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ABSTRACT

Aims. High-contrast long-slit spectrographs can be used to characterize exoplanets. The resulting spectroscopic data are, however,
corrupted by stellar leakages that largely dominate other signals and make the process of extracting the companion spectrum very
challenging. This paper presents a complete method to calibrate the spectrograph and extract the signal of interest.
Methods. The proposed method is based on a flexible direct model of the high-contrast long-slit spectroscopic data. This model
explicitly accounts for the instrumental response and for the contributions of both the star and the companion. The contributions of
these two components and the calibration parameters are jointly estimated by solving a regularized inverse problem. As this problem
has no closed-form solution, we propose an alternating minimization strategy to effectively find the solution.
Results. We tested our method on empirical long-slit spectroscopic data and by injecting synthetic companion signals in these data.
The proposed initialization and the alternating strategy effectively avoid the self-subtraction bias, even for companions observed very
close to the coronagraphic mask. Careful modeling and calibration of the angular and spectral dispersion laws of the instrument clearly
reduce the contamination by the stellar leakages. In practice, the outputs of the method are mostly driven by a single hyper-parameter
that tunes the level of regularization of the companion’s spectral energy distribution (SED).

Key words. infrared: planetary systems – methods: data analysis – techniques: imaging spectroscopy –
instrumentation: spectrographs – instrumentation: adaptive optics

1. Introduction

High-contrast extreme adaptive optics (AO) systems such
as SPHERE (Spectro-Polarimetry High-contrast Exoplanet
REsearch; Beuzit et al. 2019), GPI (Gemini Planet Imager;
Macintosh et al. 2006, 2014), or SCExAO (Jovanovic et al. 2015)
have been developed to directly observe the close environment of
stars in the visible and the near-infrared. The study of exoplan-
ets and their formation is among the main scientific objectives
of these instruments. One of the advantages of high-contrast
extreme AO systems is that they can provide direct access to
the light from the exoplanet, which is crucial when performing
spectral characterizations. However, substantial contamination
by the light from the host star occurs: in the visible and the near-
infrared, in spite of the real-time correction by the AO system
and of the masking of the host star by a coronagraph, the resid-
ual stellar light diffracted by the instrument is much brighter
than that received from most exoplanets of interest. For this rea-
son, dedicated post-processing methods have been developed to
track evidence of the presence of exoplanets in data corrupted
by strong stellar leakages. The number of published detection
algorithms, LOCI (Lafreniere et al. 2007), TLOCI (Marois et al.
2013), KLIP (Soummer et al. 2012), MOODS (Smith et al. 2009),
ANDROMEDA (Mugnier et al. 2009), PEX (Devaney & Thiébaut
2017), and PACO (Flasseur et al. 2018, 2020a,b), to name a few,

reflects the scientific interest but also the intrinsic difficulty of
trustfully detecting an exoplanet from sequences of high-contrast
images. The most successful of these methods are those that
account for the statistics of the stellar leakages (notably their
correlations), no matter if they consist of sequences of images
(Smith et al. 2009; Flasseur et al. 2018, 2020b), sequences of
multi-spectral images from Integral field spectrographs (IFS;
Flasseur et al. 2020a), or even multi-epoch sequences of images
(Dallant et al. 2022).

After its detection, the direct characterization of an exo-
planet is possible with high-contrast extreme AO systems
equipped with a spectrograph. Both SPHERE and GPI are
equipped with low-resolution IFS. In addition, SPHERE/IRDIS
is equipped with a medium (MRS) resolution long-slit spectro-
graph (LSS) in J, H, and K bands, with the latter being also
available at low (LRS) resolution1 (Dohlen et al. 2008). With
SPHERE/IRDIS/LSS, the spectrum of a detected companion can
then be measured by aligning the slit of the spectrograph with
the host star and the companion while the host star is occulted
by an opaque mask combined with the slit. In an LSS image, the
stellar leakages take the form of speckles spectrally dispersed
along oblique lines generally brighter than the companion spec-
trum (see Fig. 1 for an example). In order to get rid of these

1 λ/∆λ = 35 for the LRS mode or λ/∆λ = 400 for the MRS mode.
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Fig. 1. Long-slit medium resolution spectroscopy data of HR 3549 taken
by IRDIS, with horizontally the spectral axis λ and vertically the angu-
lar separation axis, ρ. The blue arrows indicate the position of the
companion.

stellar leakages, Vigan et al. (2008, 2012) have developed a spec-
tral deconvolution (SD) method following the work of Sparks &
Ford (2002). The SD method consists of a filtering of the LSS
image after a geometrical transform to align the speckles along
a given direction. In practice, the SD method is quite sensitive
to the alignment of the instrument, requires fixing defective pix-
els, and suffers from a self-subtraction bias. The latter is due to
an overestimation of the stellar leakages caused by the presence
of the companion. To improve on the SD method and reduce
the self-subtraction bias, Mesa et al. (2016) adapted the strat-
egy implemented in TLOCI (Marois et al. 2013) to the LSS data.
In spite of these improvements, existing extraction methods suf-
fer from a number of faults, most of them stemming from the
requirement to geometrically transform the LSS data to align the
dispersed speckles. In particular, they provide, at best, a least-
squares estimation of the stellar leakages which is sub-optimal
as the noise is not independent or identically distributed (i.i.d.)
in the geometrically transformed images (Thiébaut et al. 2016).
To overcome the drawbacks of existing methods, we propose for-
mulating the extraction of the spectrum of a companion as an
inverse problem. The inverse problem corresponds to the joint
estimation of the contributions of the star and of its compan-
ion from the LSS data. Not only does this approach require no
transformation of the LSS data (thus avoiding the introduction
of correlations) but it also yields statistically optimal estimators.
To cope with both the possible instrumental misalignment and
the lack of a closed-form solution for the inverse problem, we
implemented an alternating optimization strategy with optional
self-calibration stages to solve the problem.

The outline of the paper is as follows. In Sect. 2, we present
a model of the distribution of the light on the detector of a LSS
instrument. This model is used to illustrate how (following a
geometrical transform) stellar leakages can be partially removed
by a truncated singular value decomposition (TSVD) before
extracting the companion signal. Such an approach is representa-
tive of the optimal performance that can be reached by standard
methods. We present in Sect. 3 our approach to jointly estimate
the stellar leakages and the contribution of the companion
without transforming the data. For the processing of LSS data,
knowledge the spectro-angular coordinates of each detector pixel
is requisite and we describe in Sect. 4 a numerical method to esti-
mate the spatio-spectral dispersion laws from given calibration
data. In Sect. 5, we validate the proposed method on both real
data from SPHERE/IRDIS/MRS and on injections of synthetic
companions in real data. We show the importance of the calibra-
tion (described in Appendix A) and compare our method with
more standard approaches. Finally, we conclude in Sect. 6 and
present some possible modifications of the proposed methods.

2. State-of-the-art processing

In spite of the coronagraphic mask in high-contrast data, the
stellar leakages, taking the form of quasi-static dispersed speck-
les, largely dominate the signal of interest, namely, the spectrum
of the companion. These speckles, whose contribution cannot
be precisely determined by using other stars (i.e., by reference
differential imaging; Xie et al. 2022) or by rotating the slit to
hide the planet (Vigan 2016) are a major source of nuisance for
extracting the companion spectrum. This section introduces a
modeling of the LSS data that is used in Sect. 3 to design our
spectrum extraction method. This model is also useful to explain
how previous approaches perform the suppression of the stellar
leakages (Vigan et al. 2008; Mesa et al. 2016).

2.1. Image formation

Figure 1 shows a single exposure captured by the LSS of
SPHERE/IRDIS. The vector d ∈ RN , with N the number of
pixels, can be modeled by:

dn = m(ρn, λn) + εn, (1)

with m(ρ, λ) the distribution of light in the detector plane at an
angular coordinate, ρ, along the slit and wavelength, λ and ρn,
and λn as the angular and spectral coordinates at the nth pixel,
and εn the contribution of the noise. Our notations are summa-
rized in Table 1. The light distribution in the detector plane is the
sum of the contributions by the star and by the companion:

m(ρ, λ) = f⋆(λ) h⋆(ρ, λ) + f⊕(λ) h⊕(ρ, λ), (2)

with f⋆ and f⊕ the spectral energy distributions (SEDs) of the
star and of the companion as seen by the detector2, h⋆, and h⊕
the point spread functions (PSFs) for a source at the respective
angular positions of the star and of the companion, namely, the
so-called on-axis and off-axis PSFs. The on-axis PSF, h⋆(ρ, λ)
explains the oblique bright lines due to stellar leakages in Fig. 1,
while the stellar SED f⋆(λ) explains the variations of inten-
sity along these lines. As can be seen in Fig. 1, the companion
signal, that is, f⊕(λ) h⊕(ρ, λ), is barely distinguishable in the
LSS data and it is mandatory to get rid of the stellar leakages
f⋆(λ) h⋆(ρ, λ).

2.2. Low-rank approximation of the stellar leakages

Devaney & Thiébaut (2017) have shown that, except in the vicin-
ity of the coronagraphic mask, the chromatic PSF can be written
in the form of a series expansion. Applying their model to the star
and taking into account that our data have one angular dimension
instead of two yields:

h⋆(ρ, λ) =
∑

k≥1
γ(λ)k h⋆,k

(
γ(λ) (ρ − ρ⋆)

)
, (3)

with γ(λ) = λref/λ a chromatic magnification factor relative to
some arbitrary reference wavelength λref , ρ⋆ the angular position
of the star along the slit to account for a possible pointing error
of the instrument, and {h⋆,k}k=1,... a family of spatial PSF modes
at the reference wavelength.

Since the stellar leakages dominate the signal in the LSS
image, d, Eq. (3) suggests applying specific image warping so as
to form a 2D image, dwarp, whose first dimension may vary along

2 These SEDs are affected by the chromatic transmission of the
atmosphere and of the instrument.
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Table 1. Notations.

