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Abstract. Random number generators and specifically true random number generators
(TRNGs) are essential in cryptography. TRNGs implemented in logic devices usually
exploit the time instability of clock signals generated in freely running oscillators
as source of randomness. To assess the performance and quality of oscillator-based
TRNGs, accurate measurement of clock jitter originating from thermal noise is of
paramount importance. We propose a novel jitter measurement method, in which
the required jitter accumulation time can be reduced to around 100 reference clock
periods. Reduction of the jitter accumulation time reduces the impact of the flicker
noise on the measured jitter and increases the precision of the estimated contribution
of thermal noise. In addition, the method can be easily embedded in logic devices.
The fact that the jitter measurement can be placed in the same device as the TRNG
is important since it can be used as a basis for efficient embedded statistical tests.
In contrast to other methods, we propose a thorough theoretical analysis of the
measurement error. This makes it possible to tune the parameters of the method to
guarantee a relative error smaller than 12% even in the worst cases.
Keywords: Random number generation · TRNGs · Jitter characterization · Em-
bedded jitter measurement

1 Introduction
Random number generators (RNGs) are essential in cryptography – they provide the
random numbers used as encryption keys, nonces, and padding values in cryptographic
protocols or as random masks in countermeasures against side channel attacks. RNGs
can be implemented as pseudo-random number generators (PRNGs), that are easy to
implement in logic systems, reach higher output bitrates and produce random numbers
with excellent statistical properties. However, if the algorithm and internal state of the
PRNG is known, it is potentially predictable and hence vulnerable. Physical true random
number generators (TRNGs), which rely on some physical random phenomena, are by
nature unpredictable, but they usually offer a lower output bitrate and generate numbers of
lower statistical quality. The main difficulty with the TRNG design is finding a robust and
quantifiable physical source or sources of randomness and an efficient method of converting
random physical quantities into a stream of generated numbers (for example, a bitstream).

Traditionally, the quality of generated numbers has been evaluated using a suite of
general-purpose statistical tests. However, black box statistical tests can not detect
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2 Low Cost and Precise Jitter Measurement Method for TRNG Entropy Assessment

dependencies and pseudo-randomness, which weaken the robustness of the generator.
Therefore, according to modern security standards [KS11, ISO19], the quality of generated
numbers and their unpredictability should be assessed using an output entropy rate that
is estimated by a stochastic model. The aim of the stochastic model is to describe the
distribution of output random numbers depending on the entropy extraction method used
(usually some kind of analog-to-digital conversion) and on the set and size of physical
quantities, that are used as the input parameters of the model.

One of the most frequently used source of randomness in logic devices is time instability
(i.e. the jitter) of the clock signals generated in freely running oscillators, e.g. ring
oscillators (RO). This kind of jitter depends on non-manipulable random physical sources
like thermal noise, but also on global sources, that can be manipulated by an attacker. To
eliminate the possibility of jitter manipulations, a differential principle based on a couple
of ROs is used in the so-called elementary RO-based TRNG (ERO-TRNG) [BLMT11].
According to the proposed stochastic model of the ERO-TRNG, the entropy (and hence
the unpredictability) of the generated numbers depends on three model input parameters
[BLMT11, Appendix C]: 1) the duty cycle of the sampled clock signal; 2) the drift of
the Wiener process; and 3) the volatility of the Wiener process, which is linked to the
variance of the resulting clock signal. While the duty cycle and the drift (mean frequency)
are easy to measure inside or outside the device, the volatility of the Wiener process
should only reflect the contribution of thermal noise to jitter and thus to entropy, since
the sources of thermal noise are mutually independent, uncorrelated in time and not
manipulable. Consequently, accurate measurement of the jitter component originating
from the thermal noise is indispensable to assess the performance and the quality of
oscillator-based TRNGs and of the ERO-TRNG. The main danger is overestimating jitter
that can lead to overestimating entropy and thus to reducing security.

Several jitter measurement methods have been published. In [SMS07], Sunar et al.
measure the jitter outside the device using standard probes and an oscilloscope. In
[VFAB10], the authors use a differential data interface and differential oscilloscope probes
to increase measurement precision. Their results show that Sunar et al. overestimated the
jitter more than five fold, which, in practice, would lead to catastrophic overestimation of
entropy. However, a differential data interface is not always available. Moreover, the use
of external measurement equipment would exclude online measurement of jitter to detect
attacks and could add error caused by the acquisition chain.

Clearly, embedded jitter measurement methods are preferable. In these methods, like
in random number generation itself, it is widely accepted that jitter is measured using
a differential method exploiting two oscillators, which helps reduce the impact of global
perturbations. In [HTBF14], the authors use a counter method to quantify jitter. However,
to be able to measure jitter, long jitter accumulation times are necessary (thousands of
the reference clock periods in [HTBF14]). But the long accumulation times mean the
contribution of flicker noise to jitter will dwarf that of thermal noise. It is important to note
that flicker noise is known to be auto-correlated [HLL99] and can lead to non-stationarity
of random variables. Therefore, reducing the measurement time to reduce the impact of
the flicker noise on the measured jitter is of the utmost importance.

In [FL14], the authors propose a jitter measurement method that requires jitter
accumulation times of about 300 reference clock periods. The method presented in
[YRG+17] reduces the jitter accumulation time required but at the cost of huge hardware
resources. In [GBF+23], the authors point out that the precision of a measurement method
should be thoroughly evaluated and demonstrated before the method is used.

In this paper, we propose a novel jitter measurement method, that can be embedded in
logic devices and does not require any external measurement or any prior characterization
to work properly. The proposed method requires only short (shorter than in [FL14]) jitter
accumulation times meaning the contribution of flicker noise to jitter is smaller or even
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Figure 1: Circuitry of the ERO-TRNG with an additional counter aimed at the jitter
measurement.

negligible, and uses far fewer hardware resources than in [YRG+17].
Our methodology is different from other published methods: we analyse and explain in

detail how different parameters determine the accuracy of the method. We also offer precise
formulas to compute the upper bound of the measurement error to avoid overestimating
jitter in the measurement process. The resulting measurements can consequently be used
to confidently estimate the entropy rate.

The paper is organized as follows: in Section 2, we present the theoretical background
and definitions. In Section 3, we explain the principle of the novel method. In Subsec-
tion 3.2, we present a way to calculate the upper bound of the measurement error and
in Subsection 3.3, we verify our analysis of measurement errors using simulations and in
Subsection 3.4, we illustrate how the method works. In Section 4, we describe hardware
implementation of the method and its implementation constraints. We then verify the
validity of assumptions made in Section 3 and present results of the jitter measurements
performed in three different FPGA families. In Section 5, we compare our method with
other published jitter measurement methods. The objectivity of the comparison is guaran-
teed by performing the jitter measurements on the same couple of ROs and using the same
environmental conditions in all the methods evaluated. Finally, in Section 6, we conclude
the article and present our plans for the future.

