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Mean 3D Dispersion for Automatic General Movement Assessment of
Preterm Infants

Ameur Soualmi1, Olivier Alata2, Christophe Ducottet2, Hugues Patural3, and Antoine Giraud3.

Abstract— The General Movement assessment (GMA) is a
validated assessment of brain maturation primarily based on
the qualitative analysis of the complexity and the variation of
spontaneous motor activity. The GMA can identify preterm
infants presenting an early abnormal developmental trajectory
before term-equivalent age, which permits a personalized early
developmental intervention. However, GMA is time-consuming
and relies on a qualitative analysis; these limitations restrict the
implementation of GMA in clinical practice. In this study based
on a validated dataset of 183 videos from 92 premature infants
(54 males, 38 females) born <33 weeks of gestational age (GA)
and acquired between 32 and 40 weeks of GA, we introduce
the mean 3D dispersion (M3D) for objective quantification and
classification of normal and abnormal GMA. Moreover, we have
created a new 3D representation of skeleton joints which allows
an objective comparison of spontaneous movements of infants
of different ages and sizes. Preterm infants with normal versus
abnormal GMA had a distinct M3D distribution (p <0.001).
The M3D has shown a good classification performance for GMA
(AUC=0.7723) and presented an accuracy of 74.1%, a sensitivity
of 75.8%, and a specificity of 70.1% when using an M3D of
0.29 as a classification threshold.

Clinical relevance— Our study paves the way for the devel-
opment of quantitative analysis of GMA within the Neonatal
Unit.

I. INTRODUCTION

General movements represent spontaneous motor activity
occurring from nine weeks of gestational age (GA) until the
appearance of goal-directed movements around four months
of corrected age [1]. The General Movement assessment
(GMA) is a validated assessment of brain maturation primar-
ily based on the qualitative analysis of the complexity, and
the variation of general movements [2]. The GMA of preterm
infants performed prior to term and at term-equivalent age
can identify those presenting an early abnormal developmen-
tal trajectory [3]. Early identification of such abnormal trajec-
tory is critical to initiate a personalized early developmental
intervention, and thus optimize the development of these
children [4]. However, the implementation of GMA within
the Neonatal Unit is limited because this assessment is time-
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consuming. Another limitation is that GMA is a qualitative
assessment [1].

The recent progress in computer vision has led to many
studies about GMA automation, from marker-based to mark-
erless methods. Nelson et al. [5] have reviewed the different
works in this area. Most of them focused on assessing the
fidgety movements that appear starting from 2 months of age
since it is difficult to get infants’ videos before term age.
Moreover, recent automatic GMA studies are oriented to 2D
video analysis, using different kinds of both image features
and estimated parameters [5]. The optical flow was widely
used [6]–[8] to calculate some parameters such as the quan-
tity of motion, centroid of motion, movement magnitude, etc.
[9], [10]. 2D pose estimation was also investigated [11], [12]
and others parameters like joints-angle [13] were introduced.
Many have used deep learning algorithms to classify general
movements as normal or abnormal [14], [15] but this kind
of classification lacks interpretability. However, even though
much effort was invested, 2D analysis remains limited since
it does not exploit the overall infants’ movement information
in space, and information loss can go up to 53% due to
dimensionality reduction [9]. Thus, many recent works have
tried to use 3D automatic assessment with different methods.
RGBD cameras are mostly used for 3D pose estimation, but
it fails when dealing with occlusions and complex infant
poses (see II-C). Wu et al. [16] introduced a complexity
index but it lacks direct interpretation and was validated
on a dataset of 12 infants only. More generally, the lack of
annotated data is a common obstacle in this research area.

In this paper, we introduce the mean 3D dispersion as
an objective quantification index for automatic GMA. This
index is computed from the 3D pose of infants analyzed
over a one-minute stereoscopic video. It relies on a new
representation of the 3D skeleton joints over a unit sphere.
Moreover, we propose an evaluation of this automatic as-
sessment through a large dataset of 183 stereoscopic videos
of 92 premature infants taken in a clinical environment
and evaluated by an expert group composed of experienced
General Movements Trust-certified assessors.

Our main contributions are: (i) to introduce the mean 3D
dispersion (M3D) as a quantitative index of spontaneous
motor activity of preterm infants, (ii) to propose a new nor-
malized representation characterizing the activity of infants
and based on the projection of the 3D skeleton joints over the
unit sphere, (iii) to test the hypothesis that M3D can classify
normal and abnormal GMA in an extensive and validated
dataset of premature infants acquired within the Neonatal
Unit.