Notation Description

Subscript ⋆ Parameters of the stellar model
Subscript ⊕ Parameters of the companion model

d ∈ RN Science data
m ∈ RN Sampled model of d
w ∈ RN Diagonal of the precision matrix of d
λ ∈ RN Pixel-wise wavelengths
ρ ∈ RN Pixel-wise angular positions

f⋆ Continuous star SED
x ∈ RNx Sampled star SED f⋆
λgrd
⋆ ∈ R

Nx Sampling wavelengths for x
F⋆ ∈ R

N×Nx Interpolation operator: x to pixel-wise f⋆
h⋆ Continuous on-axis PSF
y ∈ RNy Sampled on-axis PSF h⋆ at λref

ρgrd
⋆ ∈ R

Ny Sampling angles for y
ρ⋆ Angular position of the star
ν⋆ ∈ Ω⋆ Calibration parameters of h⋆
Ω⋆ Feasible set h⋆ parameters
H⋆ ∈ R

N×Ny Interpolation operator: y to pixel-wise h⋆
at λref

f⊕ Continuous companion SED
z ∈ RNz Sampled companion SED f⊕
λgrd
⊕ ∈ R

Nx Sampling wavelengths for z
F⊕ ∈ RN×Nz Interpolation operator: z to pixel-wise f⊕
h⊕ Continuous off-axis PSF
h⊕ ∈ RN Sampled off-axis PSF h⊕ at λref

ν⊕ ∈ Ω⊕ Calibration parameters of h⊕
Ω⊕ Feasible set of h⊕ parameters
ρ⊕ ∈ R Angular position of the companion

µ = (µx, µy, µz) Hyper-parameters

γ ∈ RN Pixel-wise chromatic scaling factors
ν = (ν⋆, ν⊕) ∈ Ω Calibration parameters
Ω = Ω⋆ ×Ω⊕ Feasible set of calibration parameters

Λ Spectral dispersion law
a Parameters of the spectral dispersion law
ϱ Angular dispersion law
s Parameters of the angular dispersion law
∆ρ Width of the coronagraphic mask

Notes. Lowercase letters are for continuous functions and scalars (e.g.,
f⋆), boldface lowercase letters for vectors (e.g., x), and boldface upper-
case letters for linear mappings, a.k.a. matrices (e.g., F⋆). Vectors with
a hat (e.g., x̂) are estimators. The main unknowns of the problem are x,
the sampled star SED, y, the sampled on-axis PSF, and z, the sampled
companion SED.

the wavelength, while its second dimension varies along the
coordinate s = γ(λ) (ρ− ρ⋆). For more details, we refer to Fig. 2.
According to Eqs. (1) and (3), the warped image is modeled and
then approximated by:

dwarp
i, j = m

(
ρ⋆ + swarp

j /γ
(
λ

warp
i

)
, λ

warp
i

)
+ ε

warp
i, j , (4)

≈
∑
k≥1

γ
(
λ

warp
i

)k
f⋆

(
λ

warp
i

)
h⋆,k

(
swarp

j

)
, (5)

where εwarp in Eq. (4) denotes the contribution of the noise in the
warped image while the ≈ symbol in Eq. (5) is to account for the

Fig. 2. Warped HR 3549 image. This figure shows the bottom half of the
data shown in Fig. 1, corresponding to the side where lies the compan-
ion, warped so as to align the dispersed speckles of the stellar leakages.
The warping is defined by the coordinates ρ and λ of the pixels given by
the “complex” calibration model of the spectral and angular dispersion
laws described in Appendix A. The companion signal can be seen as a
faint curved track indicated by the blue arrows.

contributions of the potential companion and for the noise which
have been neglected. In other words, the stellar leakages appear
to have a simple separable decomposition in the warped image.

The singular value decomposition (SVD) of the warped
image3 is expressed as:

dwarp =

min(N1,N2)∑
k=1

uk σk u
⊤
k , (6)

where N1 and N2 are the dimensions of the warped image,
uk ∈ R

N1 is the kth left singular vector of the decomposition,
σk ≥ 0 is the kth singular value, and uk ∈ RN2 is the kth right
singular vector. Comparing Eq. (5) and Eq. (6), we see that the
SVD of dwarp readily provides a decomposition similar to the
contribution of the stellar leakages with, for each index, k, the
left singular vector, uk, sampling γ(λ)k f⋆(λ) as a function of λ
and the right singular vector, uk, sampling h⋆,k(s) as a function
of s (both up to a normalization factor that depends on k). The
truncated singular value decomposition (TSVD) of the warped
image is obtained by limiting the sum in the right-hand side of
Eq. (6) to the kmax ≤ min(N1,N2) first terms; also, according to
the Eckart-Young-Mirsky (Eckart & Young 1936; Mirsky 1960)
theorem, it is the best possible approximation of dwarp of rank
kmax in the least-squares approach. Hence, it may be assumed
that, for a suitable choice of kmax, the TSVD of dwarp provides
a good approximation of the stellar leakages without being too
much affected by the companion signal (if the companion is
not too bright) and by the noise. A residual image that mostly
depends on the companion can then be formed by subtracting
the un-warped TSVD of the warped image dwarp from the LSS
image d:

r⊕ = d −U

kmax∑
k=1

uk σk u
⊤
k

, (7)

where U denotes the un-warping operation4. As illustrated by
Fig. 3, the signal of interest (i.e., the companion SED) is then

3 Considered as a simple matrix.
4 e.g., a simple separable 2D interpolation.
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Fig. 3. Bottom half of the residual image r⊕ for the HR 3549 data with
stellar leakages estimated by the TSVD method as defined in Eq. (7) and
with the warped image shown in Fig. 2. Compared to the original data
shown in Fig. 1, the companion signal appears more distinctly (indicated
by the two arrows).

easier to extract from the residual image, r⊕. This can be done
with standard aperture photometry tools.

As pointed out by Devaney & Thiébaut (2017), there are a
number of issues in using the TSVD to get rid of the stellar leak-
ages in multi-wavelengths high-contrast data. First, to produce
a rectangular warped image (that can be interpreted as a matrix
to perform the SVD), quite substantial regions of the original
data, d, have to be discarded (i.e., those near the coronagraphic
mask and the edges of the formed image). This limits the range
of admissible angular positions for the companion and gets rid
of data that might be valuable to improve the estimation of the
stellar leakages. Second, the presence of a companion in the
original data, d, yields a positive bias in the approximation of
the stellar leakages by the TSVD. This results in a negative bias
in the residual image and, hence, in the estimated companion
SED. This artifact is known in the literature as “self-subtraction”.
Third, the least-squares fit performed by the TSVD of dwarp is
sub-optimal regarding the distribution of the noise in the warped
image. Indeed, a least squares approach is only optimal for inde-
pendent identically distributed (i.i.d.) noise, which is certainly
not the case for εwarp

i, j : at least, the shot noise in the image, d has
a non-uniform distribution and a side effect of the transform of d
to yield the warped image, dwarp, is the introduction of correla-
tions. Moreover, defective pixels, which are quite numerous for
the kind of detectors used by NIR instruments such as LSS, must
be corrected, usually by averaging their neighbors’ values, before
warping the image. This correction can only introduce additional
correlations.

In spite of these drawbacks, the proposed processing meth-
ods (Vigan et al. 2008; Mesa et al. 2016) are similar to the TSVD
approximation of warped LSS images (optimal linear combina-
tion of a set of images). Some refinements have been proposed
to limit the self-subtraction bias (Mesa et al. 2016) but the other
issues have been largely left unaddressed. In the rest of this
paper, we propose a new “inverse problems” approach to solve
all the aforementioned limitations.

3. Inverse problems approach

To avoid the issues resulting from warping the LSS image, we
propose solving an inverse problem that consists of jointly esti-
mating the parameters of the direct model of the data given in
Eqs. (1) and (2) without transforming the data themselves. For

an optimal information extraction, we model the likelihood of
the data to consider the uneven quality of the data and, therefore,
to account for defective pixels or missing data in a consistent
way. Besides, our approach relies on a precise calibration of
the spectro-spatial instrumental dispersion as seen by the detec-
tor. The proposed method includes auto-calibration stages to
refine the calibration parameters and thus accounts for a possible
misalignment of the science exposures.

3.1. Assumed continuous model

To simplify the on-axis PSF model in Eq. (3), we kept only the
first and most significant of these modes. Thus we assume that:

h⋆(ρ, λ) = γ(λ) h⋆
(
γ(λ) (ρ − ρ⋆)

)
, (8)

with h⋆(ρ) = h⋆,1(ρ) as the first spatial mode of the on-axis PSF.
As shown in Sect. 5, this simple model of the stellar leakages
already gives excellent results. Likewise, the chromatic off-axis
PSF h⊕ can also be written as:

h⊕(ρ, λ) ≈ γ(λ) h⊕
(
γ(λ) (ρ − ρ⊕)

)
, (9)

with h⊕(ρ) = h⊕(ρ, λref) the off-axis PSF at the reference wave-
length λref and ρ⊕ the angular position of the companion along
the slit. We note that the γ(λ) factor ensures that the on-axis
and off-axis PSFs be normalized at all wavelengths provided
the PSF at the reference wavelength be also normalized, namely,∫

h(ρ, λ) dρ = 1 (∀λ). These approximations for the on-axis and
off-axis PSFs yield the following simplified model, presented in
Fig. 4, that we assume for the rest of the paper:

m(ρ, λ) = γ(λ)
[
f⋆(λ) h⋆

(
γ(λ) (ρ − ρ⋆)

)
+ f⊕(λ) h⊕

(
γ(λ) (ρ − ρ⊕)

)]
. (10)

3.2. Discretized distribution

In order to fit the data, the model m(ρ, λ) in Eq. (10) has to be
estimated at each angular and spectral coordinates (ρn, λn) of the
N pixels of the detector. These pixel coordinates can be identified
by fitting angular and spectral dispersion laws to calibration data,
as explained in Appendix A. Because of these angular and spec-
tral dispersion laws, continuous functions are needed to model
the SEDs of the star and the companion ( f⋆ and f⊕) and their
respective PSFs (h⋆ and h⊕) on the sensor pixel grid. Next, we
explain how we parameterize these functions.