2 Theoretical background and definitions
Our objective is to evaluate the source of randomness in an ERO-TRNG (Elementary Ring
Oscillator-based TRNG), that is, the clock jitter accumulated in a couple of ring oscillators.
The jitter measurement circuitry should be based on the ERO-TRNG architecture with
only minor modifications. The proposed architecture is shown in Fig. 1. The ring oscillator
(RO) is composed of a chain of an odd number of inverters connected in a ring using
an AND gate as shown in the upper part of Fig. 1. The AND gate added to the ring
can be used to restart the oscillations. The output signal si of the ring oscillator ROi

is a square wave whose average frequency depends on the sum of delays added by the
individual inverters. The frequency divider determines the jitter accumulation time by
dividing the reference clock frequency by k. The sampler (D flip-flop) is the standard
part of the ERO-TRNG that generates random bits at its output. The counter Cnt is the
only additional component needed to measure the jitter. The counter output ck gives the
number of rising edges of s1 that appear during the jitter accumulation time dk.

Let us consider the timings in the jitter measurement circuitry as presented in Fig. 2.
Time periods T0 and T1 represent the average periods of signals s0 and s1, respectively.
Similarly, E0(n) and E1(n) are the arrival times of the (n + 1)-th rising edge of these
signals, while their initial edges arrive at time E0(0) and E1(0), respectively. Finally, we
denote φ0 the initial phase shift between the generated clocks, i.e. φ0 = E1(0)− E0(0).
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Figure 2: Signal timings in the jitter measurement circuitry.

In a real oscillator, the arrival time of clock edges fluctuates. It will be recalled, that
thanks to the differential measurement principle [VABF08], which is based on the use of
two identical oscillators, the contribution of the global and deterministic noises to the
clock jitter is negligible. Therefore, we can consider that the fluctuation of the edges
is mainly due to local noises such as thermal noise and flicker noise. What is more,
with short accumulation times, the influence of flicker noise is reduced and thermal noise
dominates [HTBF14]. In this case, Baudet et al. [BLMT11] suggest to model the evolution
of the phase of the oscillators by a Wiener process of drift nTi and volatility

√
nσi where

σi is the period jitter caused by thermal noise of ROi.
If we consider the output signal of a couple of ring oscillators as shown in Fig. 2, we

can further simplify our analysis. Like [BLMT11], we can assume that RO0 is an ideal
oscillator and that the measured jitter, which includes the contribution of both RO0 and
RO1, is only present in the output of RO1, i.e.:

E0(n) = E0(0) + nT0,

E1(n) = E1(0) + nT1 + qn.
(1)

where qn follows a normal distribution N (0, σ2
n) with σ2

n = na2
th. Where ath is the

equivalent jitter representing the thermal noise contribution of both RO0 and RO1, i.e.

ath :=
√

σ2
1 + T1

T0
σ2

0 . (2)

3 The new jitter measurement method
3.1 Principle
We recall that our objective is to propose a precise measurement method of the jitter
coming from thermal noise, that can be embedded in logic devices as a basis for future
embedded online tests.

As described in the previous section, we use the circuit shown in Fig. 1, which includes
two ring oscillators that can be restarted by means of the ena signal. Ring oscillator RO0
feeds a frequency divider. Its output, denoted dk, determines the jitter accumulation time
kT0. Since RO0 is considered as an ideal oscillator, according to Eq. (1) the accumulation
interval stops at t = E0(k). The output of RO1 is used as the clock signal of a counter.
Since RO1 produces jittered rising edges, for a given frequency division factor k, the
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Figure 3: Illustration of the position of the last edge of the clock signal s1 at the end of
the measurement interval: before (a), after (b), at (c), and far from (d).

counter produces random values denoted ck corresponding to the number of rising edges
of RO1 during kT0. The Ck set is composed of N random values ck: Ck = {ck}i=1,...,N .

Depending on the initial phase φ0, the jitter accumulation factor k and clock periods
T0 and T1, four cases can occur at the end of the counting interval, as shown in Fig. 3:

1. The measurement interval ends up in the vicinity of the rising edge area of signal s1,
slightly after the mean position of the edge.

2. The measurement interval ends up close to the rising edge area of signal s1, slightly
before the mean position of the edge.

3. The measurement interval closes at exactly the mean position of the rising edge of
s1.

4. The measurement interval ends up far from the rising edges of signal s1.

In Case d), the counter values ck are constant so the jitter could not be measured. In Case
c), when the measurement interval stops at exactly the mean position of the rising edge
of signal s1, two counter values appear at its output, each with the same probability. In
Cases a) and b), two counter values appear just like in Case c), but one of the two values
would have higher probability than the other. In Case a), a higher counter value would be
more probable than a lower one (the next rising edge would be counted more often). In
Case b), the probability of the two counter values would be inverted (the next rising edge
would be missed more often).

To confirm our analysis, we implemented the circuit in Fig. 1 in hardware. In our
experiments, we observed behavior of counter values ck for different values of k. Namely,
we varied k from 1 to 255 and acquired a set Ck in N = 4 096 measurements for each k.
Choosing a k value above 300 was not useful (and probably dangerous due to the influence
of flicker noise), because for these values of k, the method presented in [FL14] was shown
to produce satisfactory results. Figure 4 depicts the variance V ar(ck) resulting from these
sets of measurements. Note that the variance of a random variable X that only has two
outcomes with probability p0 and p1 respectively, is given by V ar(X) = p0p1 = p0(1− p0).
Its maximum value is 0.25 for p0 = p1 = 0.5.

The experiments confirmed our expectations. Most often, and especially with short
accumulation times, the counter values were constant. This corresponds to Case d) shown
in Fig. 3, in which the variance of N counter values V ar (ck) = 0 and no information
regarding the jitter can be obtained from the counter output.

Nonzero variances of counter values in Fig. 4 correspond to Cases a) to c) in Fig. 3.
However, in Case c), the probabilities of the two possible counter values are identical
and consequently, for any value of the jitter, the variance V ar (ck) is equal to 0.25. This
case does not provide any information about the jitter and cannot be used for jitter
measurement. Fortunately, this balanced case is very rare and easy to detect.
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Figure 4: Variance of counter values ck as a function of k generated by the circuit shown
in Fig. 1 implemented in hardware.
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Figure 5: Illustration of the case where the measurement interval ends in the vicinity
of the edge of the clock signal s1, whereas it most probably ends: a) after the edge of
the clock signal s1; b) before the edge of the clock signal s1. rkA

(resp. rkB
) denotes the

distance between the last rising edge of s1 and the end of the measurement window in
Case a) (resp. in Case b)).

