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Abstract

Local fields, and fields complete with respect to a discrete
valuation, are essential objects in commutative algebra, with
applications to number theory and algebraic geometry. We
formalize in Lean the basic theory of discretely valued fields.
In particular, we prove that the unit ball with respect to a
discrete valuation on a field is a discrete valuation ring and,
conversely, that the adic valuation on the field of fractions
of a discrete valuation ring is discrete. We define finite ex-
tensions of valuations and of discrete valuation rings, and
prove some global-to-local results.
Building on this general theory, we formalize the abstract

definition and some fundamental properties of local fields.
As an application, we show that finite extensions of the field
Q? of ?-adic numbers and of the field F? ((- )) of Laurent
series over F? are local fields.

CCS Concepts: • Theory of computation → Logic and

verification; Proof theory.

Keywords: formalmathematics, Lean,mathlib, algebraic num-
ber theory, local fields, discrete valuation rings.

1 Introduction

The vague idea that geometric intuition and algebraic rigor
can fruitfully interact is an old theme, certainly predating
themodern approach byDescartes and subsequently byNew-
ton and Leibniz. In contemporary commutative algebra, and
especially after the advent of scheme theory byGrothendieck
around 1960, this connection has become even tighter: geo-
metric concepts and techniques are often borrowed for a
wide range of applications. In this work we are concerned
with the concept of local field, a fundamental notion in al-
gebraic number theory whose origin, and still many appli-
cations, comes from geometry. Suppose, for instance, that
one is interested in the integral solutions (01, 02, 03) to - 2

1 +
- 2
2 +- 3

3 = 0: clearly, since for positivity reasons the only real
solution is (0, 0, 0), there cannot be any other integral solu-
tions. On the other hand,- 2

1 +- 2
2−3- 2

3 = 0 certainly has real
solutions, yet has no non-trivial solutions in F3. Now, an in-
tegral solution (01, 02, 03) with 01 ≡ 02 ≡ 0 (mod 3) must

∗Both authors contributed equally to this research.

be (0, 0, 0), as can be seen by comparing the occurrences of
3 in the factorizations of 021 + 022 and of 3023.
From a geometric perspective, one can regard the previ-

ous as a kind of “local analysis”: interpreting the primes as
the points of a geometric object attached to Z, if a “global”
solution (01, 02, 03) ∈ Z3 exists, we could obtain infinitely
many solutions (01, 02, 03) ∈ F3? “around each point”, for
varying ? , as well as a solution ((01 : R), (02 : R), (03 :
R)) ∈ R3 around the “point at infinity”. If at some point no
solution can be found, then no global solution exists. Yet, in
this analogy, the fields F? and R are very different: the for-
mer is finite, with trivial discrete geometry and of positive
characteristic, while the latter has a rich metric structure
and characteristic 0. Now, for every ? , one can rather con-
sider the field of ?-adic numbers Q? which is, in this per-
spective, a better analogue for R than the several F? : it has
a metric with respect to which it is complete (Cauchy se-
quences converge), and it has characteristic 0 (so, in partic-
ular, it contains Q). To define it, one observes that for every
prime ? there exists an absolute value |·|? on Q for which
numbers that are highly divisible by ? are close to 0. Having
an absolute value, it is possible to speak about convergence
and about Cauchy sequences: exactly as for the Euclidean
absolute value, one can find Cauchy sequences that do not
converge to any rational, and Q? is defined as the comple-
tion of Q with respect to |·|? . It is the “smallest” field where
all |·|? -Cauchy sequences converge. Crucially, it still bears
strong connectionswith the prime ? : for instance, if a monic
polynomial in Z[- ] has a simple root in F? , then it also has
one in Q? .
The local analysis described before is an example of the

“local-to-global” principle: to solve a problem in Z, orQ, one
can try to solve it inQ? , for all? , and inR. For a notorious ex-
ample, it has long been known that the so-called “first case”
of Fermat’s Last Theorem can be solved using class field the-
ory (see [16]), which is a deep theory where the global theo-
rems are obtained by a beautiful patching of the local ones:
we refer to [20] for an excellent account of this example. It
should also be emphasized that ultimatelyWiles’ very proof
of Fermat’s Last Theorem makes heavy use of the local-to-
global principle in the framework of Galois representations:
we refer to [15] for a summary of this technique.
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Before describing our work, let us mention two general-
izations of the ?-adic numbers that will guide our approach
to the formalization. First of all, the field Q of rational num-
bers can be replaced by an arbitrary number field, or global
field. We refer to [3, §2] for a brief overview of these notions
in the context of formalization. Number fields are fields that
can be obtained by adjoining roots of polynomials 5 (- ) ∈
Z[- ] toQ, likeQ(8) orQ(

√
2) = {A +B

√
2, A , B ∈ Q}. They are

a key object of study in algebraic number theory and resem-
ble in many perspectives the rational field. Every number
field  can be realized as the field of fractions  = FracO 
of a suitable subring O ⊆  , in the same vein as Q =

FracZ. These rings O are not principal, in general, but
they are Dedekind domains (see Example 2.3 and the ref-
erences ibid.): so, although we cannot in general define an
absolute value |·|c on O associated to elements c ∈ O ,
it is possible to define an absolute value |·|m associated to
every maximal ideal of O . The completion procedure dis-
cussed above can then be performed analogously, and the
fields  ̂m obtained in this way are all finite extensions of
some Q? , and are the so-called mixed characteristic local
fields. Analogous constructions exist when replacing Q by
F? (- ) and we refer to §3.1 for more details.
Secondly, unlike the Euclidean metric, the ?-adic one car-

ries a strong discrete flavor, in that only integral powers of
? can occur as values |G |? for G ∈ Q. This happens in other
contexts, and the relevant notion is that of a discrete valua-
tion ring; we will describe their theory in more detail in §2.3.
Here we content ourselves with saying that they are a class
of rings ' endowed with a valuation map E to Z such that
the arithmetic behavior of elements A ∈ ' can be read on
the value E (A ). The relation of discrete valuation rings with
local fields is deep: the completion of the fraction field of a
discrete valuation ring with finite residue field (see §3) is a
local field and, conversely, for every local field � the subset
{G ∈ � | |G |� ≤ 1} is always a discrete valuation ring, yet
not every discrete valuation ring is of this form.
In this paper, we formalize in Lean 3 the definition and ba-