II. METHODS

To objectively quantify the infants’ spontaneous move-
ments, we have used an original method that starts with a 3D
pose estimation using a stereoscopic framework (section II-
C). Then, the 3D coordinates of the elbows, wrists, ankles,
and knees are transformed to local origins on the infant’s
body which allows analyzing their displacements according
to the infant’s position (sectionII-D.1). After that, since the
size of the limbs is fixed, we use a unit sphere representation
(sectionII-D.2) for each joint movement as a normalization
procedure for our population. After filtering these directions
on the sphere (section II-D.3) to get rid of duplications,
we start calculating the mean 3D dispersion parameter and
perform our statistical analysis.

A. Ethics

This work is part of the AGMA study which was approved
by an Ethical Committee in February 2021 (IDRCB 2020-
A03335-34; Comité de Protection des Personnes Sud-Est II).
Written parental consent was obtained from each participant.

B. Dataset

Ninety-two preterm infants (54 males, 38 females) born
<33 weeks of GA and hospitalized in the Neonatology
department of the Centre Hospitalier Universitaire de Saint-
Étienne, France, were included. A GMA was performed on
183 videos (132 with a normal GMA, 51 with an abnormal
GMA) acquired between 32 and 40 (mean=36.3, SD=1.8)
weeks of GA and classified by an expert group composed of
experienced General Movements Trust-certified assessors, in
accordance with the Prechtl’s method of GMA [1].

C. 3D Pose Estimation

In order to assess the infants’ movements in 3D, a partic-
ular framework was used which consists of recording videos
of the babies with a stereoscopic camera (ZED2) at 30 FPS.
Each pair of images is then used as input to a retrained
convolutional neural network to get 2D pose estimations on
each side view. The neural network used for this purpose
is DARK [17] on top HRNet-W32 [18] which uses a new
coordinate representation. This architecture was retrained on
two common benchmark datasets (MPII and COCO) for the
purpose of estimating the poses of adults only. We have
fine-tuned this model on an important dataset of real images
of infants containing 4,250 stereoscopic images (88,500 in
total) manually annotated and reviewed which improved its
PCK@0.2 from 93.31% to 98.30%. Therefore, it became
possible to automatically estimate 17 keypoints representing
the 2D pose of infants without using any markers and
with high precision. Hence, for each rectified stereo pair of
infants’ images, the corresponding 3D pose can be obtained
using only triangulation on their respective 2D pose estima-
tions.

Besides being safe and easy to implement, the particular
advantage of this method over depth cameras is the ability
to estimate the position of occluded joints in 3D since depth
maps detect only visible body surfaces.

Fig. 1. Origin Transformation. (a): Local origin for right elbow movement
obtained using camera origin rotation and translation. (b): Transformation
of shoulder and hip origins to elbow and knee origins.

D. 3D Representation

Analyzing the whole infant’s movements in a video means
taking into consideration the displacement of the upper and
lower body members. Thus in our study, we specifically
analyze the movement of the elbows, wrists, knees, and
ankles. For each stereoscopic video in our dataset, and
applying our 3D pose estimation framework, the full 3D
trajectories of the body joints in space were obtained. After
applying a median filter with a kernel size of 3 to get rid
of non-accurate points, we proceeded to analyze them as
follows.

1) Origin Transformation: The 3D estimation process
generates real-world coordinates of all keypoints in cen-
timeters with respect to the left camera in the stereo-pair.
Consequently, the same infant movements with different
baby postures (lying on the back or side) can be considered
different. To address this issue, we used a new local origin
for each joint with respect to the infant’s body.

• For the elbow movements, the shoulder on the respec-
tive side of the body was used as an origin. The vector
⃗ish connecting the two shoulders was used as the x-

axis (abscissa). A cross-product between the two vectors
linking the two shoulders with the point in the middle
of the hips led to a second vector k⃗sh perpendicular
to the infant’s body plan and representing the z-axis
(applicate). Lastly, the y-axis (ordinate) vector j⃗sh was
obtained as the cross product of ⃗ish and vector k⃗sh
after normalizing them. We refer to this new coordinate
system by ( ⃗ish,j⃗sh,k⃗sh) for later usage (see Fig. 1).