Consequently, we focus on Cases a) and b), where the two counter values do not have
the same probability. Because of the jitter, the measurement interval most often ends
after (Case a)) or before (Case b)) the last rising edge of s1. This edge has a small but
non-negligible probability of sometimes ending before (in Case a)) or after (in Case b)) the
last rising edge of s1. The main idea of the proposed method is to exploit the imbalance
in the distribution of this last edge to retrieve information about the jitter. These cases
occur when there are only two different and consecutive values in the set Ck and when
their probability of appearance is imbalanced. In such cases the following conditions hold:

max(Ck)−min(Ck) = 1,

0 < V ar(ck) < 0.25.
(3)

We denote the most likely outcome of the counter by

Fk := ck ∈ Ck|#{ck ∈ Ck} >
N

2 . (4)

We denote M(k,N) the number of samples in Ck equal to the maximum ck in the set,

M(k,N) := # {ck ∈ Ck|ck = max(Ck)} . (5)

In the left panel of Fig. 5, the event corresponding to the end of the measurement
interval kT0 most probably occurs just after the rising edge of RO1. Nevertheless, because
of the jitter, the probability that this event occurs just before the edge of RO1 is not
negligible. It corresponds to Case a) and, in this case, we denote the value of k as k = kA.
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Recalling that FkA
corresponds to the number of rising edges (so FkA

− 1 is the number
of complete periods T1 counted in this measurement interval), from the left panel in Fig. 5,
the following equation can be deduced:

φ0 + (FkA
− 1)T1 + rkA

= kAT0. (6)

We then observe that:
ck = FkA

⇔ qFkA
≤ rkA

, (7)

where qFkA
is the clock jitter accumulated during FkA

clock periods, as described in Eq. (1).
Consequently,

Pr (ck = FkA
) = Pr

(
qFkA

≤ rkA

)
. (8)

But because qFkA
∼ N

(
0, σ2

FkA

)
,

Pr (ck = FkA
) = Pr

(
qFkA

σFkA

≤ rkA

σFkA

)
= Φ

(
rkA

σFkA

)
, (9)

where Φ(·) is the normal cumulative distribution function. The Pr (ck = FkA
) can be

estimated using the proportion of a large number of counter values ck equal to FkA
. This

proportion converges to Pr (ck = FkA
) while the number of observed counter values tends

to infinity. It corresponds to the shadowed area in the left panel of Fig. 5 and is denoted
AkA

. Note that in this case, AkA
> 0.5. Considering Eq. (5), we get:

Pr (ck = FkA
) = lim

N→∞

M(kA,N)

N
= AkA

= Pr
(

qFkA
≤ rkA

)
, (10)

and then by combining Eq. (9) and (10), we obtain:

rkA

σFkA

= Φ−1 (AkA
) , (11)

where Φ−1(·) is the inverse normal cumulative distribution function. Finally, Eq. (11) can
be applied in Eq. (6) to obtain:

φ0 + (FkA
− 1)T1 + Φ−1 (AkA

) σFkA
= kAT0. (12)

Let us now consider Case b) shown in the right panel of Fig. 5. We can proceed in the
same way as in Case a). In Case b), the end of the measurement interval most probably
occurs before the rising edge of RO1. Again, because of the jitter, the probability that the
end of the measurement interval arrives just after the rising edge of RO1 is not negligible
and corresponds to Case b). In this case, we denote k = kB. From the right panel of
Fig. 5, we can deduce the following equation:

φ0 + FkB
T1 − rkB

= kBT0. (13)

Further, we observe that:

ck = FkB
+ 1⇔ qFkB

+1 ≤ −rkB
, (14)

where qFkB +1 is the clock jitter accumulated during FkB
+ 1 clock periods. Consequently,

Pr (ck = FkB
+ 1) = Pr

(
qFkB

+1 ≤ −rkB

)
. (15)
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But because qFkB
+1 ∼ N

(
0, σ2

FkB
+1

)
,

Pr (ck = FkB
+ 1) = Pr

(
qFkB

+1

σFkB
+1
≤ − rkB

σFkB
+1

)
= Φ

(
− rkB

σFkB
+1

)
. (16)

As before, the Pr (ck = FkB
+ 1) can be estimated using the proportion of a large

number of counter values ck equal to FkB
+ 1. It corresponds to the shadowed area in the

right panel of Fig. 5 and is denoted AkB
. Note that in this case, AkB

< 0.5. By taking
into account Eq. (5), we can write:

Pr (ck = FkB
+ 1) = lim

N→∞

M(kB ,N)

N
= AkB

= Pr
(

qFkB
+1 ≤ −rkB

)
. (17)

By combining Eq. (16) and (17) we obtain

− rkB

σFkB
+1

= Φ−1 (AkB
) . (18)

Equation (18) can be applied in Eq. (13) to obtain:

φ0 + FkB
T1 + Φ−1 (AkB

) σFkB
+1 = kBT0. (19)

The initial phase shift (φ0) is an unknown variable. We can use Eq. (12) and (19) to
form a system of equations where the only independent unknown is the equivalent thermal
contribution to the jitter. Recalling that σFk

= ath

√
Fk (see Eq. (1)), we can write

φ0 + (FkA
− 1)T1 + Φ−1 (AkA

) ath

√
FkA

= kAT0,

φ0 + FkB
T1 + Φ−1 (AkB

) ath

√
FkB

+ 1 = kBT0.

(20)

As it will be explained in Subsection 4.2, we can assume that φ0 and the ratio T0/T1

are constant throughout the measurement. Thus, by combining equations from Eq. (20),
we obtain

ath

T1
=

T0
T1

(kA − kB)− (FkA
− FkB

− 1)
Φ−1 (AkA

)
√

FkA
− Φ−1 (AkB

)
√

FkB
+ 1

. (21)

The ratio T0/T1 cannot be measured directly. However, it can be approximated by the
ratio cL/L, where cL is the counter value obtained using the circuit in Fig. 1 with a big
frequency divider factor L. Another factor that determines the precision of the method
is the number of measurements N . Indeed, Ak is approximated by M(k,N)

N when N is
sufficiently big. The value ath/T1 is thus approximated by ãth/T1, which depends only on
measurable parameters:

ath

T1
≈ ãth

T1
:=

cL/L (kA − kB)− (FkA
− FkB

− 1)

Φ−1
(M(kA,N)

N

)√
FkA
− Φ−1

(M(kB ,N)
N

)√
FkB

+ 1
. (22)

3.2 Analysis of the measurement error
As pointed out in [GBF+23], the parameters that affect the precision of the method,
need to be clearly identified and their impact on the precision thoroughly evaluated. In
this sense, we identified the parameters, that determine the precision of the proposed
measurement method. In contrast to the state-of-the-art methods, we evaluated theoretical
bounds of the relative error and determined the values of parameters (L, N , kA and kB)
that minimize the measurement error.
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According to the previous analysis, the relative measurement error of ath/T1 is given by:∣∣∣∣∣∣
ath

T1
− ãth

T1
ath

T1

∣∣∣∣∣∣ =
∣∣∣∣1− ãth

ath

∣∣∣∣ . (23)

By replacing ath/T1 from Eq. (21) and ãth/T1 from Eq. (22) in Eq. (23) we obtain a
cumbersome expression that can be upper bounded according to the following inequality:∣∣∣∣1− ãth

ath

∣∣∣∣ ≤
√

max(FkA
, FkB

+ 1)
min(FkA

, FkB
+ 1) (|α0,1|+ |αAB |+ |α0,1 · αAB |) . (24)

This inequality represents the upper bound of error of our method. It is governed by
two main factors: αAB, which is related to the error made when approximating Ak to
M(k,N)

N , equal to

αAB :=
Φ−1 (AkB

)− Φ−1
(M(kB ,N)

N

)
−
(

Φ−1 (AkA
)− Φ−1

(M(kA,N)
N

))
Φ−1

(M(kA,N)
N

)
− Φ−1

(M(kB ,N)
N

) , (25)

and α0,1, which is related to the measurement error of the ratio T0
T1

, equal to

α0,1 :=
(kA − kB) ·

(
T0
T1
− cL

L

)
(kA − kB) · T0

T1
− (FkA

− FkB
− 1)

. (26)

We analyze the possible origins of these two errors in the two following subsections.