sic theory of local fields and their relation with discrete val-
uation rings. We provide both a concrete approach, defining
mixed characteristic and equal characteristic local fields as
finite field extensions ofQ? and F? ((- )), and amore abstract
definition of local field which comprises these two special
cases.
The mathlib library provides a very complete theory of

general valuations, as well as the basic theory of discrete
valuation rings, but the connection between these two no-
tions is largely missing. We formalize the definition of dis-
crete valuation and greatly expand the available theory for
discrete valuation rings, their fields of fractions, and their as-
sociated discrete valuations, including theorems about com-
pletions, extensions of valuations and global-to-local results.
To the authors’ best knowledge, this work constitutes the

first formalization of local fields and of extensions of dis-
crete valuations in any proof assistant.
The Lean code for our formalization is available at a

public anonymized GitHub repository W. Inside the folder

from_mathlibW we gather files that are previous work of

the authors, as well as a file due to Yaël Dillies W, used
in this project after securing permission from them. Every-
thing else is new, original work of the authors of this paper,
totaling about 8,000 lines of code. Some of the code excerpts
below have been edited for clarity, but we also provide links
to the corresponding results in our repository. In some code
excerpts the so-called dot notation is exhibited: for exam-
ple, the call (ideal.is_prime I) can be shortened to I.

is_prime.
Throughout this paper, all rings are assumed to be com-

mutative and unitary.

1.1 Lean and mathlib

This project is formalized in the Lean 3 theorem prover [13],
which is based on dependent type theory, with proof irrele-
vance, quotient types, and non-cumulative universes [9].

We build our work on top of the mathematical library
mathlib of Lean 3, whose key properties are its unified ap-
proach to integrate different mathematical theories, and its
decentralized nature, with over 300 contributors. One of the
key tools for organizingmathematical hierarchies used both
in Lean ’s core library and in mathlib is typeclass inference.
By declaring certain terms as instance, Lean will automat-
ically try to infer the relevant values during the unification
procedure. We refer to [1] for a more detailed discussion of
the role of instance parameters in Lean .
The formalization is in Lean 3 because at the time when

we begun it, almost none of its prerequisites were available
in Lean 4. Now that the complete mathlib has been trans-
lated to Lean 4, we plan to port our work and start to in-
tegrate it in this library. All our future work related to this
project will be directly implemented in Lean 4.

1.2 Paper outline

In §2, we treat the general theory of discrete valuations and
discrete valuation rings: after presenting some background
material in §2.1–§2.3, we describe our main results in §2.4,
concerning completions, and §2.5, concerning extensions of
valuations. In §3.1 we present our formalization of local fields,
describing the equal and mixed characteristic cases in §3.1
and §3.2, respectively. We conclude in §4 with a description
of future and related work and a discussion of some of our
key design choices.

2 Discrete Valuation Rings

In this section we present our formalization of the theory of
discretely valued fields and discrete valuation rings, includ-
ing results about completions and extensions of valuations.
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As a technical prerequisite, we discuss in § 2.1 the definition
and main properties of the mathlib type Zm0, where most of
the valuations that we considered take their values.

2.1 The type Zm0

There are several situations in mathematics in which addi-
tive structures get translated into multiplicative structures.
For example, associated to each real number = ≠ 0, there is
an exponential map exp= : R → R sending G to =G . This
map has the property that exp= (G + ~) = exp= (G) · exp= (~)
and, whenever = > 1, it preserves the order on R.
A second example occurs in the theory of valuations. If

0 : ' → Z ∪ {∞} is an additive valuation on a ring ' (see
Definition 2.1) and = > 1 is a real number, it is common to
study the associated function E : ' → =Z ∪ {0} sending A to
=−0 (A ) , with the convention that =−∞ = 0. Here

=Z ∪ {0} = {=0 | 0 ∈ Z} ∪ {0} ⊆ R.
Some abstractions that can be used to formalize this kind

of translations are available in mathlib. Given any type A

endowed with an additive structure, mathlib provides a
new type multiplicative A that is in bijection with A and
carries amultiplicative structure, togetherwith amap of_add
: A→ multiplicative A satisfying

of_add (x + y) = of_add x ∗ of_add y

for all x, y : A. If A is equipped with a preorder, then so is
multiplicative A, and the map of_add is strictly mono-
tone: x ≤ y is equivalent to of_add x ≤ of_add y. The map
to_add : multiplicative A → A is inverse to of_add.
We are especially interested in the case A = Z. As an

additive group, Z is an infinite cyclic group with genera-
tors 1 and −1. Correspondingly, the elements of_add(1)

and of_add(-1), that do not bear a specific notation, are
the only generators of the cyclic group multiplicative Z.
Since the map of_add preserves the unit element, we have
that of_add(0) = 1 is the unit, hence

(1: multiplicativeZ) ≠ of_add(1:Z).

Given two integers 0, 1, it holds that of_add(a * b) =

of_add(a)1= of_add(b)0 . In particular, we have the equal-
ity of_add(±1)== of_add(±n) for all (n : Z).
A new type with_zero (multiplicative Z), denoted
Zm0, can be constructed from multiplicativeZ by adding
an extra term 0 to multiplicative Z. The resulting type
Zm0 still carries a multiplication, that extends the one on
multiplicativeZ and forwhich 0 * x = 0 for all x; more-
over, setting 0 ≤ x for all x, Zm0 is endowed with an order
that extends the one on multiplicative Z. The inclusion

multiplicative Z→ Zm0
is an order-preserving coercion that respects the multiplica-
tion on both sides, and we omit it from the notation.
The type Zm0 provides an abstraction of the structure on

the set =Z ∪ {0} that does not require a choice of the base

=, and it will be the codomain of most of the valuations that
we consider in this paper.