Our models of the star SED f⋆(λ), of the on-axis PSF h⋆(ρ),
and of the companion SED f⊕(λ) are given by the following
linear interpolations:

f⋆(λ) =
Nx∑
j=1

φ⋆
(
λ − λ

grd
⋆, j

)
f⋆

(
λ

grd
⋆, j

)︸   ︷︷   ︸
x j

, (11a)

h⋆(ρ) =
Ny∑
j=1

ψ⋆
(
ρ − ρ

grd
⋆, j

)
h⋆

(
ρ

grd
⋆, j

)︸   ︷︷   ︸
y j

, (11b)

f⊕(λ) =
Nz∑
j=1

φ⊕
(
λ − λ

grd
⊕, j

)
f⊕

(
λ

grd
⊕, j

)︸   ︷︷   ︸
z j

, (11c)

with φ⋆: R → R, ψ⋆: R → R, and φ⊕: R → R chosen inter-
polation functions, and where λgrd

⋆ ∈ RNx is an evenly spaced
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Fig. 4. Illustration of the direct model for high-contrast long-slit spectroscopy given in Eq. (10). The data are modeled as the sum of two components:
a stellar component and a companion component. Extracting the SED of the companion also requires the estimation of the on-axis PSF and the
SED of the host star. The label “available via calibration” denotes components that may be self-calibrated by EXOSPECO directly from the science
data (see Sect. 3.5 for details).

grid of wavelengths to sample the star SED f⋆, ρgrd
⋆ ∈ RNy is

an evenly spaced grid of angles to sample the on-axis PSF
h⋆, and λgrd

⊕ ∈ R
Nz is an evenly spaced grid of wavelengths to

sample the companion SED f⊕. At the coordinates (ρn, λn) of
any pixel n ∈ ⟦1,N⟧ of the detector, our linear interpolation
yields:

f⋆,n = f⋆(λn) =
∑Nx

j=1
φ⋆

(
λn − λ

grd
⋆, j

)︸          ︷︷          ︸
F⋆,n, j

x j = (F⋆ x)n, (12a)

h⋆,n = h⋆
(
γn (ρn − ρ⋆)

)
=

∑Ny

j=1
ψ⋆

(
γn

(
ρn − ρ⋆ − ρ

grd
⋆, j

))︸                        ︷︷                        ︸
H⋆,n, j

y j

= (H⋆ y)n, (12b)

f⊕,n = f⊕(λn) =
∑Nz

i=1
φ⊕

(
λn − λ

grd
⊕, j

)︸          ︷︷          ︸
F⊕,n,i

zi = (F⊕ z)n, (12c)

with γn = γ(λn), and the matrices F⋆ ∈ R
N×Nx , H⋆ ∈ R

N×Ny , and
F⊕ ∈ RN×Nz defined in Eqs. (12a)–(12c) represent interpolation
operators5. These operators are applied to the vectors6 x ∈ RNx ,
y ∈ RNy , and z ∈ RNz defined in Eqs. (11a)–(11c). They form the
unknown parameters of our models of the star SED f⋆, of the
on-axis PSF h⋆, and of the companion SED f⊕.

5 In practice, the interpolation operators are very sparse and only their
non-zero entries need to be stored or computed on the fly.
6 We use boldface lowercase letters to denote the vectors, that is, quan-
tities that depend on a single index, while boldface uppercase letters
denote linear operators, that is, quantities that depend on two indices.
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The interpolation functions (φ⋆, ψ⋆, and φ⊕) and the sam-
pling lists (λgrd

⋆ , ρgrd
⋆ , and λgrd

⊕ ) may be chosen differently for
each component of the model. If the spectral sampling lists and
spectral interpolation functions are the same (as we chose for
our experiments), then the two spectral interpolation operators
F⊕ and F⋆ are the same. In our implementation of the method,
we selected the Catmull & Rom (1974) cardinal cubic spline
φ as the interpolation function: φ⋆(λ) = φ(λ/∆λgrd

⋆ ), ψ⋆(ρ) =
φ(ρ/∆ρgrd

⋆ ), and φ⊕(λ) = φ(λ/∆λgrd
⊕ ) with ∆λgrd

⋆ , ∆ρgrd
⋆ , and ∆λgrd

⊕

the sampling steps of λgrd
⋆ , ρgrd

⋆ , and λgrd
⊕ .

For the off-axis PSF h⊕(ρ) at the reference wavelength, we
consider a simple parametric model. Since the principal lobe of
the off-axis PSF represents most of the energy received from the
companion, we assume a Gaussian approximation:

h⊕(ρ) =
1

√
2πσ⊕

exp
(
−
ρ2

2σ2
⊕

)
. (13)

Hence h⊕, the sampled off-axis PSF at the reference wave-
length for the companion, depends on the angular position of
the companion ρ⊕ and on σ⊕ the standard deviation of the PSF
at the reference wavelength. Other parametric models of the off-
axis PSF could be considered with a simple adaptation of the
algorithm proposed in Sect. 3.4.

Finally, we introduce the N-vectors m ∈ RN , γ ∈ RN and
h⊕ ∈ RN defined by:

mn = m(ρn, λn), (14a)

γn = γ(λn) = λref/λn, (14b)
h⊕,n = h⊕

(
γn (ρn − ρ⊕)

)
, (14c)

for n ∈ ⟦1,N⟧. The discretized model of the light distribution in
Eq. (10) is then written as:

m(x, y, z, ν) = γ ⊙ (H⋆(ν) y) ⊙ (F⋆ x) + γ ⊙ h⊕(ν) ⊙ (F⊕ z) (15)

with ⊙ the Hadamard product (entry-wise multiplication) and
ν = (ν⋆, ν⊕) the calibration parameters of the model, which are
the other unknown parameters than x, y, or z. With our Gaussian
approximation of the off-axis PSF at the reference wavelength,
the calibration parameters for the companion are ν⊕ = (ρ⊕, σ⊕).
To account for a possible misalignment between the corona-
graphic mask and the star, the calibration parameters for the star
are just ν⋆ = (ρ⋆), with ρ⋆ the angular position of the star along
the slit.

The signal-processing problem then amounts to estimating
the companion’s SED z as well as the other nuisance parame-
ters of the model, x, y, and ν. A method to perform this task is
proposed in the next section.

3.3. Objective function and regularization

After proper calibration of the detector, raw images are pre-
processed to compensate for bias and gain non-uniformity and to
identify defective pixels (i.e., pixels with a non-linear response).
This pre-processing produces the long-slit spectroscopy data
d ∈ RN considered here and modeled by m(x, y, z, ν) in Eq. (15).
Due to photon and detector noises as well as modeling inac-
curacies, some discrepancies are expected between the data,
d, and our model m(x, y, z, ν). Due to the observed flux level,
there are enough photons detected per pixel for the data, d, to
approximately follow a Gaussian distribution of mean the model

m(x, y, z, ν) and of precision matrix7, W. Since we directly con-
sidered the data without any pixel interpolation (i.e., no image
warping to align the dispersed speckles and no attempt to fix
defective pixels), no correlations are introduced in the data and
the pixels can be considered as mutually independent. The preci-
sion matrix is thus diagonal, W = diag(w) where w ∈ RN collects
the diagonal entries of W and is given by:

wn =

{
0 if nth pixel is invalid,
1/Var(dn) otherwise.

(16)

where Var(dn) can be estimated by different pre-processing
methods (Mugnier et al. 2004; Berdeu et al. 2020). We consider
pixels to be invalid when the model is shown to be incorrect;
this includes defective pixels, pixels that are overly impacted by
the coronagraphic mask, and pixels located outside of the field
of view (see Fig. 6). We assume that the estimation of the vari-
ances and the identification of defective pixels are part of the
pre-processing stage. The definition of the precision matrix in
Eq. (16) amounts to assuming that the variance of invalid pix-
els is infinite. In other words, this expresses that the values of
invalid pixels should not be considered at all. Given the large
number of unknowns, the estimation of the stellar and compan-
ion components x, y, and z cannot be performed solely by fitting
the data: regularity constraints are necessary to prevent noise
amplification and cope with missing data (Titterington 1985).
We consider regularized estimators obtained by minimizing the
following criterion:

C(x, y, z, ν,µ) = ∥d − m(x, y, z, ν)∥2W + Rx y z(x, y, z,µ), (17)

where the first term is a statistical distance between the model
and the data (the co-log-likelihood) while Rx y z(x, y, z,µ) is
a regularization term parameterized by the vector µ of so-
called hyper-parameters. In the above equation, ∥u∥2W = u⊤W u
denotes the squared Mahalanobis (1936) norm. Our estimators x̂,
ŷ, ẑ, and ν̂ of the parameters of interest are the ones that jointly
minimize the criterion in Eq. (17):

(x̂(µ), ŷ(µ), ẑ(µ), ν̂(µ)) = arg min
x≥0, y≥0,
z≥0, ν∈Ω

C(x, y, z, ν,µ). (18)

These estimators depend on the hyper-parameters µ, as made
explicit by the notation. As the parameters x, y, and z represent
nonnegative quantities, their estimators are improved by enforc-
ing nonnegativity as indicated by the inequality constraints in
Eq. (18) such as x ≥ 0, which hold element-wise. The cali-
bration parameters ν = (ν⋆, ν⊕) are constrained to belong to a
set Ω = Ω⋆ × Ω⊕ where Ω⋆ and Ω⊕ are the respective feasible
sets for the stellar and companion calibration parameters defined
based on physical considerations.

The SEDs and the on-axis PSF at the reference wavelength
being mutually independent, the regularization function can be
decomposed as:

Rx y z(x, y, z,µ) = µx Rx(x) + µy Ry(y) + µz Rz(z). (19)

The complete set of hyper-parameters is then:

µ = (µx, µy, µz), (20)

where µx > 0, µy > 0, and µz > 0 tune the weights of the
different regularization terms.
7 The precision matrix is the inverse of the covariance matrix.
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There are many regularizations that are suitable for our
problem. Regularization terms should enforce some kind of
continuity or smoothness of the sought uni-dimensional dis-
tributions. In the following (and for the sake of simplicity),
we consider simple smoothness regularizations imposed by the
quadratic penalty (Tikhonov & Arsenin 1977):

R(u) =
∑Nu−1

j=1

(
u j+1 − u j︸    ︷︷    ︸

(D u) j

)2
= ∥D u∥22, (21)

with Nu the size of u = x, y, or z, and D ∈ R(Nu−1)×Nu a finite
difference operator.