3.2.1 Error due to area approximation

The error due to approximation of the area under the Gaussian curve in Fig. 5 is represented
by αAB. It is related to a general problem of area approximation using a Monte-Carlo
method. Following this principle, we obtain an absolute upper bound of |αAB | depending
on N , but not on other parameters of the method. We recall that

AkA
> 0.5 =⇒ Φ−1(AkA

) > 0 ; AkB
< 0.5 =⇒ Φ−1(AkB

) < 0 . (27)

However, we approximate AkA
and AkB

by
M(kA,N)

N and
M(kB ,N)

N , respectively. Because
of these approximations, if AkA

or AkB
is close to 0.5,

M(kA,N)
N can be < 0.5 or

M(kB ,N)
N

can be > 0.5. Hence, the denominator of Eq. (25) can be close to 0, making αAB, and
consequently the error, diverge. Moreover, due to the divergence of the function Φ−1 (·) in
0 and 1, a minor error in the approximation of Ak with M(k,N)

N will be strongly amplified
by Φ−1 (·) when

M(kA,N)
N ≈ 1 or

M(kB ,N)
N ≈ 0. For this reason, to find an upper bound of

|αAB |, we need to bound
M(kA,N)

N and
M(kB ,N)

N .
To obtain these bounds, we simulated the counting process for rkA

σFkA

(resp. rkB

σFkB
+1

)
representing the normalized difference between the position of the last rising edge of
s1 in Case a) (resp. in Case b)) and the end of the measurement window. They both
varied independently from rmin = 0 to rmax = 5 in steps of 0.01. We computed the
theoretical values, Φ−1(AkA

) and Φ−1(AkB
), and the experimental ones, for N repetitions,

Φ−1
(M(kA,N)

N

)
and Φ−1

(M(kB ,N)
N

)
, to compute αAB for each case. The maximum evalu-

ated value rmax = 5 was chosen because the probability that the last edge of s1 falls outside
this normalized interval is negligible, i.e. for rk

σFk
≥ 5 we obtain 1− Φ(5) = 2.87× 10−7.
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Figure 6: Variations of |αAB | depending on the selection of suitable (right panels) or
unsuitable (left panels) relative positions between the last rising edge of s1 and the end of the
measurement interval, for Nmin = 2 048 and Nmin = 4 096, respectively. In orange color for
Case a) (resp. blue color for Case b)), for a given rkA/σFkA

(resp.rkB/σFkB
+1) ∈ [rmin; rmax],

αAB is computed for all values of rkB/σFkB
+1 (resp.rkA/σFkA

) ∈ [rmin; rmax]. So for each
x-axis, all possible values αAB are plotted.

The results are presented in Fig. 6. The top part of the figure represents the distribution
of the last rising edge of s1. If there is no restriction (left panel) on the relative position of
the end of the measurement window with respect to the last rising edge (0 ≤ rk

σFk
≤ 5),

then |αAB | cannot be reasonably bounded (middle left panel) even for large values of N
(bottom left panel).

However, in the right panel, by setting rmin relatively far from 0 (e.g. rmin = 1) and
rmax relatively far from 5 (e.g. rmax = 2), we exclude some relative positions of the
last rising edge of s1 with respect to the end of the measurement window (upper right
panel) hence |αAB | does not diverge. Indeed, the middle right and bottom right panels of
Fig. 6 show the influence of N on the amplitude of |αAB |. Because lim→∞

Mk,N

N = Ak,
for any given threshold ε > 0, there exists an integer Nmin such that for any N ≥ Nmin,
|αAB | ≤ ε. We chose ε = 0.05. As shown in Fig. 6 (right middle and bottom panel), we
need Nmin = 4 096, to ensure |αAB | ≤ 0.05. Note that in the right panel, both rkA/σFkA

and rkB/σFkB
+1 are in [rmin; rmax] = [1; 2].

Using Eq. (11) and (18), the following thresholds for
M(kA,N)

N and
M(kB ,N)

N (that depend
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Figure 7: Waveform used to deduce a precise measurement of the ratio T0/T1.

on N , rmin and rmax) can be computed: rmin ≤ Φ−1
(M(kA,N)

N

)
≤ rmax,

−rmax ≤ Φ−1
(M(kB ,N)

N

)
≤ −rmin,

⇔

{
Φ(rmin) ≤

M(kA,N)
N ≤ Φ(rmax),

Φ(−rmax) ≤
M(kB ,N)

N ≤ Φ(−rmin).
(28)

The variance V ar(ck) = M(k,N)
N ·

(
1− M(k,N)

N

)
is an increasing function of M(k,N)

N in the
interval [0; 1

2 ] and a decreasing one in [ 1
2 ; 1]. Therefore, the thresholds in Eq. (28) can be

used to get bounds of V ar(ck). Recalling that Φ(−x) = 1− Φ(x), we get

−Φ(rmax)2 + Φ(rmax)︸ ︷︷ ︸
≈0.0222 for rmax=2

≤ V ar(ck) ≤ −Φ(rmin)2 + Φ(rmin)︸ ︷︷ ︸
≈0.1335 for rmin=1

. (29)

Note that we do not need to compute the variance. Using Eq. (28), for a given N , we
can obtain suitable thresholds for M(kA,N) and M(kB ,N) that bound |αAB |.

For example, for N = 4 096, rmin = 1 and rmax = 2, the following inequalities ensure
that |αAB | ≤ 0.05:

N · Φ(rmin)︸ ︷︷ ︸
3 446

≤M(kA,4 096) ≤ N · Φ(rmax)︸ ︷︷ ︸
4 002

,

N · Φ(−rmax)︸ ︷︷ ︸
93

≤M(kB ,4 096) ≤ N · Φ(−rmin)︸ ︷︷ ︸
649

,
(30)

which is useful when the goal is to embed the method in logic devices, since only a
comparator is needed.

If not enough values of k satisfy these criteria, it is possible to decrease rmin and
increase rmax to find more. Although the error of the method would be increased, its value
could still be evaluated precisely.