2.2 Valuations

Definition2.1 ([6, Chapitre VI, §3, n◦1, Définition 1]). Let'
be a ring. A function0 : ' → Z∪{∞} is an additive valuation
on ' if

i) 0 (A ) = ∞ if and only if A = 0;
ii) 0 (A · B) = 0 (A ) + 0 (B) for all A , B in ';
iii) 0 (A + B) ≥ min{0 (A ), 0 (B)} for all A , B in '.

Given an additive valuation 0 on ', we can define an as-
sociated function E : ' → Zm0 by sending 0 to 0 and A ≠ 0
to of_add(-0(r)). From the definition of 0 , it is easy to
deduce that E satisfies the properties of a multiplicative val-
uation, as in the following definition:

Definition 2.2. A multiplicative valuation on a ring ' is a
function E : ' → Zm0 satisfying the properties

i) E (0) = 0;
ii) E (1) = 1;
iii) E (G · ~) = E (G) · E (~) for all G,~ ∈ ';
iv) E (G + ~) ≤ max{E (G), E (~)} for all G,~ ∈ '.

Note that an element A ∈ ' has additive valuation 1 if
and only if it has multiplicative valuation of_add(-1). El-
ements of multiplicative valuation of_add(-1) will play a
prominent role in §2.3.
For example, let ' = Z be the ring of integers, and fix a

prime number ? . Then, thanks to unique factorization, we
can define an additive valuation 0? : Z→ Z ∪ {∞} by send-
ing an integer I to the number of times that ? appears in
the factorization of I. We can extend the function 0? to Q
by defining 0? (A/B) := 0? (A ) − 0? (B). Then 0? is an addi-
tive valuation on Q, called the additive ?-adic valuation on
Q. The corresponding multiplicative valuation E? : Q→ Zm0
is called the ?-adic valuation.

Example 2.3 (The m-adic valuation). We will often con-
sider the following generalization of the ?-adic valuation. If
' is a Dedekind domain (see [6, Chapitre VII, §2]) which is
not a field, then every nonzero ideal of' can be factored as a
product of maximal ideals, uniquely up to reordering. There-
fore, for every maximal idealm of ', we can follow an anal-
ogous construction to define an additive valuation 0m : ' →
Z∪{∞} on' by sending 0 to∞ and any nonzero A ∈ ' to the
number of times that m appears in the factorization of the
principal ideal (A ). We extend 0m to the fraction field  of '
by the formula 0m (A/B) := 0m (A ) − 0m (B). The correspond-
ing multiplicative valuation Em = of_add ◦ (−0m ) :  →
Zm0 on  is called the m-adic valuation. This valuation was
formalized in [11], and is available in mathlib as the declara-
tion is_dedekind_domain.height_one_spectrum.valuation
W.
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While in most number theory references it is more com-
mon to work with additive valuations than with multiplica-
tive ones, for historical reasons mathlib follows the oppo-
site convention, and it provides a much more complete API
for multiplicative valuations. Hence we use multiplicative
valuations in our formalization and, throughout the paper,
whenever we use the term "valuation" without further ad-
jectives, we mean "multiplicative valuation".

Remark 2.4. (For experts) More generally, the codomain Zm0
in the definition of a (multiplicative) valuation can be re-
placed by Γ0 = Γ∪{0}, where Γ is a linearly ordered commu-
tative group. The order on Γ is extended to Γ0 analogously
as we did for Zm0.
An example of this situation occurs when starting with

a local Dedekind domain ', with unique maximal ideal m'

and field of fractions  . In this setting one can prove that
the quotient map

E :  →  /'×

is a valuation, where the quotient  /'× is ordered by re-
verse divisibility. The groupwith zero /'× is sometimes re-
ferred to as the value group1 of '. The value group is imple-

mented in mathlibas valuation_ring.value_groupW, but
we mostly stick to Zm0-valued valuations in our work.

We represent valuations using the valuationW struc-
ture available in mathlib, which encodes Definition 2.2. A
valuation on a ring ' induces a topology that is homoge-
neous with respect to addition (see [5, Chapitre III,§1]: ev-
ery neighborhood Ω ⊆ ' is of the form Ω = G + Ω0 where
Ω0 is a neighborhood of 0 and G ∈ Ω. In other words, addi-
tion (and subtraction) are homeomorphisms of the ring into
itself. This property shows that to characterize the topology
it is enough to describe the neighborhoods of 0.
When ' is a Dedekind domain and E = Em is the topology

associated to a maximal ideal m, as defined in Example 2.3,
a basis for the neighborhoods of 0 is provided by the sets

*W = {A ∈ '
�� Em (A ) ≤ W} for W : Zm0, W ≠ 0.

In particular, two elements A1, A2 are “close to each other”
if their difference lies in a sufficiently deep neighborhood of
0, meaning that Em (A1 − A2) ≤ W for a suitable W : Zm0, W ≠ 0.
Given the definition of Em this translates into the fact that
the principal ideal (A1 − A2) is divisible by a high power of
m.
Actually, the above topology is of a special kind, because

the valuation defines a structure of uniform space on ', as
explained in [6, Chapitre VI, §5] and in the references ibid.
This is a simultaneous generalization of the structure ofmet-
ric space and of topological group and the topology is in-
duced by the uniform structure. Our main reference for uni-
form structures is [5, Chapitre II]; for a throughout discus-
sion of the formalization of uniform spaces, we urge the
1We translate in this way the term groupe des valeurs from [6, Chapitre VI,
§3, n◦2].