• For the wrist movements, the elbow on the respective
side of the body was used as an origin. The normalized
vector i⃗el between the elbow and the shoulder on the
same side was used as the x-axis. Thus, to get the
other two vectors, we rotated and translated the previous
coordinate system using Rodrigues’ rotation formula.
First, we start by finding the rotation axe i⃗r(xr, yr, zr)
as the cross product of ⃗ish and i⃗el. Then the rotation



angle θ = arccos
(
⃗ish · i⃗el

)
and finally get the rotation

matrix as follows, with c = cos θ, s = sin θ, and
c′ = 1− c :

R =

 c+ x2
rc

′ xryrc
′ − zrs yrs+ xrzrc

′

zrs+ xryrc
′ c+ y2rc

′ yrzrc
′ − xrs

−yrs+ xrzrc
′ xrs+ yrzrc

′ c+ z2rc
′

 (1)

• For the knee movements, the hip on the respective side
of the body was used as an origin. The vector i⃗hi
connecting the two hips was used as the x-axis. A cross
product between the two vectors linking the hips by the
point in the middle of the shoulders led to a second
vector k⃗hi perpendicular to the infant’s body plan and
representing the z-axis. Lastly, the y-axis vector j⃗hi was
obtained as the cross-product of the i⃗hi and k⃗hi vectors
after normalizing them.

• For ankle movements, the knee on the respective side of
the body was used as an origin. The normalized vector
⃗ikn between the knee and the hip on the same side was

used as the x-axis. Finally, to get the other two vectors,
we rotated and translated the knee origin as we did for
the shoulder origin.

2) Sphere Representation: For each joint, and after getting
the new local coordinates throughout the whole duration
of the video, we end up with a point cloud representing
the movements of the joint and consequently the limb with
one end considered as the local origin. Therefore, the joint
movement has a shape of a moving point on a sphere
with a fixed radius equal to the limb length (see Fig. 2.a).
The advantage of this representation is that it can easily
be normalized to a unit sphere, eliminating the effect of
varying height and body size between infants, and preserving
the angles of the limb’s movement. Therefore, an objective
comparison of the quality of the general movements would
be possible.

3) Angular Activation Map: The unit sphere obtained
with the previous step represents all the joint positions in
space from a one-minute duration video. It includes the de-
tections that resulted from very small movements associated
to the moment the infant stays almost in the same position.
These small movements are not representative of GMs and
produce duplicated positions. Hence, we have opted for a
method that consists of converting the cartesian coordinates
(x, y, z) of each point on the sphere to spherical coordinates
(θ, φ) resulting in a distribution with two variables 0 ≤
θ < 2π and 0 ≤ φ ≤ π. Then taking the support of this
distribution and project it on an activation map with 128x64
dimensions ranging from 0 → 2π and 0 → π as shown in
figure 2.c.

Therefore, for every point with spherical coordinates
(θ, φ), the respective cell (u, v) in the activation map
was set to 1 such that θu−1 ≤ θ < θu with(
θu = πu

64 , u = 1, 2, .., 128
)
, and φv−1 ≤ φ < φv with(

φv = πv
64 , v = 1, 2, ..., 6

)
, which eliminates the points du-

plication and noisy detections. Finally, the activated cells are
converted back to cartesian coordinates resulting in filtered

Fig. 2. (a): The unit sphere describing the movements of the infant’s left
hand around the elbow before filtering. (b): The unit sphere obtained after
filtering. (c): The activation map resulted from sphere (a) points.

unit spheres (see Fig. 2.b) ready to be used for statistical
analysis.

E. Mean 3D Dispersion Measure

To quantify how complex and multi-directional the infants’
movements are in the space, the Mean 3D dispersion pa-
rameter was used. For all the 183 videos recorded, and for
each joint, the 3D dispersion parameter was calculated using
the filtered unit spheres representation described earlier, as
follows: given a spherical point distribution with N points,
with each point having an associated unit direction vector v⃗i
(where i = 1, ..., N ), the 3D polarization that describes the

Fig. 3. (a) Dispersed points on a sphere. (b) polarized points on a sphere.
(c) The sum of dispersed unit vectors. (d) The sum of polarized unit vectors.



degree of alignment of points can be calculated as :

p =
1

N

∣∣∣∣∣
N∑
i=1

v⃗i

∣∣∣∣∣ (2)

Points that are concentrated in one particular direction as in
Fig.3 will have an important polarization, and inversely the
points that are well distributed all around the sphere will
have low polarization. Hence, knowing that 0 < p < 1,
the 3D dispersion parameter σ = 1 − p describes how well
the points are scattered around the origin, which is the most
suitable parameter for our study, denoting that a normal joint
movement that is complex and goes in all directions will have
a significant 3D dispersion compared to a movement that is
repetitive and poor which is a key parameter in GMA.