3.2.2 Error due to approximation of the average periods ratio

Next we examine the origins of α0,1. We perform the counting experiments from Fig. 1 for
one large L. We denote the obtained value cL. The waveform of this experiment is given
in Fig. 7 and these parameters are related such that φ0 + cL · T1 + r = L · T0. Because
0 ≤ φ0 < T1 and 0 ≤ r < T1,

0 ≤ T0

T1
− cL

L
≤ 2

L
. (31)

By choosing a large L, we can get as close as needed to the ratio T0
T1

, from only one, but
sufficiently long counting process.

Furthermore, using Eq. (20), we get

(kA− kB) · T0

T1
− (FkA

−FkB
− 1) = Φ−1(AkA

)ath

T1

√
FkA
−Φ−1(AkB

)ath

T1

√
FkB

+ 1 . (32)
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From the study of αAB , we conclude that suitable cases (Case a) and Case b)) should
be such that Φ−1(AkA

) and −Φ−1(AkB
) are greater than rmin. Therefore,

(kA − kB) · T0

T1
− (FkA

− FkB
− 1) ≥ rmin ·

ath

T1
(
√

FkA
+
√

FkB
+ 1) . (33)

Finally, by combining Eq. (31) and (33), we get

|α0,1| ≤
2|kA − kB |

L · rmin · ath

T1
(
√

FkA
+
√

FkB
+ 1)

. (34)

In contrast with the absolute upper bound of |αAB | found, which depended only on
N , the upper bound of |α0,1| depends on several parameters. For a given (intrinsic) jitter
ath/T1 we need to choose: a large L; a distance |kA− kB | as small as possible; and, because
kA (resp. kB) and FkA

(resp. FkB
+ 1) have the same order of magnitude, a relatively big

kA and kB .
To give an example, for an intrinsic jitter ath/T1 greater than 0.5‰, by choosing

L = 65 535, and FkA
≈ FkB

≈ 100 (to assume thermal noise dominates), we obtain
|α0,1| ≤ |kA − kB | · 0.003. Hence, if we want |α0,1| ≤ 0.05, we have to choose |kA − kB | ≤
0.05

0.003 = 16.6. From now on, we impose |kA − kB | ≤ 16. Again, depending on the desired
upper bound for |α0,1|, we can define a condition for kA and kB . In other words, we can
tune the condition on |kA − kB | to find more couples (kA, kB) at the cost of increasing the
error on |α0,1| and always find the best trade-off between the number of couples (kA, kB)
and the error made.

3.2.3 The upper bound of the measurement error

Given the analysis of |α0,1| and |αAB |, the relative error computed with Eq. (24) is∣∣∣∣1− ãth

ath

∣∣∣∣ ≤
√

max(FkA
, FkB

+ 1)
min(FkA

, FkB
+ 1)︸ ︷︷ ︸

≈
√

116
100 <1.1

|α0,1|︸ ︷︷ ︸
0.05

+ |αAB |︸ ︷︷ ︸
0.05

+ |α0,1 · αAB |︸ ︷︷ ︸
0.0025

 < 12.3%︸ ︷︷ ︸
δW

. (35)

We can therefore conclude that the theoretical maximum error (denoted by δW ) of the
jitter measurement achievable with our method is 12.3%.

It will be recalled that these parameters are determined to measure a jitter ath/T1 >0.5‰.
They have to satisfy the following criteria:

• N = 4 096; L = 65 535,

• 3 446 ≤M(kA,N) ≤ 4 002; 93 ≤M(kB ,N) ≤ 649; |kA − kB | ≤ 16.
According to Eq. (34), the order of magnitude of the jitter will impact the upper bound

δW – it will decrease with an increase in ath/T1. It will then be possible to compute the
maximum measurement error for a given order of magnitude of the jitter, which depend
on the technology used.

In our error analysis we assumed the worst-case scenarios. Therefore, the boundary
value δW = 12.3% would be very difficult to reach. Nevertheless, a conservative approach
can use this δW to get a lower bound of the measured jitter, i.e.

ath

T1
≥ 1

1 + δW
· ãth

T1
. (36)

Using this lower bound of the jitter value as an input for a stochastic model, like the one
from [BLMT11], the designer can reduce the risk of overestimation of the entropy rate.

For this reason, the analysis of the measurement error is of utmost importance and is
one of the main contributions of this article.
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Algorithm 1 Algorithm of the new jitter measurement method.
1: procedure Jitter measurement(N = 4 096, L = 65 535)
2: Initialise Ck, ListCasekA, ListCasekB and List̃ath/T1 as empty lists
3: for k := 1 to 255 do
4: Empty Ck

5: for i := 1 to N do
6: ck ←CountingExperience(k)
7: ▷ Get a counter value from the circuit in Fig. 1 with a frequency division factor k.
8: Ck.append(ck)
9: end for

10: Fk ← ck ∈ Ck|#{ck ∈ Ck} > N/2
11: M(k,N) := # {ck ∈ Ck|ck = max(Ck)}
12: if 3446 ≤M(k,N) ≤ 4 002 then ▷ Case k = kA

13: ListCasekA.append(
[
k, Fk, M(k,N)

]
)

14: else
15: if 93 ≤M(k,N) ≤ 649 then ▷ Case k = kB

16: ListCasekB .append(
[
k, Fk, M(k,N)

]
)

17: end if
18: end if
19: end for
20: cL/L := CountingExperience(L)/L ▷ Measurement of the fraction T0/T1.
21: for all

[
kA, FkA

, M(kA,N)
]

of ListCasekA do
22: for all

[
kB , FkB

, M(kB ,N)
]

of ListCasekB do
23: if |kA − kB | ≤ 16 then
24: ãth

T1
:=

cL/L(kA−kB)−(FkA
−FkB

−1)
Φ−1
(

M(kA,N)
N

)√
FkA

−Φ−1
(

M(kB ,N)
N

)√
FkB

+1
.

25: List̃ath/T1.append(̃ath/T1)
26: ▷ List of the measured ãth/T1 calculated with every found (kA, kB) couple
27: end if
28: end for
29: end for
30: end procedure

3.3 Discussion
If we take the conditions established in Subsection 3.2 into account, the novel jitter
measurement method can be described by Algorithm 1. Note that the only operation that
needs to be performed in hardware is the acquisition of the counter values for different
jitter accumulation times k · T0.

To further confirm the precision of the method, we simulated the measurement process
in software. We generated examples following the pseudo-random normal law to simulate
the behavior of oscillators affected by thermal noise, like in [GBF+23]. Namely, for
given values of φ0, T0, T1 and k, we generated pseudo-random counter values ck. In
our simulations, we randomly selected the ring oscillator average periods (T1 = 7 940 ps,
T0 = 7 462 ps). We then set ath/T1 to 1.39‰ to be consistent with jitter sizes published
in the state-of-the-art jitter measurement methods [FL14, YRG+17] and greater than
0.5‰ used to compute the error bounds. Algorithm 1 was simulated 100 times, each
time, a list of simulated jitter measurements was obtained. Figure 8 shows the results of
the simulations, i.e. the distribution of the simulated jitter measurements. The average
measured value is represented by the vertical black dashed line and is equal to 1.387‰.
The simulated ath/T1 is represented by the vertical red dashed line. The average error is
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Figure 8: Histogram of the simulated jitter measurements. The value of the jitter entered
in the simulator is represented by the vertical black dashed line. The mean measured value
obtained in simulations is represented by the vertical red dashed line. The two values are
very close, thereby confirming the accuracy of the method.