reader to consult the beautifully written [8], in particular
its §5.
The mathlib library also provides the class valued W,

which bundles together a ring ' endowed with a uniform
space structure and a distinguished valuation inducing it.
Given a term (hv : valued R Zm0), these can be accessed
through hv.to_uniform_space and hv.v, respectively.
This class is designed for rings in which there is a pre-

ferred valuation. Recall fromExample 2.3 that on aDedekind
domain ', there is a valuation for each maximal ideal, and
it can be shown that any nontrivial valuation on ' is of this
form. Hence, if ' is local, then the only nontrivial valuation
on ' is them'-adic valuation associated to its unique maxi-
mal ideal, and we declare a valued instance on '. If ' is not
local, given any maximal ideal m ⊆ ' we can still define a
term (hvm: valued R Zm0) representing them-adic valua-
tion and allowing us to access the whole valuedAPI locally.
Yet, we would not declare this as a global valued instance
on ', since none of the m-adic valuations on ' is preferred
over the others.
Given a ring ' with a valuation E , we can consider the

unit ball of ', that is the subring '◦ of elements with val-
uation less than or equal to (1: Zm0). This subring is called

v.integerW in mathlib. When  is a field, the subring
 ◦ is a valuation subring, meaning that for every U ∈  ,
either U ∈  ◦ or U−1 ∈  ◦: in particular,  � Frac( ◦).
Since the definition of valuation subring involves taking in-
verses, it is only available for fields. Hence, when working
with a general ring ', we formalize '◦ as v.integer, but
when working with a field we use the richer structure v

.valuation_subringW, which gives us access to results
about valuation subrings available in mathlib.

2.3 Discrete Valuation Rings

Our general references for the theory of discrete valuation
rings are [19, Chapitres I–II] and [6, Chapitre VI]. One no-
table difference with our language is that both references
consider additive valuations, whereas we stick to the mul-
tiplicative convention introduced in §2.2, which is the ap-
proach chosen in mathlib. Mathematically, the two points
of view are equivalent: one just needs to keep in mind the
translation between Z∪{∞} and Zm0. Finally, we refer to [7],
in particular to [7, Chapitre IV], for the main results about
ring theory and commutative algebra that we will need.
Let ' be a ring, as above assumed commutative and uni-

tary. We begin by recalling the following equivalence:

Theorem 2.5 ([6, Chapitre VI, §3, n◦6, Proposition 9]). Sup-
pose ' is a Noetherian local ring that is not a field. The follow-
ing properties are equivalent:

1. The maximal ideal m' of ' is principal;
2. ' is a principal ideal domain (PID);
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3. ' is an integral domain that coincides with the unit ball
of its fraction field Frac(') with respect to a valuation
E : Frac' → Zm0.

Remark 2.6. In [6, Chapitre VI, §3, n◦6, Proposition 8] and
in [19, Chapitre I, §2, Proposition 2] other equivalences are
proved, but we will not need them.

A ring satisfying the equivalent properties of Theorem2.5
is called a discrete valuation ring (often shortened as DVR).
The nomenclature is motivated by point 3. ibid.: given a
DVR ', it is possible to find a valuation

E : Frac(') → Zm0

such that ' = (Frac')◦ : yet this valuation is not unique.
Indeed, the definition of the action of Z on Zm0 shows that
replacing a valuation E by a power E4 for 4 ∈ Z>0 leaves
the unit ball unchanged. For each of these valuations, the
image Im(E) ⊆ Zm0 is the free group with zero generated by
E (A ), where A is any generator of the maximal ideal m' of
'. Upon replacing E by E1/0 (A ) for some generator A of m' ,
where 0 denotes the additive valuation associated to E , we
can assume that the image is the whole Zm0: in this case the
valuation is said to be normalized, and the elements of valu-
ation equal to (of_add(−1) : Zm0) are called uniformizers.
One basic result is that, for a normalized valuation on a

DVR, the uniformizers are exactly the set of generators of
m' , because properties ii) and iii) of Definition 2.2 show that
an element D ∈ ' is a unit if and only if E (D) = 1 = (of_add
0). In particular, there exists a unique normalized valuation
on a DVR, since the same argument shows that every val-
uation is uniquely determined by its value on one, or any,
generator ofm' . Moreover, as explained in Example 2.3, any
such valuation can uniquely be extended to Frac('). We de-
note this normalized valuation by E0,' — or simply by E0
when the DVR ' can be understood.

Assume now that ' is any integral domain (not necessar-
ily a DVR) and that  is a field of fractions for '. The points
of view taken in [19, Chapitre I] and in [6, Chapitre VI, §3,
n◦6] concerning valuations on are not identical: in the for-
mer, the valuations occurring in point 3. of Theorem2.5 take
values in Z ∪ {∞} (or Zm0, up to our translation), whereas
in the latter they are valued in the value group  ×/'× ∪
{∞} but under the assumption that there is an isomorphism
 ×/'× � Z. In both cases they are called “discrete”; they
are said to be normalized, as above, when they are surjec-
tive. Often results are stated assuming that the valuation is
normalized, relying on the possibility of achieving this nor-
malization simply by rescaling, so that the theory of discrete
valuations is essentially the theory of normalized discrete
valuations.

In the setting of a formalization work, we need to put
more care on how to normalize the valuation: on the one
hand, regarding “the” valuation as part of the data would

rigidify the situation too much (see, for instance, the dis-
cussion in [3, §4.5], where requiring that “the” field of frac-
tions of an integral domain refers to a specific definition
would create problems); on the other, there might be dif-
ferent constructions of a valuation that would turn out to
be propositionally, but not definitionally, equal. The corre-
sponding pairs (', E), for the several possible constructions
of E , would be mathematically interchangeable yet repre-
sented by different types; this would lead to unnecessary
verbosity while keeping track of the equivalences. More-
over, there might be different normalization procedures and
proofs must be provided to show that these yield equal val-
uations. In light of the above discussion, we call a valuation
“discrete” when it is also normalized, and we encode this no-
tion in the following class W:

class is_discrete (v : valuation R Zm0) :=

(surj : function.surjective v)

Code excerpt 1. Definition of discrete valuation.