3.4. Alternating the minimization strategy

The joint minimization of the criterion defined in Eq. (17)
requires us to cope with a highly non-linear function whose con-
ditioning may be very bad and which depends on the scaling of
the parameters. We propose to solve the problem by an alternated
minimization strategy, that is, estimating each set of parameters
given the others. Such a strategy consists in sequentially solving
the following sub-problems:

x̂(y, r⋆, ν⋆, µx) = arg min
x≥0

C(x, y, z, ν,µ)

= arg min
x≥0

{
∥A⋆ x − r⋆∥2W + µx Rx(x)

}
, (22a)

ŷ(x, r⋆, ν⋆, µy) = arg min
y≥0

C(x, y, z, ν,µ)

= arg min
y≥0

{
∥B⋆ y − r⋆∥2W + µy Ry(y)

}
, (22b)

ν̂⋆(x, y, r⋆) = arg min
ν⋆∈Ω⋆

C(x, y, z, ν,µ)

= arg min
ν⋆∈Ω⋆

∥m⋆(x, y, ν⋆) − r⋆∥2W, (22c)

ẑ(r⊕, ν⊕, µz) = arg min
z≥0

C(x, y, z, ν,µ)

= arg min
z≥0

{
∥A⊕ z − r⊕∥2W + µz Rz(z)

}
, (22d)

ν̂⊕(z, r⊕) = arg min
ν⊕∈Ω⊕

C(x, y, z, ν,µ)

= arg min
ν⊕∈Ω⊕

∥m⊕(z, ν⊕) − r⊕∥2W, (22e)

with:

∀x, A⋆x = γ ⊙
(
H⋆(ν) y

)
⊙ (F⋆x), (23a)

∀y, B⋆y = γ ⊙
(
F⋆ x

)
⊙ (H⋆(ν)y), (23b)

∀z, A⊕ z = γ ⊙
(
h⊕(ν)

)
⊙ (F⊕ z), (23c)

r⋆ = d − m⊕(z, ν⊕), (23d)
r⊕ = d − m⋆(x, y, ν⋆), (23e)

m⋆(x, y, ν⋆) = γ ⊙ (H⋆(ν) y) ⊙ (F⋆ x) = A⋆ x = B⋆ y, (23f)
m⊕(z, ν⊕) = γ ⊙ h⊕(ν) ⊙ (F⊕ z) = A⊕ z. (23g)

We enforced positivity constraints for the variables x, y, and z,
while Ω⋆ and Ω⊕ (respectively) denote the feasible set of param-
eters ν⋆ and ν⊕. We note that m⋆(x, y, ν⋆) and m⊕(z, ν⊕) defined
in Eqs. (23f) and (23g) are the respective contributions of the
star and companion.

When the convex regularization defined in (21) is chosen and
A⊤⋆WA⋆, B⊤⋆WB⋆, and A⊤⊕WA⊕ are invertible, each of the prob-
lems (22a), (22b), and (22d) is strictly convex and thus has a

Algorithm 1: FITSTAR – fit stellar parameters.

Input: r⋆ ∈ RN , W ∈ RN×N , x[0] ∈ RNx , ν[0]
⋆ , µx > 0,

and α0 > 0.
Output: x̂, ŷ, and ν̂⋆ a local minimum of C in x, y, and

ν⋆.
k = 0;
µy = 1;
while not converged do

while true do
▶ Update on-axis PSF;
y[k+1] = ŷ

(
x[k], r⋆, ν[k]

⋆ , α
−2
k µy

)
; ◁ Eq. (22b)

αk+1/2 = α̂
(
x[k], y[k+1], µx, µy

)
; ◁ Eq. (C.4)

if k ≥ 1 or αk+1/2 ≈ αk then break;
αk = αk+1/2;

▶ Update star SED;
x[k+1] = x̂

(
y[k+1], r⋆, ν[k]

⋆ , α
2
k+1/2 µx

)
; ◁ Eq. (22a)

αk+1 = α̂
(
x[k+1], y[k+1], µx, µy

)
; ◁ Eq. (C.4)

▶ Auto-calibration (optional);
ν[k+1]
⋆ ← ν̂⋆

(
x[k+1], y[k+1], r⋆

)
; ◁ Eq. (22c)

k ← k + 1;

x̂← αk x[k];
ŷ← y[k]/αk;
ν̂⋆ ← ν

[k]
⋆ ;

unique solution that can be found by using existing algorithms8.
This is another advantage of the alternated strategy. Since the
original minimization problem (18) is not jointly convex with
respect to all unknowns, only a local minimum is reached by the
alternating minimization scheme, however.

We solve for the two stellar components x and y following
the alternated method proposed by Thé et al. (2020) to exploit
the scaling indetermination of this problem (see Appendix C for
details). This method is implemented by Algorithm 1 and takes
as inputs the residuals r⋆ = d − m⊕(z, ν⊕) (i.e., the data with-
out the contribution of the companion), the precision matrix,
W, initial calibration parameters, ν[0]

⋆ , the hyper-parameters,
µx > 0 (hyper-parameter µy is set to the arbitrary value 1 in
Algorithm 1), initial estimates, x[0], of the stellar SED, and ini-
tial estimate, α0 > 0, of the scaling parameter. We offer some
remarks on Algorithm 1 below.

First, the initial stellar SED x[0] must be such that Rx(x[0]) >
0 to be able to apply formula (C.4) to compute the optimal scal-
ing factor (i.e., a non-flat SED). The initial stellar SED can be
provided by calibration data (see Appendix B); otherwise, it can
be computed from the science data, d, by the following weighted
mean:

∀ j ∈ ⟦1,Nx⟧ : x[0]
⋆, j =

∑
n∈X j

wn dn∑
n∈X j

wn
, (24)

with wn = Wn,n the nth diagonal term of the precision matrix
and:

X j =
{
n ∈ ⟦1,N⟧

∣∣∣∣ ∣∣∣∣λgrd
⋆, j − λn

∣∣∣∣ = min
j′∈⟦1,Nx⟧

∣∣∣∣λgrd
⋆, j′ − λn

∣∣∣∣} (25)

8 For example, in the unconstrained case and with quadratic regular-
izations, the solution of one of these sub-problem has a closed-form
expression. Otherwise, each of these sub-problems can be solved by
optimization algorithms such as quasi-Newton methods with bound
constraints (e.g., Thiébaut 2002).
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Algorithm 2: FITCOMPANION – fit companion param-
eters.

Input: residuals r⊕ ∈ RN , precision matrix W, initial
off-axis PSF parameters ν[0]

⊕ , µz > 0.
Output: ẑ and ν̂⊕, a local minimum of C in z and ν⊕

given m⋆(x, y, ν⋆) the model of the stellar
contribution.

k = 0;
while not converged do
▶ Update companion SED;
z[k+1] = ẑ

(
r⊕, ν[k]

⊕ , µz
)
; ◁ Eq. (22d)

▶ Update off-axis PSF (optional);
ν[k+1]
⊕ = ν̂⊕

(
z[k+1], r⊕

)
; ◁ Eq. (22e)

k ← k + 1;

ẑ← z[k];
ν̂⊕ ← ν

[k]
⊕ ;

the set of pixels whose nearest wavelength in the model grid is
the jth one. Since Algorithm 1 scales the final components x[k]

and y[k] by the corresponding optimal scaling factor, α0 = 1 is a
natural choice for the initial scaling factor in subsequent calls to
Algorithm 1 (to refine the solution or after having improved the
other parameters).

Second, the inner loop of Algorithm 1 avoids sensitivity to
the initial scaling of the parameters (Thé et al. 2020). Then, the
convergence criterion of Algorithm 1 is left unspecified. In our
implementation, we chose to stop the algorithm when the relative
change, in norm, between two consecutive iterates is smaller than
a parameter ϵ (= 10−3).

Although they represent very different physical quantities,
the problem is quite symmetric in variables x and y. Thus a vari-
ant of Algorithm 1 can be easily implemented to start with an
initial estimate y[0] of the stellar on-axis PSF at the reference
wavelength instead of an initial estimate x[0] of the stellar SED.
For the very first run, this variant of Algorithm 1 is started with
the weighted average of the on-axis PSF defined by:

∀ j ∈ ⟦1,Ny⟧ : y[0]
⋆, j =

∑
n∈Y j

wn dn∑
n∈Y j

wn
, (26)

with:

Y j =
{
n ∈ ⟦1,N⟧

∣∣∣∣ ∣∣∣∣ρgrd
⋆, j − ρn

∣∣∣∣ = min
j′∈⟦1,Ny⟧

∣∣∣∣ρgrd
⋆, j′ − ρn

∣∣∣∣}, (27)

the set of pixels whose nearest angular position in the model grid
is the jth one.

Finally, when the SED z of the companion is not yet known,
it is sufficient to refer to Algorithm 1 with the weights of the
pixels that are the most impacted by the companion set to zero
(we denote the corresponding precision matrix as W⋆) to esti-
mate the components x and y of the stellar leakages without
introducing a significant bias due to the contribution of the
companion.

Algorithm 2 (FITCOMPANION) implements an alternated
strategy to estimate the parameters z and ν of the companion
SED and its off-axis PSF at the reference wavelength. It takes
as inputs the residuals r⊕ = d − m⋆(x, y, ν⋆) (i.e., the data with-
out the contribution of the star) and their respective weights W,
the hyper-parameter µz > 0 and an initial estimate ν[0]

⊕ ∈ Ω⊕ of
the parameters of the off-axis PSF at the reference wavelength.

Algorithm 3: EXOSPECO algorithm
Input: The data, d, and its precision matrix, W, the

masked precision matrix, W⋆, initial estimates,
x[0], ν[0]

⋆ , and ν[0]
⊕ , and hyper-parameters, µx > 0

and µz > 0.
Output: x̂, ŷ, ẑ, ν̂⋆, and ν̂⊕ a local minimum of C.
µy = 1;
z[0] = 0;
α̂ = 1;
k = 0;
while not converged do

if k = 0 then
▶ Hide companion;
W′ =W⋆; ◁ Eq. (28)

else
▶ Account for companion;
W′ =W;

▶ Update star leakage model;
r[k]
⋆ = d − m⊕

(
z[k], ν[k]

⊕

)
; ◁ Eq. (23d)(

x[k+1], y[k+1], ν[k+1]
⋆

)
=;

FITSTAR
(
r[k]
⋆ ,W′, x[k], ν[k]

⋆ , µx, α̂
)
;

▶ Update companion model;
r[k+1]
⊕ = d − m⋆

(
x[k+1], y[k+1], ν[k+1]

⋆

)
; ◁ Eq. (23e)(

z[k+1], ν[k+1]
⊕

)
= FITCOMPANION

(
r[k+1]
⊕ ,W, ν[k]

⊕ , µz
)
;

k ← k + 1;

(x̂, ŷ, ẑ, ν̂⋆, ν̂⊕)←
(
x[k], y[k], z[k], ν[k]

⋆ , ν
[k]
⊕

)
;

These latter parameters can be given by the calibration described
in Appendix B. Algorithm 2 also merits some remarks, which are
given below.