Table 1: Example of simulation results obtained using Algorithm 1.

k V ar(Ck) (ck,1, # {ck,1 ∈ Ck}) (ck,2, # {ck,2 ∈ Ck}) Case
53 0.1094 (50, 3 584) (49, 512) A
70 0.1249 (65, 3 497) (66, 599) B
86 0.0245 (81, 3 993) (80, 103) A
120 0.0666 (112, 3 802) (113, 294) B
169 0.0526 (159, 3 868) (158, 228) A
170 0.0321 (159, 3 960) (160, 136) B
252 0.0641 (237, 3 814) (236, 282) A
253 0.0724 (237, 3 774) (238, 322) B

0.04% and the maximum error is 4.97%.
The results clearly highlight the accuracy and precision of our method. Indeed, the

maximum measurement error is much smaller than the upper bound of 12.3% found in
Subsection 3.2. As confirmed by our simulations, this theoretical error bound is very
conservative and is difficult to reach.

3.4 Illustration of the method
Here we demonstrate how the proposed method works and illustrate its high precision
with the following example. We simulated the method based on Algorithm 1. In our
simulations, line 24 of the algorithm was executed independently of the previous condition
(line 23). The frequency division factor k varied from 1 to 255 in steps of 1. For each
k, we acquired N = 4 096 samples of ck to form a set Ck. Like in Subsection 3.3, we set
φ0 = 6 335 ps, T0 = 7 462 ps, T1 = 7 940 ps, L = 65 535 and ath/T1 =1.39‰.

For certain values of k, two different ck appeared in the Ck set. Table 1 shows the
simulated data for these cases. If we consider the conditions presented in Subsection 3.2,
only the six bold entries highlighted in Table 1 can form couples (kA, kB) with a small
upper bound of the error. Table 1 shows: the frequency division factor k, the variance of
the set Ck, the different ck encountered in Ck and the number of times they appeared in the
set, (ck,1, # {ck,1 ∈ Ck}) and (ck,2, # {ck,2 ∈ Ck}) where ck,1 is the most often encountered
ck and ck,2 is the second most often encountered ck, and the case identified (according to
Fig. 5), where A indicates that ck,1 > ck,2 and B indicates that ck,2 > ck,1.

Since in simulations, the phase of the oscillators is accurately and permanently known,
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Table 2: Error analysis of three suitable and two unsuitable (in grey) couples (kA, kB)
from Table 1.

kA kB FkA
FkB

M(kA,N) M(kB ,N) cL/L ãth/T1

86 70 81 65 3 993 599 0.93977 1.390‰
169 170 159 159 3 868 136 0.93977 1.391‰
252 253 237 237 3 814 322 0.93977 1.348‰
53 253 50 237 3 589 322 0.93977 1.510‰
252 70 237 65 3 814 599 0.93977 1.235‰

α0,1 αAB δW

∣∣∣1− ãth

ath

∣∣∣
1.08% 0.94% 2.25% 0.14%
-0.04% -0.11% 0.15% 0.07%
-0.04% -3.19% 3.24% 3.15%
-12.37% -2.46% 33.03% 8.46%
10.47% -0.62% 21.14% 11.27%

we can apply Eq. (24) to calculate a more stringent error bound for any couple (kA, kB).
Table 2 shows how to use the equations presented in Subsection 3.2 to estimate the
maximum error of each measurement. For the three couples (kA, kB) listed in Table 1,
the upper part of Table 2 shows the resulting values (̃ath/T1). The lower part of Table 2
shows the exact evaluation of the different factors of Eq. (24). It then shows the value of
a stringent upper error bound using Eq. (35) starting with the second column. The last
column shows the relative measurement error

∣∣∣1− ãth

ath

∣∣∣ that can be computed correctly
because as it is a simulation the injected jitter is known. To illustrate the importance of
the condition |kA − kB | ≤ 16, we added two unsuitable couples (kA, kB) (in grey) that do
not satisfy this requirement and whose error upper bound is above 12.3%.

For the three well selected couples (kA, kB) we can confirm, Eq. (35) is always verified
and its stringent upper bound is far below the worst-case very conservative upper bound of
12.3%. Because this upper error bound comes from the exact evaluation of Eq. (24) it can
be very small compared to the absolute bound of 12.3% while still being very conservative.

Our aim is to reduce accumulation time as much as possible while simultaneously
minimizing the error. The first row in Table 2 is in bold because we consider it is the
optimal jitter measurement. Its relative error is bounded by 2.25% which is not the smallest
but allows jitter measurements in the shortest possible accumulation time (86 reference
clock periods) which is crucial to limit the influence of flicker noise in real experiments.

In hardware implementations, we cannot compute α0,1 as precisely as in simulations.
In these cases, we use the obtained kA, kB, FkA

and FkB
and suppose ath/T1 ≥0.5‰, to

compute |α0,1| using Eq. (34). We illustrate this approach in Subsection 4.3.

4 Hardware implementation
Figure 9 illustrates acquisition of a set Ck for k = 3 and N = 2. The ring oscillator RO0
is permanently enabled and its output is used as a reference clock for the whole system.
The frequency divider determines the length of the measurement interval (dk = 1), during
which the number of periods of signal s1 is counted. The measurement interval is thus
synchronous with RO0. The counter value reached at the end of the measurement interval
is sent to the PC and processed using Algorithm 1. The bottom panel in Fig. 9 defines the
exact definition of the measurement interval and important timing requirements.
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Figure 9: Acquisition of an example set C3 with N = 2 in the jitter measurement circuitry.

4.1 Implementation constraints
Although the circuit shown in Fig. 1 is easy to implement in hardware, two hardware
constraints have to be respected to guarantee the precision of the method: routing of
the control signal dk and precision of the counter with respect to possible violation of its
setup-and-hold time.

To avoid the possibility that some rising edge of signal s1 appears after the measurement
interval (once the signal dk goes down), the routing delay between the output of the
frequency divider and the counter has to be shorter than the delay between the divider
and the control input of RO1. This is easily achieved by careful placement and routing of
the divider, RO1, and counter.

Another phenomenon that can alter the counting result is violation of the setup-and-hold
time of the counter. Considering the principle of the method, the counter stops counting
very close to the arrival of the last edge os s1, hence, violation of the setup-and-hold time
of counter flip-flops occurs very frequently.