Observe that when the domain ' is endowed with a dis-
crete valuation in the above sense, then it is necessarily a
field. Henceforth we change perspective a bit and we focus
on a topological field  endowed with a valuation E , letting
 ◦ be its unit ball: as discussed at the end of §2.2 this is
implemented by putting a valued instance hv on K and by
setting

K0 = hv.v.valuation_subring

Now, with our definition, a valuation is discrete only if
takes values in the type Zm0 and if there exists a uniformizer,

and this we prove in the following form W:

lemma is_discrete_of_exists_uniformizer {c : K}

(hc : is_uniformizer v c) : is_discrete v

The lemma exists_uniformizer_of_discreteW provides
the reverse implication. Similarly, the aforementioned corre-
spondence between uniformizers for a normalized valuation

and generators ofm' takes the form W

lemma uniformizer_is_generator

(c : uniformizer v) :

maximal_ideal K0 = ideal.span {c.1}

and the declaration is_uniformizer_of_generatorW rep-
resents the reverse implication. From now on, we call a val-
ued field whose valuation is discrete a discretely valued field.
The next result that we want to discuss is the formaliza-

tion of [19, Chapitre I, §1, Proposition 1], stating that the
unit ball of a discretely valued field is a DVR. The notion of
DVR was already in mathlib at the time of our project, im-

plemented through the class discrete_valuation_ringW

— this corresponds to property 2. in Theorem 2.5. Our result

takes the following form W:
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instance dvr_of_is_discrete [is_discrete v] :

discrete_valuation_ring K0

Code excerpt 2. The unit ball is a DVR if the valuation is
discrete.

Suppose now that ' is a DVR, and let  be a field of frac-
tions for '. By Theorem 2.5, ' is a local ring that is a PID, so
in particular ' is a Dedekind domain, and one can consider
the adic valuation associated to its uniquemaximal idealm' ,
as defined in Example 2.3. Now, Baanen et al. formalized
in [2] and [3] the general theory of Dedekind domains, and
de Frutos-Fernández formalized in [11] the main properties
of adic valuations on Dedekind domains.
With these works at our disposal, our starting point is

that the m'-adic valuation Em' associated to the maximal
ideal m' coincides with the normalized valuation E0 on  
(since ' is a domain, we directly extend these valuations to
any of its fields of fractions). Although this is mathemati-
cally trivial, and the two functions E0, Em' are considered
identical in pen-and-paper mathematics, they actually be-
long to different types and hence are different terms: in the

mathlib formalization, the valuation E0 takes values W in
the value group  /'× (see Remark 2.4), while Em' is Zm0-

valued W. Our approach to compare them is to show that
the unit balls with respect to both coincide. To do so, it is
enough to show that ' is the unit ball of  when endowed
with the valuation Em' , because this is tautologically true
with respect to the valuation E0. To prove the isomorphism

' �  ◦ we first provide the following W

instance : valued K :=

(maximal_ideal R).adic_valued

Code excerpt 3. The valued instance on the field of
frations of a DVR.

giving a valued structure on  by using them'-adic valua-
tion Em' . With this definition, the whole library concerning
adic valuations is at our disposal. We then show that the
valuation Em' is actually discrete (in our sense) by provid-

ing the W

instance : is_discrete (valued.v K Zm0)

Code excerpt 4. The valuation on a DVR is discrete.

By combining this result with the above discussion we de-
duce that  ◦ is itself a DVR, and we finally prove the iso-

morphism ' �  ◦ in the form of the following W

def dvr_equiv_unit_ball :

R ≃+∗ valued.v.valuation_subring

Remark 2.7. When implementing valuations on a discrete
valuation ring ' with field of fractions2  , we made the de-
sign choice to put an instance of the valued class on  , but

2See §4.3 for more details.

not on the ring ' itself. The reason is that, if needed, we can
recover the uniform structure on' from the one on , so we
prefer not to duplicate this information. This choice is con-

sistent with mathlib’sfile ring_theory.dedekind_domain.adic_valuation ,
in which valued instances are only put on fields.

As illustrated in the Introduction, one application of the
theory of DVR’s to number theory comes from the fact that
every maximal ideal m in a Dedekind domain ' induces a
discrete valuation, with respect to which the unit ball is a

DVR. In this context, we prove the following lemma: W

lemma adic_valued_is_discrete

[is_dedekind_domain R] [is_fraction_ring R K]

(m : height_one_spectrum R) :

is_discrete (adic_valued m).v

2.4 Complete Discrete Valuation Rings

One setting where the theory of DVR’s becomes crucial —
especially for its applications to algebraic number theory
and algebraic geometry — is that of (adic) completions. The
completion is a general procedure that can be performed on
every uniform space ) , as explained in [5, Chapitre II, §3].
We are not providing the exact definition here; the crucial
property to retain is that it yields another uniform space
)̂, containing ) as a dense subspace, and such that every
uniformly continuous function 5 : ) → / , valued in any
complete, separated topological space / can be extended
uniquely to a function

5̂ : )̂ → / (1)

(see [5, Chapitre II, §3, n◦6, Théorème 2]). When) is a com-
mutative topological group, it suffices that 5 is a continuous
group homomorphism to admit a unique extension, because
[5, Chapitre III, §3, n◦1, Proposition 3] guarantees that it
is automatically uniformly continuous; and the complete-
ness on / can be weakened as in [5, Chapitre I, §8, n◦5,
Théorème 1].

In the special case where ) =  is a field with a valua-
tion E (endowed with the uniform structure induced by it as
explained in §2.2), the completion  ̂ is again a field. We refer
to [6, Chapitre VI, §5, n◦3] for the generalities concerning
completions of valued fields, and to [19, Chapitre II, §1] for
a shorter introduction. Applying3 the universal property (1)
to the valuation E yields a map Ê :  ̂ → Zm0 that is still a val-
uation. Completions of uniform spaces and uniform fields

3We do not describe here the topology on Zm0, suffices it to say that it
mimics the discrete one on Z. We refer the reader to the relevant mathlib
file W.
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have been formalized4, and the paper [8] contains an ac-
count of the formalization. The application of this construc-
tion in the setting of Dedekind domains is due to de Frutos-
Fernández, see [11].
A prototypical example of a completion of a field is the

field Q? of ?-adic numbers, that is defined as the comple-
tion of Q endowed with the ?-adic valuation E? . Another
example arises when starting with the ring  [- ] of polyno-
mials in one indeterminate over the field  : being a PID, it
is a Dedekind domain and the construction of Example 2.3
defines a valuation E :  (- ) → Zm0 attached to any maxi-
mal idealm ⊆  [- ]. Take, for instance, m = (- ). Then the
valuation E- defines a uniform structure on the field

 (- ) = Frac( [- ]) =
{ 5
6
, 5 , 6 ∈  [- ] with 6 ≠ 0

}

of rational functions whose completion � (- ) is isomorphic
to the field  ((- )) of Laurent series: we discuss our formal-
ization of this isomorphism in §3.1.1.
When completing a field  endowed with a valuation E ,

the valuation Ê is unique under the condition of extending
the one on  , by (1). It follows that  ̂ is always endowed
with a global valued instance, even when  is not. This
is for example the case with Q and Q? : the first has infin-
itely many non-equivalent valuations E? , and thus no global
valued instance is declared for it. On the other hand, each
Q? has a preferred valuation and is actually a valued field.
More generally, given a maximal ideal m of a Dedekind do-
main ', we can apply the above discussion to the valuation

Em to obtain a complete valued field  ̂m
W.