First, the outputs of the algorithm only depend on the resid-
ual data r⊕ defined in Eq. (23e) that need to be computed only
once (on entry of the algorithm and not at each iterations).

Second, as in the case of Algorithm 1, various stopping cri-
teria may be implemented to break the loop. Then, as with Algo-
rithm 1, we can use the VMLM-B algorithm (Thiébaut 2002)
to solve problem (22d) to estimate z under a non-negativity
constraint.

In both algorithms, there are optional self-calibration steps
performed by solving problem (22c) in Algorithm 1 (FITSTAR)
and problem (22e) in Algorithm 2 (FITCOMPANION) to estimate
the parameters of the on-axis and off-axis PSFs. These mini-
mizations can be carried out by a derivative-free minimization
algorithm. When there is a single calibration parameter, we use
the Brent (2013) FMIN algorithm; if there are several parame-
ters, we use one of Powell’s derivative-free methods NEWUOA
or BOBYQA (Powell 2006, 2009) depending on the constraints
defined by Ω.

3.5. The EXOSPECO algorithm

FITSTAR (Algorithm 1) and FITCOMPANION (Algorithm 2)
are the building blocks of the EXOSPECO method given in
Algorithm 3 for estimating all unknowns. A few additional
remarks are given below.

First, for the first estimation of the stellar leakage parameters,
it is beneficial to define a masked version, W⋆, of the precision
matrix of the data to avoid a significant bias of the first estimates
due to the signal from the companion, which would slow down
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Fig. 5. Calibration data for the SPHERE/IRDIS instrument and for the observations of HR 3549 on 2015/12/28. Central panel: calibration image.
Left and top panels: projections of the calibration data along the 2nd spectral line (in green) and across all spectral lines (in red).

the convergence of Algorithm 3. The masked precision matrix is
simply given by:

W⋆ = diag(w⋆), (28)

where the weights, w⋆, are those of the precision matrix, W, of
the data except that they are set to zero for the pixels that are the
most impacted by the companion:

∀n ∈ ⟦1,N⟧ : w⋆,n =

{
0 if γn |ρn − ρ⊕| ≤ τ

wn otherwise
(29)

with τ > 0 the angular half-width at the reference wavelength of
the impacted region. In practice, τ is taken to be 2–3 times σ[0]

⊕

the initial angular standard deviation of the off-axis PSF at the
reference wavelength.

Then, the model of the stellar leakage only depends on either
µx or µy, the other being arbitrarily chosen. For this reason,
Algorithm 3 takes as inputs only two hyper-parameters, µx and
µz, the remaining hyper-parameter being set to µy = 1.

After extracting the companion’s spectrum by the
EXOSPECO Algorithm 3, it is possible to express it as a
contrast relative to the host star that can be multiplied by a
reference spectrum of the star to get rid of the atmospheric
absorption (see Appendix B).

The auto-calibration steps in FITSTAR (Algorithm 1) and
FITCOMPANION (Algorithm 2) are optional and consist in the
resolution of problems (22c) and (22e). As these problems are

non-convex, activating the auto-calibration at the beginning of
the method can lead to a local minimum. To avoid such a behav-
ior, it is possible to start the self-calibration of ν⋆ and ν⊕ only
after a few iterations of EXOSPECO (Algorithm 3).

Controlling the number of inner iterations to solve each sub-
problem could be done by changing the value of the stopping
parameter ϵ (cf. remark 3 in Sect. 3.4): the smaller ϵ the more
inner iterations are needed and conversely. But this is expected
to also impact the number of outer iterations. Owing to the mod-
est amount of time (2–3 min) taken by our implementation of
EXOSPECO to solve the entire problem, we did not investigate
whether the algorithm can be effectively accelerated by changing
ϵ and keep the value ϵ = 10−3 suggested previously.

4. Calibration

The direct model in Eq. (15) assumes the physical coordinates
(ρn, λn) of each pixel n of the detector are known. In this sec-
tion, we offer a consistent approach to derive the spectro-angular
dispersion laws of the instrument from calibration data.

4.1. Calibration data

Calibration data takes the form of an image (e.g., as shown in
Fig. 5) obtained by illuminating the spectrograph slit with Nλ

laser sources9. This produces Nλ mono-chromatic lines on the

9 Nλ = 6 at wavelengths 0.9877µm, 1.1237µm, 1.3094µm,
1.5451µm, 1.73µm, and 2.015µm for SPHERE/IRDIS.
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Fig. 6. Valid pixel mask for the HR 3549 data observed on 2015-12-28
in MRS mode.

detector, each being interrupted by the coronagraphic mask. The
calibration image dcal is of size I × J and, for the calibration
procedure, we denote it using n ∼ (i, j) the one to one mapping
between the pixel number, n, and its indices i ∈ ⟦1, I⟧ and j ∈
⟦1, J⟧ along the first and second dimensions of the detector.

The calibration image shall have been pre-processed to com-
pensate for bias and non-uniform response of the detector.
Furthermore, we assume a given mask of valid pixels:

wmsk,i, j =

{
1 if the pixel (i, j) is valid,
0 else.

(30)

We consider a pixel as being invalid if its value cannot follow the
assumed direct model given in Eq. (15). Invalid pixels include
pixels outside the field of view, pixels under the coronagraphic
mask or close to this mask, and defective pixels whose level
does not linearly depend on the illumination. Figure 6 shows the
mask of valid pixels for the HR 3549 data: the field of view and
the coronagraphic mask are outlined by the two green trapezes,
while the defective pixels are marked by green dots.

4.2. Dispersion laws

There are two dispersion laws to calibrate: Λ(i, j) for the wave-
length and ϱ(i, j) for the separation angle along the slit. To deter-
mine the best approximation of these spectro-angular dispersion
laws, we compared three models:

First, we have the “standard model” which assumes that the
dispersion laws are uni-dimensional polynomials with spectral
and angular directions aligned with the detector axes:

Λsta(i, j) =
∑Pλ

p=0
ap jp, (31a)

ϱsta(i, j) =
∑Pρ

p=0
sp ip, (31b)

with Pλ and Pρ the degrees of the polynomials and {ap}p∈⟦0,Pλ⟧
and {sp}p∈⟦0,Pρ⟧ their coefficients. For Pρ = 1 and Pλ = 3–5, the
“standard model” reproduces what is done in the software by
Vigan et al. (2008) usually used to process SPHERE/LSS data.

Next, the model of medium complexity, also assuming 1D
polynomials for the dispersion laws but accounting for misalign-
ment angles ϕλ and ϕρ ≈ ϕλ + 90◦, respectively, between the

spectral and angular directions and the detector axes:

Λmed(i, j) =
∑Pλ

p=0
ap (i sin ϕλ + j cos ϕλ)p, (32a)

ϱmed(i, j) =
∑Pρ

p=0
sp (i sin ϕρ + j cos ϕρ)p. (32b)

We note that taking ϕλ = 0◦ and ϕϱ = 90◦ yields the standard
model.

Finally, a more complex model, which assumes 2D poly-
nomials for the dispersion laws and, depending on the degree
of these polynomials, can account for more complex image
distortions than a simple rotation:

ΛEXOSPECO(i, j) =
∑Pλ

p1=0

∑Pλ−p1

p2=0
ap1,p2 ip1 jp2 , (33a)

ϱEXOSPECO(i, j) =
∑Pρ

p1=0

∑Pρ−p1

p2=0
sp1,p2 ip1 jp2 . (33b)

To summarize, the considered dispersion laws are polynomi-
als of respective degree, Pλ and Pρ. Their calibration amounts to
fitting their coefficients a and s given the calibration image, dcal,
as explained in the next sub-sections.

4.3. Calibration of the spectral dispersion law Λ

To calibrate the spectral dispersion law Λ, we extract from the
calibration image dcal (see Fig. 5) the Nλ lists of pixel coordi-
nates following the path of each spectral line on the detector and
estimate the coefficients a by a least-squares fit:

â = arg min
a

Nλ∑
ℓ=1

∑
(i, j)∈Cℓ(ϕλ)

(
λℓ − Λ(i, j)

)2
, (34)

where Cℓ(ϕλ) denotes the list of, possibly fractional, pixel coor-
dinates (i, j) along the ℓth spectral line on the detector. Since
Λ(i, j) linearly depends on the coefficients a, then the solution â
of the above problem has a closed-form expression (Lawson &
Hanson 1974) that is easy to compute.

To extract the paths Cℓ(ϕλ) of the spectral lines, we first com-
pute a transverse projection q⊥(ϕλ) of the calibration image dcal
tuning the projection angle ϕλ, so as to maximize the peak values
in the resulting projection. This transverse projection is plotted
in red in the top panel of Fig. 5 and corresponds to ϕλ ≈ 0◦ for
the considered calibration data. Equations (A.1) formally define
how we carefully compute the projection avoiding invalid pixels.
We then use the procedure described in Appendix A.2 to locate
the position of the Nλ most significant peaks in the transverse
projection q⊥(ϕλ), which can be seen as a mean cross-section
of the spectral lines. Finally, we use the method described in
Appendix A.3 to extract the coordinates of the points defin-
ing the Nλ paths Cℓ(ϕλ). These coordinates are given by the
centers of gravity (again accounting for invalid pixels thanks
to the mask) of the calibration data in small sliding rectan-
gular windows along each spectral lines (see Appendix A.3
for details).

