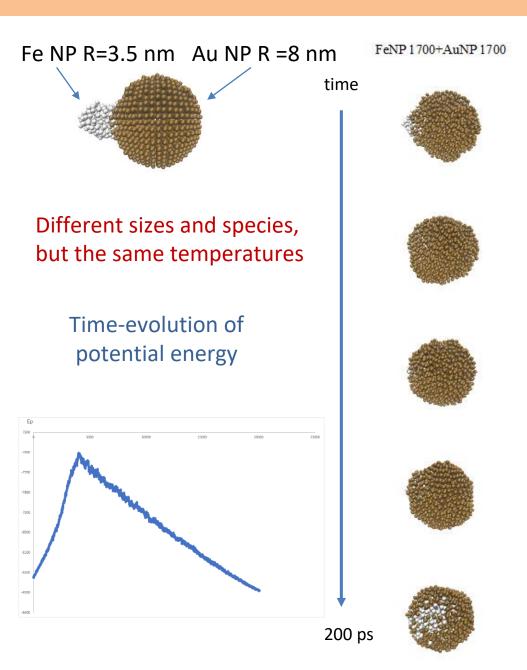

Nanoparticle Alloys and Aggregates: MD simulations



Mixing Energy

 $\Delta[N_A, N_B] = E_{alloy}[N_A+1, N_B-1] - E_{alloy}[N_A, N_B] - E_A [ref] + E_B [ref]$


R. Ferrando et al. Chem. Rev. 108(3), 2006


G. Barcaro et al. Phys. Chem. Chem. Phys.

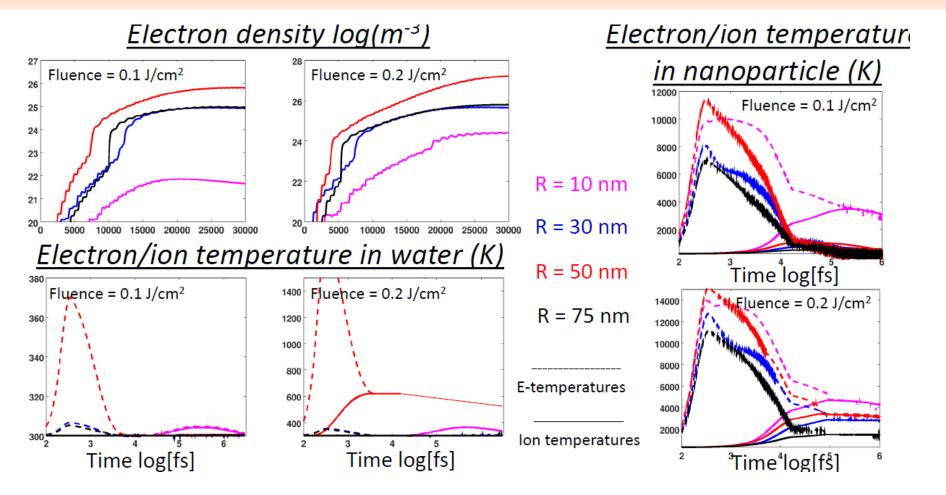
Ultra-short Laser-induced NP Mixing (nanoalloys)

mixed

Ultra-short Laser-induced NP Hybrid (core-shell) Formation

- Simulation starts from a Janus configuration
- Then both particles are rapidely heated to the same temperature
- Then, the system is cooled down back to room temperature

Core-shells can be formed when one particle is much larger and is composed of a material with different cohesive energy


SUMMARY

- 1. Laser is a very powerful and versatile tool suitable not only for the control over nanoparticle sizes but also for a wide range of manipulations with nano objects involving processes such as melting, reshaping, sintering, and mixing.
- 2. The involved processes have been considered:

 the roles of electron ejection/injection, ionization and heating of the ambient medium, the presence of several particle populations have been examined for different NP sizes and ambient environments.
- 1. Modeling is promising to predict the roles of size, temperature, and composition of nanoparticles, as well as the heating and cooling conditions.

Thank you very much for your attention!

Ultra-Short Laser Interaction with Au NPs in Water

