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Ultrafast laser irradiation can induce spontaneous self-organization of surfaces into dissipative
structures with nanoscale reliefs. These surface patterns emerge from symmetry-breaking dynamical
processes that occur in Rayleigh-Bénard-like instabilities. In this study, we demonstrate that the
coexistence and competition between surface patterns of different symmetries in two dimensions can
be numerically unraveled using the stochastic generalized Swift-Hohenberg model. We originally
propose a deep convolutional network to identify and learn the dominant modes that stabilize
for a given bifurcation and quadratic model coefficients. The model is scale-invariant and has
been calibrated on microscopy measurements using a physics-guided machine learning strategy.
Our approach enables the identification of experimental irradiation conditions for a desired self-
organization pattern. It can be applied generally to predict structure formation in situations where
the underlying physics can be approximately described by a self-organization process and data is
sparse and non-time series. Our work paves the way for supervised local manipulation of matter
using timely-controlled optical fields in laser manufacturing.

The emergence of instabilities and symmetry breaking
leading to the formation of coherent structures, is one
of the most fascinating aspects of the complex dynamics
governing light-surface interaction [1–3]. When a ran-
domly rough surface is subjected to ultrafast laser pulses,
it enters a far-from-equilibrium state due to the repeated
absorption of pulsed optical fields. As a result, the sur-
face exhibits spontaneous spatial organization, which is
oriented by energy gradients generated by laser polariza-
tion, giving rise to laser-induced periodic surface struc-
tures (LIPSS) [4]. These structures form under far-from-
equilibrium conditions and can be triggered by capillary
waves, convection rolls, and thermoconvective instabili-
ties, [5–8] which persist through dissipative structures [9].
Eliminating the prevailing laser polarization effects re-
veals puzzling patterns emerging from a sequence of in-
stabilities, inducing different types of complex patterns,
ranging from chaos to six-fold symmetries [10]. The
photoexcited matter undergoes a transition from a dis-
ordered state to a more coherent one, referred to as a
strange attractor in the phase space of nonlinear dynam-
ics. This transition results in a metastable state, defining
a self-organization structuring regime. Through this self-
organization process, the material surface can be sculpted
seamlessly, enabling nanoscale manufacturing [11]. Un-
derstanding the selection mechanisms involved in this
morphogenesis to gain control over the uniformity, sym-
metry, and size of the resulting surface patterns is a
major research theme in laser processing for photon-
ics metasurfaces, biomimetics, or catalysis functionaliza-
tion. [12, 13]. To apply statistical inference approaches to
complex systems and achieve generalizability, advanced
physics-guided machine learning strategies are essential.
Upon laser irradiation, a hazy boundary separates self-

organized and organized surface patterns. When a mate-
rial is exposed to sufficiently intense laser irradiation, it
tends to organize along the stationary electromagnetic
fields due to scattered/excited waves [4, 14] and self-
organize in response to the random fluctuations of light
absorption with a symmetry breaking with respect to po-
larization [15, 16]. Light-oriented and self-assembled dy-
namical processes are inherently superimposed, and sur-
face topographies evolve spatio-temporally towards equi-
librium patterns that result from a complex competition
between free energy dissipation imposing entropy pro-
duction and spontaneous ordering. Consequently, any
preexisting or transient organization can be disrupted by
random perturbations, which can be amplified by posi-
tive feedback to lead the system towards new patterns.
Ultrafast laser texturing has recently been used to ob-
tain deep sub-wavelength periodic patterns, which raises
questions about the relevant electromagnetic processes
that drive the formation of these patterns well below the
diffraction limit [17, 18]. Various types of 2D surface
patterning have been reported, including patterns with
oriented, triangular, hexagonal, labyrinthine, or chaotic
symmetries [19–22], featuring both positive and negative
reliefs such as humps, bumps, peaks, and spikes [10]. To
explain the remarkably uniform establishment of these
patterns on the microscale independently from the ori-
ented near-field optical effects on the random local nan-
otopography, a more global and collective perspective is
required [10, 21]. Nanoscale fluid flows were shown to be
driven by a complex interplay between electromagnetic,
internal and surface pressure forces which can become
trapped due to the resolidification process [8, 21] The
deterministic approach to predict the underlying optical
coupling processes is limited because it requires the ar-
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tificial integration of fluctuating conditions induced by
surface roughness. Transiently formed structures can be-
come unstable under nonlinear amplification and bifur-
cate into more complex patterns that are not accurately
described by classical approaches like Navier-Stokes com-
bined with Maxwell equations. Nonetheless, the complex
pattern landscape has been experimentally explored and
can be now compared with mathematical models dedi-
cated to nonlinear system dynamics.