4.4. Calibration of the angular dispersion law ϱ

To calibrate the angular dispersion law ϱ, we extract from the
calibration image dcal (see Fig. 5), the positions of the edges of
the coronagraphic mask for each of the Nλ spectral lines and
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estimate the coefficients s of the polynomial and the width ∆ρ of
the mask by a least-squares fit:

(ϕ̂ρ, ∆̂ρ, ŝ) = arg min
ϕρ,∆ρ,s

{ Nλ∑
ℓ=1

(
ϱ
(
idown
ℓ , jdown

ℓ

)
+ ∆ρ/2

)2

+

Nλ∑
ℓ=1

(
ϱ
(
iup
ℓ
, jup
ℓ

)
− ∆ρ/2

)2
}

(35)

where
(
idown
ℓ

, jdown
ℓ

)
and

(
iup
ℓ
, jup
ℓ

)
denote the coordinates of the

edges of the coronagraphic mask respectively on the downhill
and uphill sides along the profile of the ℓth spectral line. To
solve this problem, we exploit that the criterion is quadratic in
the unknowns s and ∆ρ, which thus have a closed-form solu-
tion (Lawson & Hanson 1974) that depends on ϕρ. Replacing this
closed-form solution in the criterion yields an uni-variate objec-
tive function that only depends on ϕρ and which we minimize by
Brent (2013) FMIN method starting at ϕρ = ϕλ + 90◦.

As explained in Appendix A.4, the coordinates of the edges
of the coronagraphic mask for the ℓth spectral line are obtained
from the longitudinal profile q// ℓ(ϕλ) of the line which is the
weighted projection, in a direction perpendicular to the transver-
sal projection q⊥(ϕλ), of the calibration data in a window
encompassing the line. The longitudinal profile q// ℓ(ϕλ) for the
second (ℓ = 2) line is plotted in green in the left panel of Fig. 5
and the corresponding window is outlined in green in the central
panel of Fig. 5.

4.5. Comparison of the calibration models

To compare the calibration models considered in Sect. 4.2, we
applied EXOSPECO (Algorithm 3) on a scientific dataset of the
star HR 3549 observed in MRS mode of SPHERE/IRDIS on
2015/12/28. Figure 7 shows the residuals r = d − m, that is
the difference between the data and their model, computed for
the different spectro-angular dispersion laws. This figure shows
that the root mean square (rms) of the residuals are signif-
icantly reduced when using more flexible calibration models
than the standard one. The improvement brought by the medium
complexity model compared to the standard model proves that
accounting for a slight angular misalignment between the spa-
tial and spectral directions and the detector axes is important.
Compared to the medium model, the complex model is able
to account other image distortions than a simple rotation and
thus achieves a better suppression of the stellar leakages. These
results motivate the choice of the complex dispersion model in
EXOSPECO to reduce the rms level of the residual stellar leak-
ages by a factor of ∼2 compared to the standard model and
should therefore result in a better extraction of the compan-
ion contribution. We recall that the simple standard calibration
model is similar to what is usually used for these data in other
studies.

5. Validation and tuning of the method

To fully validate the method, we propose a study of the method
on both real data and data where a synthetic companion was
injected. This study allows us to both evaluate the modeling of
the stellar leakages (and, thus, its subtraction in the residuals)
and the extraction of the companion via a comparison with a
ground truth spectrum. This study is described below.

Fig. 7. Residuals between the HR 3549 scientific data and the model
of the stellar leakages, assuming a standard (top figure), medium (cen-
ter), and complex (bottom) calibration models. The rms values of the
residuals are given for each model. The iso-levels of ρ/λ which are
approximately followed by the dispersed stellar speckles are plotted as
green dashed lines. The position of the companion at the different wave-
lengths (i.e., at ρ = ρ⊕) is plotted as an orange dashed line.

5.1. Reduction of the self-subtraction

One of the main features of EXOSPECO is that it jointly estimates
the contributions of the star and of the companion whose param-
eters are iteratively refined until convergence. Figure 8 shows the
residuals close to the companion (in the region outlined by the
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Fig. 8. Residuals between the HR 3549 scientific data and the model of
the stellar leakages near the companion (defined by the black rectangle
in the bottom of Fig. 7) and for the complex model of the spatial and
spectral dispersion laws after one iteration (top) and after convergence
(middle) of EXOSPECO. The rms of the residuals in this region are sig-
nificantly reduced after convergence. The orange dashed line indicates
the position of the companion at the different wavelengths. The SEDs of
the companion (including atmospheric absorption) extracted from these
residuals are plotted in the bottom-most panel.

black rectangle in the bottom of Fig. 7) with the complex model
of the spatial and spectral dispersion laws in two cases: after the
first outer iteration of EXOSPECO and after convergence of the
algorithm. In the first outer iteration of EXOSPECO, the model
of the stellar leakages is estimated by masking the region most
impacted by the companion, as in Eq. (28), similarly to what is
done by conventional methods. In all other outer iterations of
EXOSPECO, the contribution of the other component is taken
into account when fitting a given component (star or compan-
ion). As shown by the bottom panel of Fig. 8, there is a noticeable
bias in the estimated companion’s SED after the first outer itera-
tion. This so-called “self-subtraction bias” is mostly avoided by
adopting the proposed alternating strategy.

5.2. Tuning of the regularization parameters

As described in Appendix C, the fact that the model of the star
leakages is bi-linear makes it possible to tune the regularization
of this component by a single hyper-parameter, that is, the other
hyper-parameter being held fixed. Thanks to this, the solution
found by EXOSPECO only depends on two hyper-parameters:
one for the star, say, µx (while µy = 1 is imposed) and one
for the companion, µz. In this section, we highlight the inci-
dence on the companion SED extracted by EXOSPECO of these
remaining hyper-parameters using the same scientific data set as
in Sect. 4.5.

Figure 9 shows the SEDs of the companion estimated by
EXOSPECO for different values of the star regularization hyper-
parameters (µy = 1 and µx = 10−3, 10, and 105). For such a

Fig. 9. Top: profiles of the companion SED z, for different levels of
the stellar hyper-parameter µx and with µy = 1 and µz = 105. Bottom:
differences between the profile for µx = 10 and the profiles for µx =
10−3 (dashed orange) and µx = 105 (dotted green).

Fig. 10. Profiles of the companion SED z for different levels of the
companion regularization (µz = 102 in dashed orange, µz = 105 in blue,
and µz = 107 in dotted green) in the top panel. Differences between the
profile for µz = 105 and the profiles for µz = 102 (dashed orange) and
µz = 107 (dotted green) at the bottom. For all these results, the stellar
hyper-parameters are µx = 10 and µy = 1.

broad range of values, the differences between the extracted
companion SEDs are smaller than 1%. The stellar regulariza-
tion hyper-parameters have thus a limited impact on the resulting
companion SED. The tuning of µx can thus reasonably be done
by visual inspection.

On the contrary, as Fig. 10 shows, the hyper-parameter µz
has a strong impact on the resulting companion SED. This is
expected as µz directly tunes the strength of the smoothness con-
straint for the companion SED z. This hyper-parameter has thus
to be carefully chosen to find the best compromise between a
solution that is too smooth (e.g., for µz = 107 in Fig. 10) or too
noisy (e.g., for µz = 102 in Fig. 10). It is worth noticing that the
correct value of µz strongly depends on the considered data, so
µz = 105, which seems to be a good choice for the HR 3549 data
(see Fig. 10), should not be considered as a universal value.

Many methods have been proposed to automatically tune
the hyper-parameter(s) of an inverse problem: a generalized
cross-validation (CGV; Golubet al. 1979), Stein’s unbiased risk
estimate (SURE; Stein 1981), hierarchical Bayesian method
(Molina 1994), or the L-curve (Hansen & O’Leary 1993) to
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Fig. 11. Scientific data of HIP 65426 with a synthetic companion whose
contrast is χ = 2 × 10−4 relative to the star and injected at angular sepa-
rations ρ⊕ −ρ⋆ = 273 mas (A), 890 mas (B), and 1353 mas (C) indicated
by the arrows.

mention a few that could potentially be used with our extrac-
tion algorithm. Implementing and testing these methods for
EXOSPECO is beyond the scope of this paper. However, since
the companion SED found by EXOSPECO does not strongly
depend on the tuning of the stellar regularization, our method
is mostly driven by a single hyper-parameter, µz, the level of the
regularization for the companion SED. This greatly reduces the
complexity of tuning the EXOSPECO algorithm.

5.3. Extraction of simulated spectrum in real data

To validate the EXOSPECO method, we injected the contribu-
tion of a synthetic companion in existing SPHERE/IRDIS MRS
data d of the star HIP 65426 observed on 2019-05-20. Although
HIP 65426 star hosts a planet (Chauvin et al. 2017; Carter et al.
2023), the frame was selected for the de-rotation angles hiding
the planet outside the slit. The off-axis PSF h⊕ of the synthetic
companion follows the model in Eqs. (13) and (14c) with σ⊕
set to match the diffraction limit of the telescope at the refer-
ence wavelength λref and with different angular positions ρ⊕ on
the side of the coronagraphic mask where no companion was
detected. The “ground truth” SED of the synthetic companion is
zgt = χ xflux, where χ > 0 is the mean contrast of the companion
relative to the star (without a coronagraph) and xflux is the SED
of the star HIP 65426 calibrated as explained in Appendix B. We
used a constant contrast for all wavelengths (i.e., the SED of the
star and of the companion are the same, up to the contrast χ).
Figure 11 shows examples of generated data with a synthetic

Fig. 12. Relative error q defined in Eq. (36) for synthetic companions
injected in the scientific data of HIP 65426 (with the same spectra as
the host star) as a function of the angular separation, ρ⊕ − ρ⋆, and for
contrasts of χ = 3× 10−5 (blue), 2× 10−4 (orange), and 2× 10−2 (green).
The grayed area represents the region invalidated by the coronagraphic
mask. The angular separations of the three cases presented in Fig. 11
are highlighted by the dashed lines labeled A, B, and C.

companion whose contrast with respect to the star is χ = 2×10−4

and which is injected at different angular separations, ρ⊕ − −ρ⋆.
To assess the quality of the extracted companion’s SED ẑ, we

compute the following relative error:

q =

∑Nz
j=1

∣∣∣zgt, j − ẑ j

∣∣∣∑Nz
j=1

∣∣∣zgt, j
∣∣∣ . (36)

In the following tests, the value of µz, the regularization level
of the companion’s SED, has been tuned so as to minimize the
relative error q. Figure 12 plots the relative error q for synthetic
companions injected at angular separations ρ⊕ −ρ⋆ ranging from
200 mas to 1850 mas and with contrasts χ = 3 × 10−5, 2 × 10−4,
and 2×10−3. Clearly, the quality of the recovered SEDs degrades
as the companion gets closer to the mask. This is expected
because, when getting closer to the mask, not only are the stellar
leakages brighter (thus causing more photon noise in the resid-
uals) but the approximation by the assumed off-axis PSF model
also worsens. For angular separations larger than ∼600 mas and
for all considered contrasts, the quality of the recovered SEDs
improves as the separation increases until a plateau is reached at
ρ⊕ − ρ⋆ ∼ 1400 mas, where the dominant source of nuisance is
the readout noise.