When a synchronous counter is used, all the flip-flops of the counter are concerned.
Therefore, we observed that for a given k, the counter values differed in more than one,
unlike what was expected based on Eq. (3).

To demonstrate this phenomenon, we first used the synchronous counter in our mea-
surement hardware. We analyzed a total of 680 000 sets of counter values Ck with a
non-zero variance, i.e. V ar(Ck) > 0. We then calculated the maximum differences between
the counter values Ck we obtained using Eq. (3). The observed maximum differences are
shown in Fig. 10. The differences were higher than one, meaning that one or more bits
within the counter were affected by the time violation. Fortunately, this problem can
be solved by using an asynchronous counter as can be seen in Fig. 11 – the difference in
counter values was always equal to one for the same set of experiments.

4.2 Assumptions regarding the stability of the measurement conditions
When obtaining Eq. (21) from (20), we assumed that φ0 and the ratio T0/T1 remained
constant during acquisition of all the sets Ck ∀k ∈ [1, 255]. In our hardware implementation
the measurement process included: acquisition of the sets Ck with N = 4 096 and
∀k ∈ [1, 255]; the time to send the counter values to a PC; the time to reset the counter,
and the time to measure the ratio T0/T1 with L = 65 535. The process lasted at most
2.3 s because it took 3.2× 105 periods of RO0 with a mean clock frequency of 136 MHz.
Hence, our assumption concerning the stability of φ0 and that of the ratio T0/T1 should be
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Figure 10: Histogram of maximum differ-
ences between counter values obtained using
a synchronous counter.

Figure 11: Histogram of maximum differ-
ences between counter values obtained using
an asynchronous counter.

valid for at least 2.3 s. We measured φ0, T0 and T1 using a LeCroy WaveRunner 9254M
oscilloscope at a 40 GS/s sampling rate for a period of 10 s. In order to stabilize the
temperature of the board and hence the frequency of oscillators, we let the oscillators run
freely for 10 minutes before the measurements. RO0 and RO1 were composed of a series of
19 and 20 buffers implemented using LCELL structures ([Int20]) respectively, looped back
by a NAND gate. Both rings were manually placed and routed. We observed: a mean of
7.32 ns and standard deviation of 4.4 ps for T0; a mean of 7.9 ns and standard deviation
of 4.8 ps for T1 and a mean of 0.6 ns and standard deviation of 1.9 ps for φ0. The values
of the standard deviations are very small, indicating that φ0, T0 and T1 are very stable
over the 10 s, which largely covers the duration of the measurement. We deduced that the
mean of T0/T1 was stable, too. Our assumptions about stability were thus validated.

The duration of our jitter measurement can be parameterized for a particular imple-
mentation of the method. Let us denote kmax the largest value of k that we use to look
for a suitable couple (kA, kB). If k ranges from 1 to kmax, the total measurement duration
(tm) can be calculated in terms of N and kmax,

tm = T0

(
N

(
kmax

kmax + 1
2 + Ic

)
+ L + Ic

)
. (37)

Ic is the number of cycles of RO0 that must pass between each acquisition of a counter
value. Our stability assumption must hold during tm. The time interval tm can be reduced
at the cost of reducing N and thus also reducing the precision of the measurement.

4.3 Measurement results
We implemented the circuit in Fig. 1 in three FPGA from different manufacturers : Intel,
Xilinx and Microsemi. Subsequent counter values were acquired for k going from 1 to 255
in steps of 1 and processed using Algorithm 1. We set N = 4 096, L = 65 535.

The implementation results for the three FPGA are shown in Table 3. We only show
the results for the smallest couple found (kA, kB) for each family. The implementation
results show that the method only needs very short jitter accumulation times, indeed,
around 100 reference clock edges were needed.

We also used the results of the analysis performed in Subsection 3.2 to find the upper
bound of the error caused by approximation of ath/T1 by ãth/T1. As we set N = 4 096, we
can consider that |αAB | ≤ 0.05. The upper bound of |α0,1| presented in the first column of
Table 3 was then found by applying Eq. (34), based on the assumption that ath/T1 ≥0.5‰.
The second column shows δW , i.e. the worst case value of the relative measurement error,
computed from Eq. (24). Note that because the conditions determined in Subsection 3.2
are respected, δW ≤ 12.3%. The last column shows corrected measurement results that
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Table 3: Results of jitter measurements of ãth/T1 in three different FPGA families.

FPGA kA kB FkA
FkB

ãth/T1 |α0,1| δW
1

1+δW
· ãth

T1

Cyclone V 112 99 105 92 0.9425‰ 3.98% 9.76% 0.8586‰
Spartan 6 117 102 103 89 1.087‰ 4.66% 10.58% 0.9836‰

SmartFusion 2 115 103 107 72 0.9491‰ 3.63% 9.31% 0.8683‰

come from decimating ãth/T1 with δW , calculated like in Eq. (36). Thanks to our error
analysis we can be sure that the corrected measurement does not overestimate ath/T1.

5 Comparison with state-of-the-art methods
To be sure our comparison of the proposed method with other published jitter measurement
methods ([VABF08], [VFA09], [YRG+17], [FL14]) is fair, we implemented all of them in
a Cyclone V FPGA. We measured the jitter of the same couple of ring oscillators using
different methods. Both ring oscillators were composed of 20 buffers implemented in
logic cells (LCELL) looped back by a NAND gate. The rings were placed and routed
manually and they generated clocks with mean frequencies of about 112 MHz. The jitter
measurement methods were implemented one after the other in a few hours. During
each measurement, we let the oscillators run freely for 10 minutes before beginning the
acquisitions so that the clock periods were stable. We acquired the amount of data we
needed to make at least 75 jitter measurements using each method. We processed the
acquired data in a PC and obtained the boxplots presented in Fig. 12. Although the
sources of the jittered clocks (the two rings) were always the same, certain aspects of their
implementation were specific to each method:

• [VABF08]: the jitter accumulation time was set to 200 000 cycles of RO0. We
acquired and processed 4 096 counter values per jitter measurement using a PC.

• [VFA09]: we measured an average period difference of 109 ps between the two
oscillator clocks using the oscilloscope. We acquired 4 096 counter values per jitter
measurement and sent them to a PC for processing.

• [YRG+17]: the accumulation time was set to 344 ns using a precise external quartz
oscillator. This time was chosen so that the falling edges of both oscillator clocks
always arrived in about the middle of two delay lines implemented using CARRY
([Int20]) chains. The length of the delay lines was set up empirically. To be sufficiently
long, each chain had to be composed of 1 000 elements. We acquired and processed
100 000 couples of snapshots per jitter measurement, taken at the same time. As
pointed out by the authors, we had to clean the glitches appearing in the snapshots
by reordering their bits during data processing.

• [FL14]: we let M vary from 150 to 300 with a 5-unit step and assumed N = 100 as
recommended by the authors. We acquired and processed 4 096 counter values per
M . As pointed out by the authors, some sets of counter values whose mean values
were close to N or 0 had to be filtered out during data processing.