The Kuramoto-Sivashinsky approach has become a
paradigm for describing pattern formation and spa-
tiotemporal chaos on surfaces eroded by ion bombard-
ment, which ultimately reproduces ripple formation and
other organized patterns [23]. A similar approach was ini-
tially proposed for laser-induced nanopatterns, although
a clear physical picture has yet to be established [24].
Along similar lines, the Swift-Hohenberg (SH) dynam-
ics has been identified as a relevant candidate for rep-
resenting the observed complexity of convective instabil-
ities with spatiotemporal features, such as chaos, rolls,
and hexagons [25, 26]. The SH approach has proven to
be useful in identifying generic spatiotemporal dynam-
ics of patterns in convective fluids [27, 28], as well as
curvature- and stress-induced pattern-formation transi-
tion [29]. The SH approach was formally deduced from
the Navier-Stokes equations in the Boussinesq approxi-
mation, with thermal fluctuation effects in a fluid near
the Rayleigh-Bénard instability [30].

The purpose of this letter is to demonstrate that laser-
induced pattern formation at the nanoscale can be effi-
ciently characterized and predicted by a stochastic SH
model that is variational in time and conservative in
space. Our original strategy relies on the use of machine
learning (ML) integrating partial physical information in
the form of the SH model, which allows us to identify
dominating stable modes for a set of parameters inde-
pendently of initial roughness conditions. Incorporating
data and prior knowledge is naturally expressed in terms
of Bayesian inference, for which well-established domain-
specific methods exist dating back to Laplace [31], but
which cannot be applied in our experimental situation
of few data and partial physical knowledge: in geo-
physics and climate science, where the physical process is
well-understood, methods focus on state reconstruction,
known as data assimilation [32]; in physics, since states
can be prepared, model calibration was developed [33],
with recent advancements using ML [34] to integrate the
parameters of either the full model or a correction to in-
complete physical knowledge from data [35]. However,
solving the joint inverse problem of finding both state
and model parameters is more challenging. In the climate
sciences, sophisticated machine-learning techniques were
recently proposed, integrating physical information via
constraints, either during training or in model architec-
ture itself [36–40], but require abundant time-series data.
Our original strategy allows us to solve the dual inverse

problem using only one observed state — a scanning elec-
tron microscope (SEM) image — even with little data.
Furthermore, our modelling is scale-invariant and can be
applied to any laser process. By reducing experimental
irradiation parameters to simple model coefficients, they
can be optimized and extrapolated for surface pattern
engineering.
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Figure 1. (a) Schematic illustration of experimental self-
organization regimes induced by bursts of ultrafast laser (150
fs) double pulses. (b) Self-organized patterns of topography
that develop varying time delays for a given F and N (AFM-
3D mode). (c) Nanopattern variation with respect to laser
fluence at fixed ∆t and N (AFM-3D mode). (d) Nanostruc-
ture growth by feedback at different number of pulses (AFM-
2D mode), for a fixed ∆t and F . The scale bars represent a
length of 500 nm.

Tailoring nanotopographic features on a surface is a
challenging task that has been successfully accomplished
using ultrafast laser processes with time-controlled po-
larization strategies. Numerous regimes of LIPSS have
been reported with various periodicities, heights, orien-
tations, and symmetries depending on different polariza-
tion directions between the first ~E1 and second pulse
~E2, characterized by sinα = ( ~E1 · ~E2)/(|| ~E1|| · || ~E2||)
in Fig.1(a) [10, 21, 41, 42]. Figs.1(b-d) present surface
topographies measured by high resolution atomic force
microscopy (AFM). A circular region with a diameter
of 1 µm corresponding to the laser impact center was
mapped in 3D (tilted) mode in Fig.1(b-c) and in 2D for
Fig.1(d). To observe the significant role of temporal pulse
splitting ∆t in nanopatterns control, laser peak fluence
F and N were kept fixed at 0.18 J/cm2 and 25 respec-
tively, as shown in Fig.1(b). At ∆t = 8 ps, organized
nanopeak structures were observed with a high aspect
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ratio, a height of ∼ 100 nm and a diameter of ∼ 20
nm [11]. An extension of 2 ps in ∆t modifies the ob-
served patterns that turn into a different organization, a
regime referred to as nanobumps [10]. For ∆t = 15 ps, a
regime of nanohump generation is reached with a lower
aspect ratio as the structures display a height of ≈ 10
nm and a diameter of ≈ 30 nm.