Figure 13 shows examples of recovered companion SEDs ẑ
at angular separations ρ⊕ − ρ⋆ = 273 mas (A), 890 mas (B), and
1353 mas (C) for the same contrasts χ as in Fig. 12. Figure 13
confirms that the relative error q does reflect the ability of our
method to reliably recover the companion SED. When q ≤ 0.1
(the green curves for angular separations B and C and the orange
curve for angular separation C), all the features of the SED are
correctly recovered. For q ∼ 0.2 (the green curve for case A,
the orange curve for case B, and the blue curve for case C), the
global shape of the SED is restored but with small spectral fea-
tures smoothed out and some photometric biases. These cases
prove that it is possible to extract a coarse but still exploitable
SED for bright companions quite close to the mask, typically
χ ≥ 10−3 for ρ⊕ − ρ⋆ ∼ 250 mas, from a single MRS exposure.
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Fig. 13. Examples of recovered companion SEDs ẑ in the same condi-
tions as in Figs. 11 and 12 for synthetic companions injected at angular
separations ρ⊕ − ρ⋆ = 273 mas (A), 890 mas (B), and 1353 mas (C) with
contrasts of χ = 3 × 10−5 (blue curves), 2 × 10−4 (orange curves), and
2 × 10−2 (green curves). The ground truth SED zgt is plotted in dashed
lines. The normalized residuals are plotted below each panel.

The angular separation must be larger for fainter companions;
for example, ρ⊕ − ρ⋆ ≥ 1200 mas for χ ∼ 2 × 10−5. The pho-
tometric biases in the most difficult cases (the green curve in
case A, the orange one in case B, and the blue one in case C)
clearly indicates that the removal of the modeled stellar contribu-
tion leaves non-negligible residuals compared to the companion.

Fig. 14. Minimal contrast χ required to achieve a given relative error q
as a function of the angular separation. The conditions are the same as
in Figs. 11 and 12.

Fig. 15. Comparison of the SEDs extracted from the HR 3549 data by
EXOSPECO and by a standard TSVD method. See text for details.

A possible improvement could be to use a more complex model
of the on-axis PSF and consider more than one mode in the series
expansion of Eq. (3).

To summarize the performances of the current version of
EXOSPECO for a single data frame of the HIP 65426 observa-
tions, Fig. 14 plots the minimal contrast needed to achieve a
given relative error q as a function of the angular separation. The
figure shows that by tolerating a relative error as high as q = 0.3,
a companion with a contrast up to χ ∼ 2× 10−5 can be character-
ized. In our conclusions, we explain how to extend EXOSPECO
to jointly process several data frames in order to increase the
sensitivity of the algorithm.

5.4. Comparison with TSVD extraction

We compared EXOSPECO to a standard approach based on the
TSVD method described in Sect. 2.2 to remove the stellar leak-
ages. Figure 15 shows the companion SED extracted from the
HR 3549 data by EXOSPECO and by the TSVD approach. For
the latter method, the SED of the companion was extracted by
local averaging in a 7 pixel height sliding window along the
companion signal in the residual image given by Eq. (7) and
shown in Fig. 3. In both cases, the same complex calibration
model of the spectral and angular dispersion laws described in
Appendix A has been used. In spite of this identical calibra-
tion, the two extracted SEDs are notably different. Thanks to
the optimal extraction in the maximum likelihood sense and to
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Fig. 16. Comparison of the SEDs extracted from semi-synthetic data
by EXOSPECO and by a standard TSVD method. The angular sep-
aration and the contrast of the injected companion are respectively
ρ⊕ − ρ⋆ = 785 mas and χ = 2 × 10−4. The green dashed curve repre-
sents the ground truth injected spectrum which is that of HIP 65426
multiplied by χ.

the spectral regularization, the SED extracted by EXOSPECO
is smoother and less noisy. At a coarser resolution, the two
SEDs display quite different spectral features. However, without
a known ground truth, the two SEDs cannot be ranked. For this
reason, we also compared the results given by the two methods
on a synthetic injection done as described in Sect. 5.3. Figure 16
clearly demonstrates that not only does EXOSPECO produce less
noisy results, but that they also offer a better reflection of reality.

6. Conclusion

In this paper, we present a novel algorithm, EXOSPECO, to
extract the spectrum of a companion from high-contrast long-
slit spectroscopic data. The most challenging part of such a
processing is to disentangle the signal of interest from the
stellar leakages since they are much brighter. Compared to exist-
ing methods, our algorithm avoids any transform of the data,
whether it is to align the speckles of the stellar leakages at all
wavelengths or to fix defective pixels. EXOSPECO has also the
advantage of jointly extracting the parameters describing the
stellar leakages (the star spectrum and the on-axis PSF), the com-
panion spectrum, the off-axis PSF, and, optionally, some calibra-
tion parameters. By using non-uniform statistical weights for the
data pixels, our approach is optimal in the maximum likelihood
sense, namely, it takes into account all available measurements
and consistently treats defective pixels as missing data. The joint
optimization problem having no closed-form solution, we pro-
posed an alternating minimization strategy which has proven to
be effective. In spite of the numerous parameters coming into
play in the algorithm, the outputs of the method are, in practice,
mostly driven by a single hyper-parameter that tunes the level of
regularization of the companion SED.

Although it is not directly part of the spectrum extraction
algorithm, we have shown that careful calibration of the instru-
ment is critical to get rid of the contamination by the stellar
leakages. For that purpose, we described a refined calibration
method of the spectral and spatial dispersion laws from avail-
able calibration data. In particular, SPHERE/LSS data present
a misalignment of the principal directions of dispersion with
the detector axes as well as a geometrical shear. If they are
not accounted for, we show that these distortions have a detri-
mental impact on the result of the processing, whether it is
by EXOSPECO or by the current state-of-the-art method. A few
remaining calibration parameters that may depend on the observ-
ing conditions, such as the off-axis PSF size and the precise

locations of the star and of the companion along the slit, can
be optionally adjusted by a self-calibration procedure built into
EXOSPECO. Thanks to this calibration step, our method signifi-
cantly reduces the “self-subtracting” bias by better disentangling
the stellar leakages component from the companion component.
A Julia (Bezanson et al. 2017) implementation of EXOSPECO
is freely available10, with an implementation of the calibration
method described in Sect. 4 and Appendix A11.

Based on tests carried on empirical long-slit spectroscopic
data and on injections of a synthetic companion signal in these
data, we demonstrated that the proposed approach effectively
avoids the self-subtraction bias, even very close to the coro-
nagraphic mask. We provided curves to predict the minimal
contrast required to achieve a given quality of extraction of the
companion SED. Reliable extraction of a companion SED can
be achieved from a single data frame at contrasts as low as a
few 10−5. The proposed method could boost the characterization
of known (faint) exoplanets at a spectral resolution substantially
higher than currently possible with SPHERE IFS (R ∼ 35 − 50)
and for contrasts much better than achievable with IRDIS MRS
using state of the art methods. By capturing more the stellar con-
tamination efficiently, the method we propose does not require
independent and thus imperfect calibration of the speckles by
rotating the slit to hide the planet signal. This will typically gain
at least 50% in telescope time while reaching (and even surpass-
ing) the same contrast limit. This new method also paves the way
to combining polarimetry and spectroscopic measurements with
IRDIS LSS mode (R. Holstein, priv. comm.).

As it is based on an inverse problems framework, EXOSPECO
is very flexible and can be adapted to various kinds of data (such
as data sequences or data from other instruments). An example
of such an extension of EXOSPECO is the joint processing of
multiple frames that can be done as follows. Assuming T LSS
exposures d1 to dT of the same object are collected during a
night, they can be combined into a single criterion that extends
Eq. (17):

C(x, y1, y2, . . . , yT , z, ν,µ)

=

T∑
t=1

∥dt − m(x, yt, z, ν)∥2Wt
+ µx Rx(xt)

+ µy

T∑
t=1

Ry(yt) + µz Rz(z), (37)

where the statistical independence of noise between frames is
considered (a natural assumption). This criterion can be mini-
mized in x, y1, . . . , yT , z, and ν following the same alternating
method as described in Sect. 3.4, only with more steps in order
to estimate the on-axis PSF at each of the T frames. Such a
joint processing has the potential to improve the estimation of
companion SEDs and push further the achievable contrast limit.

Finally, to better disentangle the stellar leakages from the
companion spectrum, the model of the on-axis PSF could be
improved by taking into account more spatial modes of the series
expansion in Eq. (3). Indeed, as demonstrated in Devaney &
Thiébaut (2017), accounting for more such modes significantly
improves the modeling of the stellar leakages, especially near
the coronagraphic mask. Such an improvement would not call
into question the founding principles of EXOSPECO, but it would
require an optimization strategy to be adopted.

10 https://github.com/SJJThe/Exospeco
11 https://github.com/SJJThe/ExospecoCalibration
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Appendix A: Calibration of the spectro-angular
dispersion laws

This appendix provides some details about the methods used for
the calibration of the spectro-angular laws described in Sect. 4
and some figures to support the results discussed in Sect. 4.5.
The considered calibration data dcal is the image in the central
panel of Fig. 5.

A.1. Transverse projection

To locate the positions of the spectral lines, we compute a
weighted transverse projection of the calibration image dcal:

q⊥ k(ϕλ) =
∑

i, j ξ⊥ i, j,n(ϕλ) dcal,i, j∑
i, j ξ⊥ i, j,n(ϕλ)

, (A.1a)

with weights given by:

ξ⊥ i, j,k(ϕλ) = wmsk,i, j φproj
(
i sin ϕλ + j cos ϕλ − k

)
(A.1b)

and for a projection angle, ϕλ, chosen to maximize the peak val-
ues of the resulting projection (plotted in red in the top panel of
Fig. 5 for ϕλ ≈ 0◦). In practice, we take φproj(t) = max(1 − |t|, 0),
the linear B-spline, as the interpolating function for the projec-
tion. We note that thanks to the weighting by the mask of valid
pixels wmsk defined in Eq. (30), invalid pixels have no incidence
on the computed projection.