• Our method: we varied k from 20 to 175. Because we obtained on average 1.5 jitter
measurements per k sweep, we varied k 52 times to obtain 77 jitter measurements,
each time, N = 4 096. Every set of counter values was sent to a PC for processing.
In order to evaluate the performance of the method regarding k, we filtered the
obtained (kA, kB) couples so that (kA, kB) ≤ 70. This time, we obtained on average
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Our method Our method

Figure 12: Boxplots of 75 jitter measurements of the five compared methods.

0.4 jitter measurements per k sweep and varied k as many times a necessary to
obtain 75 jitter measurements.

Table 4 shows different aspects of the hardware implementations of the five jitter
measurement methods. The first column presents the average jitter value obtained using
different methods. On one hand, it is clear that the methods in [VABF08] and [VFA09]
greatly overestimate the jitter, probably because of much longer jitter accumulation times,
which increases the impact of the flicker noise. On the other hand, the methods in
[YRG+17] and [FL14] yield results comparable with our novel method. Our method and
the method in [YRG+17] produce the lowest mean jitter values. However, in our method,
we did not decimate measurements using δW , this would yield even smaller and more
conservative measurements. Using the proposed error analysis method, we verified that
the error of our measurements was less than 6.08%. We noticed that the method in [FL14]
yields a slightly higher average jitter measurement than ours or that of [YRG+17] but also
uses accumulation times of 300 clock cycles. This may originate from the fact that flicker
noise becomes non negligible even with accumulation times as short as 300 clock cycles
on the Cyclone V FPGA. This hypothesis is in agreement with the comparison between
the last two boxplots in Fig. 12. When the jitter measurements come from accumulation
times shorter than 70 cycles the obtained mean measurement is smaller. In other words,
the longer we accumulate jitter the more we overestimate the thermal component of jitter,
probably because of the influence of flicker noise.

We evaluated the precision of the methods through the standard deviation of their
measurements. The results are listed in the second column of Table 4. The method in
[FL14] is the most precise with a standard deviation of 2×10−4. However, our method can
greatly reduce the standard deviation at the cost of acquiring more data per measurement.
For example, if we impose the condition kA, kB ≤ 70, the measurements have a standard
deviation of 1.24× 10−4. Hence, our method is more precise at the cost of obtaining less
measurements per k sweep.

Although none of the methods we evaluated was fully embedded in hardware, we can
compare the area of the measurement block of the method expressed by a number of ALMs.
The results are presented in the third column of Table 4. Note the method in [YRG+17] is
the most expensive, requiring at least six times the area of our method or that of [FL14].

The measurement rate of the methods can also be expressed as the number of reference
clock periods, needed to obtain a single jitter measurement. Based on this criterion, the
method [FL14] requires the smallest number of periods, followed by the method [YRG+17],
with 4.1 × 105 and 4.3 × 106 cycles respectively. The fifth column in Table 4 indicates
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Table 4: Measurement and implementation results of the five jitter measurement methods
while measuring the same jittered clocks in a Cyclone V FPGA.

Method Average jit. Std. dev. ALMs RO0 cycles P. C. Power [mW]
[VABF08] 58.6‰ 3.63× 10−3 163 8.19× 108 No 4.4
[VFA09] 7.47‰ 2.09× 10−3 127 4.5× 105 Yes 4.4

[YRG+17] 1.63‰ 2.43× 10−4 1759 4.3× 106 Yes 20.9
[FL14] 2.66‰ 2× 10−4 266 4.1× 105 Yes 9.9

Our method 1.73‰ 4.48× 10−4 260 6.15× 107 No 8.8
kA, kB ≤ 70 1.22‰ 1.24× 10−4 260 5.12× 105 No 8.8

whether the method needs a prior calculation (P.C.) before the jitter can be measured.
From this point of view, in method [VFA09], the difference between the average periods
must be sufficiently small as detailed in [GBF+23]. The method [YRG+17] requires the
delay chains to be characterized, which takes more than 2.58× 107 RO0 cycles. Finally the
method [FL14] requires verifying that the couple of ring oscillators used is suitable for the
measurement. This should be done by decomposing their average periods using continuous
fractions. Finally, our new method requires 6.15× 107 RO0 cycles to measure the jitter
because many k values have to be skipped, as shown in Fig. 4. However, our new method
does not require any prior calculations nor does it impose any particular constraints.

In the sixth column of Table 4 we compare the power consumption of the FPGA when
instantiating different evaluated methods. The method in [YRG+17] consumes the most
power, and is prone to consume exponentially more if the oscillator frequency is increased
because the oscillating signals must pass across very long delay chains.

6 Conclusion and future work
In this paper, we presented a new method for measuring clock jitter that can be easily
embedded in logic devices. The method allows very accurate measurements and jitter
accumulation times as short as 100 reference clock periods. We conducted a thorough
study including analyzing timing constraints and the precision of the method. We iden-
tified and quantified possible sources of errors and their effects on jitter measurement.
All the parameters that determine measurement error were optimized theoretically and
demonstrated practically. We also show how to set up the parameters of the method to
achieve the desired error level and to determine the precise upper bound of the error. We
stand by the principle that the jitter measurement results do not overestimate the jitter.
Consequently, they can be safely used to compute the entropy rate, for example using the
stochastic model from [BLMT11], to guarantee the security of the ERO-TRNG.

According to the simulations made in [GBF+23], other methods ([FL14],[YRG+17])
can attain a mean error of about 10%. Our simulations show that our method can reach a
mean error as low as 0.04% and a maximum error of up to 5%. This is consistent with our
very conservative upper bound of the error of 12.3% – the errors we found were always
much smaller.

From the analysis presented we can draw several conclusions: first, jitter measurement
methods based on long accumulation time greatly overestimate the thermal component
of the jitter, so methods based on short accumulation time should be largely preferred.
Second, although our method can be easily embedded in logic devices, like that of [FL14],
it also uses very short accumulation times, like that of [YRG+17]. Our new method is thus
the best compromise between accuracy and ease of hardware implementation. Moreover,
while our method has relatively slow measurement rate, it does not require any previous
calculation.
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In our theoretical analysis and simulations, we assumed that only thermal noise
affected the stability of oscillator clocks. However, as explained in [HLL99], flicker noise
becomes increasingly important at higher frequencies as modern transistor channels are
continuously shrinking, hence overcoming the thermal jitter component faster. This can
lead to overestimating entropy and can compromise the security of the entire cryptographic
system. For example, according to our implementation results, the method from [FL14]
yields a slightly higher average jitter measurement than ours or that of [YRG+17], but uses
accumulation times about three times longer than our method. It is thus more impacted
by the jitter coming from the flicker noise than other two methods.

To avoid overestimating entropy, two options remain: avoiding the impact of flicker
noise on the measured jitter by reducing the jitter accumulation time or including the
impact of flicker noise, including autocorrelation, on the total measured clock jitter and on
the stochastic model. The novel method we propose in this paper will be further improved
regarding both these aspects.
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