The role of laser fluence is revealed by fixing ∆t = 25
ps and N = 25, as depicted in Figure 1(c). At F = 0.18
J/cm2, a low-contrast nanopeak regime is formed, evolv-
ing into a nanostripe pattern with a slight increase in
laser fluence increase to 0.20 J/cm2. At F = 0.22 J/cm2,
a transition region is established, combining both stripes
and cavities. Finally, at F = 0.24 J/cm2, the surface is
uniformly organized with hexagonally arranged nanocav-
ities having a depth of ≈ 25 nm and a diameter of ≈
30 nm. Both nanohumps and nanovoids result from hy-
drothermal flows guided by surface tension and rarefac-
tion forces, leading to thermoconvective instability at
the nanoscale, similarly to well-known Rayleigh-Bénard-
Marangoni instabilities [8, 10, 21, 43–54]. Laser dose also
plays a role, as positive feedback regulates pulse-to-pulse
topographical transformations. As shown in Fig.1(d), at
a fixed F = 0.24 J/cm2 and ∆t = 8 ps with different
N , corresponding to the parameters of nanopeaks forma-
tion presented in Fig.1(a), three different surface organi-
zations were observed. Pulse-to-pulse growth dynamics
exhibits the transitions from convection cells (N = 15),
to the creation of crests on the convection cells (N = 20).
The nanopeaks grow on the edges of the crests to reach
their optimal shape, concentration and organization at
N = 20.

The adimensional form of the generalized Swift-
Hohenberg equation (SH) used in this letter is (see deriva-
tion in Suppl. Mat.):

˙̃u = εũ− (1 + ∇̃2)2ũ+ γũ2 − ũ3. (1)

The SH model was introduced in [30] as a model of
Rayleigh-Bénard convection, modified by the inclusion
of a u2 nonlinearity allowing for small amplitude desta-
bilization and the emergence of experimentally observed
hexagonal patterns. With appropriate boundary con-
ditions, the original SH equation exhibits a type-I-s
instability that is isotropic, invariant with respect to
translations and to u → −u [26]. Perturbations of
ub = 0 are selectively amplified depending on the norm
of the wave number, leading to the formation of com-
plex patterns with no preferential direction. The gen-
eralized SH model has the Lyapunov functional L [ũ] =∫

Ω
ũ
2

(
∇4ũ+ 2∇2ũ+ ũ

)
+ 1

4 ũ
4 − γ

3 ũ
3 − ε

2 ũ
2dx and ˙̃u =

− δLδũ , as can be readily verified. During the SH dynam-
ics, the Lyapunov functional L decreases in the same
way as entropy decreases during the formation of phys-
ical patterns, and it converges asymptotically to a sta-
ble value [26] (see Fig. 2). We numerically solve the SH

Figure 2. Lyapunov functional of the generated field so-
lutions of the SH equation as a function of evolution time t̃
for fixed ε and γ (ε a centered 2D Gaussian ramp to mimic
the laser fluence distribution), depicted as a heatmap in sym-
log scale, for independent initial conditions. Lyapunov func-
tional evolution is largely independent of initial conditions
and decreases during dynamics. The SH equation is able to
reproduce, among others, highly symmetric hexagonal solu-
tions (top), as well as labyrinthine solutions surrounded by
nanopeaks.

equation using a second-order Strang splitting pseudo-
spectral solver with an adaptive time step [55–59], of-
fering a good compromise between accuracy and speed.
Fig. 2 a-c and Fig. 2 d-f show evolution dynamics of pat-
tern formation for two pairs of ε, γ.