We now go back to our discussion concerning DVR’s. So,
let ' be a DVR with field of fractions  . We have seen in
the code excerpt 3 that  , endowed with the valuation Em' ,

is valued and so is its completion  ̂m' , denoted by K_v in
our code. Moreover, the valuation on  is discrete (see the
code excerpt 4) and the first result we obtain is that the same
holds for the valuation Êm' on  ̂m' , which takes the follow-

ing form W:

instance (R : Type*) [is_dedekind_domain R]

(v : height_one_spectrum R) :

is_discrete (valued.v K_v Zm0)

In particular, we can consider the ring
(
 ̂m'

)◦
(denoted

by R_v in our code) to find, by the discussion in §2.3, that it

is itself a DVR W

instance : discrete_valuation_ring R_v :=

discrete_valuation.dvr_of_is_discrete _

4Given a ring �, an ideal � ⊆ � and an �-module " , mathlib contains
the declaration adic_completion I M. This is defined purely algebraically
as a module of “coherent sequences”, a concrete incarnation of an inverse
limit. A systematic comparison between this � -adic completion and the uni-
form one has not yet been formalized.

with field of fractions  ̂m' . Thus,
(
 ̂m'

)◦
is a local ring en-

dowed with a maximal ideal, denoted m̂' . It is therefore pos-
sible to once again apply de Frutos-Fernández’ work and en-

dow  ̂m' = Frac
( (
 ̂m'

)◦)
with the m̂' -adic valuation Em̂' ,

which puts a (potentially) new valued structure on  ̂m' .
Now, as the notation suggests, themaximal ideal m̂' , which

is in particular an abelian group, actually coincides with
the completion (inside the larger space  ̂m' ) of the abelian
group m' . In our language, this reflects on the equality of
the two valuations Êm' and E

m̂'
on  ̂m' , but this equality

will clearly not be a definitional one, given the different con-
structions that led to the two valuations. Rather, it takes the
following form: W

lemma adic_of_compl_eq_compl_of_adic (x : K_v) :

v_adic_of_compl x = v_compl_of_adic x

In the above code excerpt, v_adic_of_complW represents

the valuation E
m̂'

, while v_compl_of_adicW is Êm' .

2.5 Extensions of Complete Discrete Valuation

Rings

The goal of this section is to prove that if  is any field com-
plete with respect to a discrete valuation E and !/ is a finite
extension of fields, then there is a unique discrete valuation
on ! “extending” E . To explain our formalization, we first
need to discuss the relation between valuations and norms.

Definition 2.8. A nonarchimedean multiplicative norm on
a ring ' is a function |·| : ' → R such that

i) |A | = 0 if and only if A = 0 for all A ∈ ';
ii) |1| = 1;
iii) |A · B | = |A | · |B | for all A , B in ';
iv) |A + B | ≤ max{|A |, |B |} for all A , B in ';
v) |−A | = |A | for all A in '.

It follows from these conditions that 0 ≤ |A | for all A ∈ '.
A valuation E : ' → Γ0 valued in a group with zero Γ0 has

rank one if it is nontrivial and there exists an injective mor-
phism of linearly ordered groups with zero from Γ0 to R≥0.
In particular, any nontrivial valuation E : ' → Zm0 has rank
one. The definition of rank one valuation was first formal-
ized in [12] W.
The conditions in Definitions 2.2 and 2.8 are analogous —

apart from the codomain of the function — and the terms
“multiplicative valuation” and “nonarchimedean multiplica-
tive norm” are often used interchangeably in the mathemat-
ical literature. While mathlib does not yet provide a way
to relate these two notions, a dictionary between them has
been formalized in [12]. Namely, if  is a field with a non-
archimedeannorm, the definition valuation_from_normW

yields the corresponding valuation E :  → R≥0. Conversely,

if ! is a field with a rank one valuation, then norm_defW is
the corresponding norm function on !. To make use of this
dictionary in our project, we need to provide an injective
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morphism Zm0 → R≥0 of linearly ordered groups with zero.
We can define this morphism by picking any real = > 1 and
identifying Zm0 with the subset =Z∪ {0} of R≥0, via the map
sending 0 to 0 and of_add(x) to =G , for G ∈ Z.
We construct this morphism as W

def with_zero_mult_int_to_nnreal {n : R≥0}
(he : n ≠ 0) : Zm0 →∗0 R≥0 :=

{ to_fun := _ x, if hx : n = 0 then 0 else

n^(to_add (with_zero.unzero hx)),

... }

and thenwe prove W that this map is order-preserving when-
ever = > 1. Each choice of = gives rise to a different mor-
phism, and hence to a different norm attached to a valua-
tion E :  → Zm0, although any two such norms define the
same uniformity on  . When the quotient  ◦/m ◦ is finite
of order ?: for some prime ? , the standard choice is = = ?: .
Otherwise there is not a preferred =, so in our formalization

we pick = = 6.We refer to this = associated to E as v.base W.
Let now  be a complete discretely valued field and let !

be a finite field extension, so that !/ is automatically alge-
braic. The above discussion allows us to apply the following
theorem to conclude that there is a unique norm |·|! on !
extending the norm |·| associated with the valuation on  .