F. Statistical Analysis

The two populations (normal and abnormal GMA) were
analyzed and evaluated by calculating the 3D dispersion of
each joint and then averaging them to get the M3D for
every infant. We have calculated the normalized histograms
of averaged 3D dispersions distributions and then plotted the
kernel density estimate for each histogram (see Fig. 4). A
Kolmogorov-Smirnov test was used to test the hypothesis
of whether the dispersions from abnormal and normal GMs
are from the same continuous distribution or not in addition
to the asymptotic p-value. Also, the ROC with different
thresholds and AUC were calculated. Statistical analysis was
performed using Python 3.7. The significance level was set
at 5%.

III. RESULTS

Preterm infants with normal versus abnormal GMA had
a distinct M3D distribution (p <0.001, see Fig.4). The clas-
sification performance analysis of M3D for GMA revealed
an AUC of 0.7723. An accuracy of 74.1%, a sensitivity of
75.8%, and a specificity of 70.1% are obtained when using
an M3D of 0.29 as a classification threshold (see Fig. 5) and
considering the abnormal GMA as the positives and normal
GMA as negatives.

IV. DISCUSSION

The M3D displayed a good classification performance
for the GMA of preterm children. With an AUC of 0.77
(see Fig 5), a threshold of 0.29 was chosen as the best
classification index with the highest accuracy reported on
such an important dataset. Previous studies used the MINI-
RGBD dataset, which contains 12 videos of 1000 frames
(≈ 33s) each, representing synthetic preterm infants with
real movements. The study on 3D GMA classification from
Wu et al. [16] has introduced an evaluation index S cal-
culated using a single angle per join. McCay et al. [14]
presented neural network architectures for classifying pose-
based features as normal and abnormal GMA. They provided
both accurate results but it was not possible to make an
objective comparison due to the type and the small number
of videos they used: as the codes are not available, testing
their methods on our dataset which could be of interest was

Fig. 4. Normalized histogram and kernel density plot of the mean 3D
dispersion of preterm infants with normal (n=132) versus abnormal GMA
(n=51). ***p < 0.001, with a Kolmogorov-Smirnov Test. Abbreviation:
GMA, General Movement assessment.

Fig. 5. ROC curve illustrating the classification performance of the M3D
for GMA. Abbreviations: AUC, area under the ROC Curve; GMA, General
Movement Assessment; M3D, mean 3D dispersion.

not possible. Moreover, these two studies used the Openpose
network [19] which was trained on human adult images
only, therefore raising the risk of keypoints detection error.
Whereas for our study, in addition to the fact that it is a 3D
analysis method, our pose estimation model was retrained
on a manually annotated dataset of 88k real infant images.
Moreover, the 3D mean dispersion parameter was validated
on a dataset of 183 videos of infants with homogeneous
gestational age and classified by an expert group composed
of experienced General Movements Trust-certified assessors.
Also, the spherical representation used had a major impact
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on the ability to compare these populations with different
weights and ages since we normalized on the actual size
of the infants’ limbs. Hence, we were able to avoid bi-
ased quantification for infants with larger limbs and conse-
quently larger movement amplitudes. This allowed for a more
accurate and reliable comparison of the two populations.
Moreover, its usage can be extended to methods where the
absolute distance between joints cannot be measured, such
as pixels that depend on several factors like camera resolu-
tion and camera–subject distance, making the measurements
not constant outside the single video framework and the
comparison of data among different subjects not valid [9].
Yet one limitation of this study is that the 3D dispersion
parameter can describe the spatial characteristics and the
complexity of infant movements but not their fluidity and
variability which are important parameters for GMA. The
perspective of this work is to develop other parameters which
can describe the fluidity and the variability of the general
movements by analyzing the temporal characteristics such as
velocities and acceleration vectors. These other parameters
would allow a better classification of normal and abnormal
general movements.
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