A ML model is employed to learn the relationship be-
tween observed laser parameters θ and patterns, using
only few, non-time series data (I), assuming an approx-
imately SH process, not explicitly given in terms of θ,
parameterized by ϕ (consisting of a scale factor l, the
maximum wavenumber in a domain of side 224 pixels
given as multiple of 2π, the adimensional model param-
eters ε and γ, and t̃, which can be seen as a stabilization
time) (II), with unknown initial conditions u0 (III). We
motivate this choice by symmetry considerations (Suppl.
Mat.) as well as the similarity between SEM images and
SH solutions (Fig.3). Combining experimental informa-
tion with that obtained via the ML model, we find that
the timescale of the convective instability is consistent
with that reported in [10] (Suppl. Mat.), further sup-
porting our choice. Learning the relationship between
laser parameters and patterns consists in solving the dual
inverse problem of estimating an unknown initial state
and model parameters with severe constraints, which is
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Figure 3. Each row shows a 224 by 224 pixel SEM experimen-
tal image, with 1µm ≈ 237 pixels which was never seen by the
ML model during learning, the corresponding ML-predicted
image for the same laser parameters, and three nearest neigh-
bors (NN) of the former among solver generated images; and
a bar plot of l2 distance in the image of the feature mapping
Fm between SEM image, ML-predicted image (ml) and NN
(nn1, nn2, nn3). Image labels, left to right: F,∆t,N (SEM);
predicted SH parameters lp, εp, γp, t̃p (other). Bar plots: ML
predictions are more accurate, as distance between SEM and
ML predictions is smaller than to NN, the former integrating
global information. On the first and second rows, NN with
different length scales can be observed, suggesting concurrent
multi-scale SH processes. The ML model, which integrates
single-scale SH knowledge, can only predict one of these pro-
cesses.

a challenging task and cannot be tackled in general us-
ing only ML methods. However, for a self-organization
process, stating initial conditions exhaustively is waste-
ful, since for random perturbations of the uniformly zero
solution of SH most Fourier modes are attenuated. A
feature mapping Fm is therefore defined that is simpli-
fying (non injective) and discriminating (if ui, uj have
different patterns then Fm(ui) 6= Fm(uj)) such that the
image of the data distribution under Fm is conditionally
independent of u0 given the physical knowledge ϕ. This
considerably simplifies the problem since the initial state
no longer needs to be estimated. Learning Fm [60] from
few data is impractical [61], (II) precludes deriving ite
on first principles, and using traditional image features
would limit discriminating power for unknown patterns.
Fm is therefore chosen as a deep convolutional neural net-

work [62] (CNN) pretrained for a broad classification task
on Imagenet [63], since CNNs are translation equivariant
(making them suited for a pattern specification task).
Their features are learned automatically from data, and
retain scale information [64]. Given experimental data{
θi, ui

}
i=1...N

, we learn ϕ̃α that maximizes the log like-
lihood of the observed Fm(ui):

ᾱ = arg max
α

N∑
i=1

log p
(
Fm(ui)|ϕ̃α(θi)

)
(2)

Assuming that the distribution of ϕ given θ is peaky,
we label experimental ui with ϕ̃i the SH parameters of
its nearest neighbor (NN), in the image of Fm, among
a large number of u pre-generated with the SH solver
from random u0. By integrating physical knowledge in
this way, the problem of maximizing the likelihood above
can be replaced with a lower bound. Explicitly, assuming
data is generated i.i.d. from a Gaussian distribution,

ᾱ = arg min
α

1

N

N∑
i=1

∥∥ϕ̃i − ϕ̃α(θi)
∥∥2 (3)

which is a low-dimensional problem that can be solved
with few data [65] with a support vector regressor [66]
ϕ̃α parameterized by α.

Figure 4. Each plot shows, as a heatmap, the ML model
prediction of a single SH parameter (bottom to top: scale
factor lp; order parameter εp; symmetry breaking parameter
γp; simulation stabilization time t̃p) as a function of laser
fluence, time delay, and number of pulses (respectively, x-axis
and y-axis, and column). Experimental points are overlaid on
each plot.
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Figure 3 demonstrates the remarkable accuracy of our
ML strategy in predicting the shape and scale of experi-
mental patterns, even for never-before-seen laser param-
eters. Our strategy is more efficient than local meth-
ods that rely on nearest neighbor information, since the
distance to the SEM experimental patterns in the im-
age of the feature mapping Fm is smaller. As shown in
Fig. 4 the complexity of the learned relationship between
laser parameters and SH parameters grows with the num-
ber of experimental observations, with sharp boundaries
of rapidly varying parameter values in regions of many
data. The ML model can extrapolate to regions with
few data for N and ∆t, but less so for F , which would
require higher experimental resolution. Importantly, we
find that predicted SH parameters are correlated, and the
correlation sign changes with N (Suppl. Mat.): lp, for ex-
ample, is inversely correlated with pattern characteristic
size and increases with N (the increase is not uniform,
being greater for large lp regions). This parameter is par-
ticularly important as the characteristic size of a stable
mode is of great interest for applications. Because lp and
other parameters are correlated, it cannot be set freely;
but as seen in Fig. 4 parameter isosurfaces are orthogo-
nal at places: at e.g. N = 25, a high-gradient transition
regime for lp, at F = 0.18 J/cm2, ∆t = 15 ps in the
∆t direction is observed, while for F,∆t in the same re-
gion, the other SH parameters remain roughly constant.
Varying lp in the direction of ∇lp thus allows adjusting
the characteristic size of the particular stable mode de-
fined by the other SH parameters. This opens the door
to pattern optimization for specific applications.