Theorem2.9. Let be a field that is complete with respect to
a nonarchimedean multiplicative norm |·| and let !/ be an
algebraic extension. Then there is a unique multiplicative non-
archimedean norm on !, called the spectral norm, extending
the norm |·| .

Proof. See [4, 3.2.4/2] for the informal proof and [12, §3.2]
for a discussion of the Lean formalization. �

In the setting that we are considering, the norm whose
existence is guaranteed by Theorem 2.9 is formalized in the

declaration discrete_norm_extensionW.
Since the extension !/ is algebraic, there is an explicit

formula for the norm |G |! of an element G ∈ !: if G has
minimal polynomial 5G (- ) = -< + 0<−1-<−1 + · · · + 00,
then |G |! = |00 |1/< . We prove this in W:

theorem spectral_norm_eq_root_zero_coeff :

spectral_norm K L x = ‖(minpoly K x).coeff 0‖
^ (1/(minpoly K x).nat_degree : R)

Since for every G ∈ !, the degree of the minimal polyno-
mial 5G of G over  divides the degree [! :  ] of the exten-
sion !/ W, we see that the norm |·|! takes values in the

subset =
Z

[!: ] ∪ {0} of R≥0. The norm needs not surject onto
that subset but, since Z is cyclic, its image is of the form

=
1Z

[!: ] ∪ {0} for some 1 ∈ Z>0. Informally speaking, to ob-
tain the corresponding normalized valuationwe just need to
rescale the norm by raising it to the ( [! :  ]/1)-th power,
and use the identification between =Z ∪ {0} and Zm0.

In order to formalize this idea, we have to be careful to
proceed in such a way that we do not leave the type Zm0,
since taking the 1th-root of an element of Zm0 is not a well-

defined operation. We start by constructing a map W

pow_extension_on_units : L× → multiplicative Z

that sends G ∈ !× to E (00)
[!: ]
deg 5G , which is well-defined by

lemma unit_pow_ne_zeroW. Thenwe find the positive num-

ber exp_extension_on_unitsW, denoted1 above, such that
the image of pow_extension_on_units is generated by of_add
(exp_extension_on_units : Z ). Hence, using the lemma

exists_mul_exp_extension_on_unitsW, we can obtain
the natural number 2 such that

pow_extension_on_units K L x =

(of_add (exp_extension_on_units))^c;

which leads to our definition of the extended valuation W:

def extension_def : L → Zm0 := _ x,

if hx : x = 0 then 0 else (of_add (-1 : Z)) ^

(exists_mul_exp_extension_on_units K

(is_unit_iff_ne_zero.mpr hx).unit).some

To connect the extended norm and the extended valua-
tion we prove in pow_eq_pow_root_zero_coeffW that for
every multiple 3 of deg 5G , the following equality holds:

of_add
(
log=

(
|G |3!

) )
= E (00)

3
deg 5G (2)

Using (2) we deduce that extension_def K L satisfies the
properties in Definition 2.2 since spectral_norm K L is a
multiplicative nonarchimedean norm on ! (as proven in [12,

§3.2]). We then prove that this valuation is discrete W and
that ! is complete with respect to the induced uniform struc-

ture W.
The next theorem we prove says that the integral closure

O! of the unit ball  ◦ inside ! is again a discrete valuation

ring W (we refer to [6, Chapitre 5, §2, n◦1] for generalities
about integral closures). This follows from the fact that O!
is actually equal to the unit ball with respect to the extended

discrete valuation on !, formalized as W

lemma integral_closure_eq_integer :

integral_closure hv.v.valuation_subring L =

(extended_valuation K L).valuation_subring

3 Local Fields

In this sectionwe describe our formalization of the basic the-
ory of local fields, a special kind of discretely valued fields
which are fundamental objects of study in number theory.
For instance, given a number field ! with ring of integers
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O! , one can subsequently apply the constructions of Exam-
ple 2.3 to the differentmaximal idealsm ⊆ O! — thus obtain-
ing a collection of DVR’s — followed by the completion pro-
cedure described in §2.4. The resulting collection of fields
!̂m are precisely the local fields occurring in the “local-to-
global” approach to class field theory briefly mentioned in
the Introduction.
Before giving the definition, we make a preliminary ob-

servation. Theorem 2.5 shows that every DVR is a local ring,
so it has a unique maximal ideal. On the other hand, given
a field  endowed with a discrete valuation, the code ex-
cerpt 2 shows that its unit ball  ◦ is a DVR, whose maximal
ideal we denote m ◦ . It is then possible to unambiguously
(although slightly inappropriately) speak of the residue field
of  to mean the field  ◦/m ◦ .

Definition 3.1. A local field is a field complete with respect
to a discrete valuation and with finite residue field.

The definition is implemented as follows: W

class local_field (K : Type*) [field K]

[hv : valued K Zm0] :=

(complete : complete_space K)

(is_discrete : is_discrete hv.v)

(finite_residue_field : fintype (local_ring.

residue_field hv.v.valuation_subring))

Remark 3.2. Whatwe call “local fields” are normally referred
to as “nonarchimedean local fields”, to distinguish them from
the archimedean local fieldsR andC. Since we only consider
the nonarchimedean case in this work, we have opted for
this simplification. Observe that the requirement that the
residue field is finite is sometimes omitted. Accordingly, the

completion �C(- ) is a valued field with residue field C that
we do not qualify to be local, although this is sometimes the
case in the literature.

A local field  can be of two kinds: of equal characteristic,
if both  and its residue field have characteristic ? for some
prime number ? , or of mixed characteristic, if  has charac-
teristic 0 and its residue field has characteristic ? . Moreover,
in the first case is a finite extension of F? ((- )) while in the
second it is a finite extension of Q? (see [6, Chapitre VI, §9,
n◦3]); this motivates our definitions in §§3.1–3.2.

3.1 Equal characteristic

Recall that we denote by �F? (- ) the completion of F? (- )
with respect to the maximal ideal m = (- ).

Definition 3.3. An equal characteristic local field is a finite

dimensional field extension of �F? (- ) , for some prime num-
ber ? .