A.2. Detection of the spectral peaks

We use algorithm 4 with tolerance parameter δ⊥ = 10 pixels to
find the Nλ most significant peaks in the transverse projection
q⊥(ϕλ) ∈ RNq computed according to Eq. (A.1).

Algorithm 4: Find the most significant peaks
Input: Nλ, q⊥(ϕλ), and δ⊥.
Output: P(ϕλ).
P ← ∅; ◁ start with an empty list
z = q⊥(ϕλ); ◁ copy profile in workspace array
for ℓ = 1, . . . ,Nλ do

kℓ = arg maxk zk; ◁ find position of largest value in z
P ← P ∪ {kℓ}; ◁ update list of positions
for k ∈ ⟦max(1, kℓ − δ⊥),min(kℓ + δ⊥,Nq)⟧ do

zk ← −∞; ◁ invalidate nearby pixels

return P;

A.3. Extraction of the paths of the spectral lines

Given the projection angle ϕλ and the list P(ϕλ) of the Nλ most
significant peaks in the transverse projection, q⊥(ϕλ), we build
the ℓth spectral path Cℓ as a list of points along the ℓth spec-
tral line. The coordinates,

(
ipath
ℓ,m , jpath

ℓ,m
)
, of the mth such point

are given by computing the center of gravity of the calibration
data in a small rectangular window,Wℓ,m(ϕλ), sliding along the
considered spectral lines:

(
ipath
ℓ,m , jpath

ℓ,m
)
=

∑
(i, j)∈Wℓ,m(ϕλ) wmsk,i, j × (i, j)∑

(i, j)∈Wℓ,m(ϕλ) wmsk,i, j
, (A.2)

computed for all non-empty12 sliding window Wℓ,m of size
∼ 1 pixel along the spectral line and 2 δ⊥ + 1 pixels in the
perpendicular direction:

Wℓ,m(ϕλ) =


(i, j) ∈ ⟦1, I⟧ × ⟦1, J⟧ such that∣∣∣i sin ϕλ + j cos ϕλ − kℓ

∣∣∣ ≤ δ⊥ + 1
2

and
∣∣∣i cos ϕλ − j sin ϕλ − m

∣∣∣ ≤ 1
2

, (A.3)

where kℓ is the ℓth index in the list P(ϕλ) of the Nλ most signif-
icant peaks in the transverse projection q⊥(ϕλ). Again, we note
that thanks to the weighting by the mask of valid pixels, invalid
pixels have no incidence on the computed coordinates. In prac-
tice, we use the same value for the half-width of the sliding
windows and for the minimal separation between peaks in the
transverse projection, that is δ⊥ = 10 pixels for the considered
calibration data.

A.4. Detection of the edges of the spectral bands

Given the projection angle, ϕλ, and the list,P(ϕλ), of the Nλ most
significant peaks in the transverse projection q⊥(ϕλ), we com-
pute the longitudinal profile of each spectral line as the following
weighted projection:

q// ℓ,k(ϕλ) =
∑

(i, j)∈Dℓ(ϕλ) ξ// i, j,k(ϕλ) dcal,i, j∑
(i, j)∈Dℓ(ϕλ) ξ// i, j,k(ϕλ)

, (A.4a)

with weights given by:

ξ// i, j,k(ϕλ) = wmsk,i, j φproj(i cos ϕλ − j sin ϕλ − k), (A.4b)

and where k is the index along the projection andDℓ(ϕλ) is a nar-
row rectangular window (in green in the central panel of Fig. 5)
to isolate the pixels of the calibration image, dcal, impacted by
the considered spectral line:

Dℓ(ϕλ) =
{

(i, j) ∈ ⟦1, I⟧ × ⟦1, J⟧ such that∣∣∣i sin ϕλ + j cos ϕλ − kℓ
∣∣∣ ≤ δ⊥ + 1

2

}
, (A.5)

with, as before, δ⊥ ≈ 10 pixels the half-width of the region.
Detecting the edges of the central hole due to the corona-

graphic mask in the resulting profile (plotted in green in the left
panel of Fig. 5) can be done by a quite simple procedure. Each
value at index k of the profile is compared with the next one up
to a threshold value τ. If q// ℓ,k ⩽ τ ⩽ q// ℓ,k+1 and q// ℓ,k < q// ℓ,k+1,
then an ascending edge is detected. If q// ℓ,k ⩾ τ ⩾ q// ℓ,k+1 and
q// ℓ,k > q// ℓ,k+1, it is a descending edge. From the four edges
detected in the ℓth spectral line (indicated by the crosses in the
left panel of Fig. 5), the second and third ones correspond to the
coronagraphic mask. Retrieving these edges in Cℓ(ϕλ) yields the
coordinates

(
idown
ℓ

, jdown
ℓ

)
and

(
iup
ℓ
, jup
ℓ

)
required in Sect. 4.4 for

the calibration of the angular dispersion law.

A.5. Results on the calibration data

The results of the proposed calibration models are displayed in
Fig. A.1, as blue lines for the spectral law and green lines for the
spatial law. In practice, degrees Pλ = 5 and Pρ = 1 (limited by
the small number of points for ρ) were chosen. The three models
described in Sect. 4.2 are tested, that is a standard model, one of
a medium complexity and one more complex.

As can be seen on the different zooms shown in Fig. A.2, 2D
polynomials are needed to explain local distortions. Choosing
this model, we plot on Fig. A.3 some iso-wavelength (blue)
12 in the sense that it contains at least one valid pixel
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Fig. A.1. Iso-wavelength curves at the wavelengths of the calibration
sources (blue lines) and iso-angular distance of the center of the coron-
agraphic mask of (green lines) presented on top of the calibration data,
dcal. The upper panel presents the results for the simple model, the cen-
tral panel shows the results for the medium model, while the bottom
panel shows the results of using the complex model.

and iso-angular distance (green) curves, on a zoom in of the
HR3549 dataset. This figure highlights how well our proposed
models for the dispersion laws are following the speckles,
compared to the standard model. A strong shear effect due to the

Fig. A.2. Magnified images of the two regions outlined by the yellow
and purple rectangles for the three models described in Sect. 4.2. To best
see the differences between models, the magnifications are different in
the two dimensions.

Fig. A.3. Iso-wavelength and iso-angular distance superposed to the
HR 3549 data observed on 2015-12-28 with IRDIS in MRS mode.

dispersive elements is visible and taken into account by our
model. For all these models, we took polynomials of degrees
Pλ = 5 and Pρ = 1 for the spectral and spatial dispersion laws.

Appendix B: Calibration of the contrast

In order to express the SED of the companion in terms of contrast
with respect to the star, we use specific calibration data, dflux,
(shown in Fig. B.1, top panel) for which the star is placed in the
spectrograph slit but shifted away from the coronagraphic mask
and with a neutral density inserted in the optical path to avoid
detector saturation. Applying FITCOMPANION (algorithm 2) to
dflux and dividing the resulting SED by the spectral transmission
of the neutral filter yields the SED of the star xflux (shown in
Fig. B.1, bottom panel). The so derived parameters of the off-
axis PSF can be later used in FITCOMPANION (algorithm 2) to
extract the companion SED.
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Fig. B.1. Calibration of the SED of the star HIP 65426. Top: Cali-
bration image dflux observed on 2019-05-20 with the MRS mode of
SPHERE/IRDIS. Bottom: SED of the star extracted by FITSTAR (algo-
rithm 2) and corrected from the density filter.

Appendix C: Exploiting the scaling
indetermination

The estimated components x̂, ŷ, ẑ, and ν̂ of the direct model
defined in Eq. (15) depend on hyper-parameters which include
the regularization weights µx, µy, and µz. In this appendix,
we show how to adapt the approach of Thé et al. (2020) to
reduce the effective number of regularization parameters and
also accelerate the minimization.

We first note that the regularizations considered for the stellar
components are homogeneous functions of degree 2, namely, the
following property holds:

Ru(αu) = α2 Ru(u), (C.1)

whatever the component u = x or y considered and α ≥ 0.
The contribution of the star, the first right-hand side term in

Eq. (15), is a bilinear function of the parameters x and y. As a
consequence:

m(α x, y/α, z, ν) = m(x, y, z, ν), (C.2)

holds for any scaling factor α > 0.
Combining the properties in Eqs. (C.1) and (C.2) with the

definition of the objective function in Eq. (17) and that of the
regularization in Eq. (19), it can be seen that for any α > 0:

C(α x, y/α, z, ν, µx, µy, µz) = C(x, y, z, ν, α2 µx, α
−2 µy, µz).

(C.3)

In other words, scaling the unknowns x and y without changing
the model is equivalent to scaling their regularization weights.

Exploiting this, it is possible to compute an optimal scaling
factor:

α̂(x, y, µx, µy) = arg min
α>0

C(α x, y/α, z, ν, µx, µy, µz)

= arg min
α>0

C(x, y, z, ν, α2 µx, α
−2 µy, µz)

= arg min
α>0

{
α2 µx Rx(x) + α−2 µy Ry(y)

}
=

(
µy Ry(y)
µx Rx(x)

) 1
4

. (C.4)

Plugging this expression in the definition of the criterion yields:

C+(x, y, z, ν, µx, µy, µz)
= min

α>0
C(α x, y/α, z, ν, µx, µy, µz)

= ∥d − m(x, y, z, ν)∥2W + µx,y Rx,y(x, y) + µz Rz(z) (C.5)

where:

Rx,y(x, y) =
√
Rx(x)Ry(y), (C.6)

and:

µx,y = 2
√
µx µy. (C.7)

This shows that the regularizations of the stellar components x
and y are entangled and that the effect of these regularizations
on the shape of these components is effectively controlled by a
single hyper-parameter; here, this is µx,y. As shown by Eq. (C.4),
the ratio µx/µy of the hyper-parameters controls the scaling, not
the shape, of x and y, one of the two can be fixed. This saves us
the hassle of adjusting both parameters at the same time.
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