Interestingly, (γp) determines whether holes or bumps
are observed; F = 0.2 J/cm2 separates a region of high
and low γp, roughly independently of N ; the sign of γp
appears to be determined by F and ∆t only. Further-
more, for large bifurcation parameter (εp), many modes
are non-attenuated and patterns are less ordered. Corre-
spondingly, large εp patches are observed at high F/low
∆t (highest energy coupling). For N = 25, superimpos-
ing the γp = 0 isosurface on the εp prediction, it can be
seen that it is roughly perpendicular to isosurfaces of εp.
These abrupt transition regimes of εp are consistent with
experimental observations where two patterns of differ-
ent order are superimposed on the same SEM image.
(t̃p) for constant lp, εp, γp, symmetry increases with t̃p,
as symmetrical patterns require large t̃p to stabilize from
a uniformly random state. As can be seen in the bottom
row, t̃p tends to increase with N , consistently with the
physical view that a large N increases the time the dis-
sipative system is in a far from equilibrium state. This
increase is not uniform across F,∆t pairs, and the area
of laser parameter space of relatively large t̃p decreases
with N .

We show that ultrafast laser-irradiated surface
nanoscale patterns can be numerically modelled by a
scale-invariant generalized Swift-Hohenberg equation. A

machine learning model is trained to learn the connection
between the stochastic SH equation and laser parameters,
independently of initial conditions, using a deep convolu-
tional network to extract features and by incorporating
physical information. Our original strategy can gener-
ally be applied to accurately predict the shape and scale
of physical patterns generated by other self-organization
processes, even if the underlying physical model is only
approximate and experimental data is limited and non-
time series. The ML model is able to identify regions
of laser parameters that are relevant for applications and
can even be used to predict novel patterns, since the con-
volutional neural network features are not learned from
observed patterns. Regions where pattern superpositions
are observed could be modeled more accurately via a mix-
ing of SH processes, as a manifestation of superposed
states of self-organization, providing new routes toward
nanoscale surface manipulation by light.

This work has been funded by a public grant from
the French National Research Agency (ANR) under the
"France 2030" investment plan, which has the reference
EUR MANUTECH SLEIGHT -ANR-17-EURE-0026.

Appendix on experimental set-up. In the proposed
experiment, Mach-Zehnder interferometry was used to
combine the effect of polarization mismatch with an ad-
justable inter-pulse delay ∆t, enabling fine control of sur-
face topography at the tens of nanometer scale [10]. By
breaking the surface isotropy imposed by a single polar-
ization state, a wide range of self-organization regimes
was achieved on a nickel monocrystal oriented in the
(001) direction. Specifically, using a cross-polarization
strategy, setting a depolarization angle of α = 90◦ and
a range of time delays between 8 and 25 ps were set,
as shown in Fig.1(a). The pulse duration was fixed at
150 fs, and the laser dose was finely controlled by the
number N of double-pulse sequences. Prior to laser ir-
radiation, the Nickel surface was mechanically polished
with a Ra < 5 nm to ensure that the surface dynamics
followed a hydrodynamics-governed process, smoothing
the inhomogeneous electromagnetic response.

Appendix on Image similarity. It is important to
note, regarding the ML strategy, that the problem is
approached within the image of a feature mapping Fm,
where the concept of similarity differs from visual sim-
ilarity. In this feature space, an image is equivalent to
any of its images in the orbit of the group of symme-
tries of Fm, such as translations, but also a variety of
other symmetries that are learned from data automati-
cally. Intuitively, similarity in feature space corresponds
to similarity of patterns, which can be described in terms
of e.g. "bumpiness," "roundness," etc.
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