This definition is formalized as W:

class eq_char_local_field (p : N) [nat.prime p]

(K : Type*) [field K]

extends algebra (FpX_completion p) K :=

[to_finite_dimensional : finite_dimensional

(FpX_completion p) K]

Thefirst example of equal characteristic local field is�F? (- )
itself, andwe record our proof of this in the instance FpX_completion

.eq_char_local_fieldW. Being a finite extension of the

complete discretely valued field �F? (- ) , any equal character-
istic local field  is endowed with a unique nontrivial valua-
tion, which is again discrete, and is complete with respect
to it.

instance : valued K Zm0 :=

extension.valued (FpX_completion p) K

instance : complete_space K :=

extension.complete_space (FpX_completion p) K

instance : is_discrete

(eq_char_local_field.valued p K).v :=

extension.is_discrete_of_finite

(FpX_completion p) K

Remark 3.4. Given any field  , the- -adic completion � (- )
of the field of rational functions is isomorphic to the field of
Laurent series indexed by Z with only finitely many nega-
tive nonzero coefficients:

 ((- )) =
{
5 =

∑

=∈Z
0=-

= | 0= ∈  and 0= = 0 if = ≪ 0
}
.

Accordingly, the unit ball
(� (- )

)◦
is isomorphic to the ring

of power series

 [[- ]] =
{∑

0=-
= ∈  ((- )) | 0= = 0∀= ≤ 0,

}
.

It is customary to define an equal characteristic local field

as a finite extension of F? ((- )) rather than of �F? (- ) , be-
cause elements in F? ((- )) are explicit and it might be hand-

ier to work with them than with elements in �F? (- ) . While
in pen-and-paper mathematics one can safely treat finite ex-
tensions of the two fields as leading to the same definition,
we have to pick a choice in our formalization project. Since
our development of extensions of complete DVR is very gen-
eral and does not rely on any explicit description of the base
field, and in analogy with our approach to the mixed char-

acteristic case (see §3.2), we decide to use the type �F? (- ) as
the base field in our Definition 3.5. Moreover, at the time of
our work the isomorphism  ((- )) � � (- ) is still not avail-
able in mathlib and we describe our formalization of this
isomorphism in §3.1.1.

Our next task is to show that an equal characteristic lo-
cal field  is a local field, in the sense of Definition 3.1. We
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have formalized this proof under the hypothesis that the ex-

tension /�F? (- ) is separable, as this is required to apply the
mathlib lemma is_integral_closure.is_noetherianW

which we are using in our proof of the finiteness of the
residue field. However, we point out that the separability as-
sumption can be removed at the expense of a more involved
proof, which we plan to formalize at a later date.

Since �F? (- ) is a field complete with respect to a discrete

valuation and is a finite extension of �F? (- ) , by the discus-
sion following (2), the - -adic valuation on �F? (- ) induces a
complete W discretely W valued structure on  , registered

in the instance eq_char_local_field.valued p K W. Hence
it only remains to prove that the residue field of  is finite.
To prove the finiteness statement, we first show that if � is a
field complete with respect to a discrete valuation and !/�
is a finite separable field extension, then the residue field of

! is finite dimensional over the residue field of � W:

finite_dimensional (residue_field E0)

(residue_field (integral_closure E0 L))

This implies that if the residue field of � is finite, then so is
the residue field of !. Now, it follows from the isomorphism

F? ((- )) � �F? (- ) discussed in §3.1.1 that � = �F? (- ) has
residue field F? , so every equal characteristic local field has
finite residue field, and is therefore a local field.
The ring of integers of an equal characteristic local field

 , denoted O , is the integral closure of
(�F? (- )

)◦
in  W:

def ring_of_integers :=

integral_closure (FpX_int_completion p) K

The lemma integral_closure_eq_integer implies thatO =

 ◦, that is, an element of  is integral over
(�F? (- )

)◦
if and

only if its valuation is less than or equal to 1. This equality

implies that O is a discrete valuation ring W.

instance : discrete_valuation_ring (O p K) :=

integral_closure.dvr_of_finite_extension

(FpX_completion p) K

3.1.1 Formalizing the isomorphism  ((- )) � � (- ) .
Due to the relatively recent appearance of the theory of adic

valuations in mathlib, the isomorphism  ((- )) � � (- )
was not formalized at the time of our work. Nevertheless
theAPI forworkingwith completions of uniform spaces and
uniform fields is quite rich, as described in §2.4. The key in-
gredient for the formalization is the notion of abstract com-

pletion W of uniform spaces. Given a uniform space) , a term
pkg : abstract_completion T contains seven fields, the
three most relevant for us being

i) pkg.space, the underlying uniform space endowed
with a map coe : pkg→ T;

ii) pkg.complete, which is a proof that pkg.space is
complete;

iii) pkg.dense_coe, which is a proof that coe is injective
with dense image.

In particular, there is a term ratfunc_adic_compl_pkgW

whose space field represents the completion �F? (- ) . Now,
given two terms (pkg, pkg': abstract_completion T),

the declaration compare pkg pkg' W provides an equiva-
lence of uniform spaces between them, which expresses the
mathematical statement that “the completion of a uniform
space is unique up to a unique isomorphism”. The unique-
ness of the extension (1)makes it easy to upgrade the equiva-
lence to an equivalence of fields whenever both pkg.space

and pkg'.space are fields. It follows that once we prove
that  ((- )) is also an abstract completion of  (- ), it will
correspond to a term laurent_series_pkgW and the pre-
vious discussion produces the required isomorphism, in the

form W

def laurent_series_ring_equiv :

(laurent_series K) ≃+∗ (ratfunc_adic_compl K)

Code excerpt 5. The isomorphim between the Laurent
series and the completion of rational functions.

To prove that  ((- )) is a completion of  (- ), we need to
show that ((- )) is complete and that the image of the coer-
cion  (- ) ↩→  ((- )) is dense. Ultimately, both results rely
on a careful study of the interaction between the- -adic val-
uation on (- ), the- -adic valuation on ((- ))5, and the co-
efficients of the corresponding series. For example, we show

in the lemma W

lemma valuation_le_iff_coeff_zero_of_lt {D : Z}

{f : laurent_series K} : v f ≤ (of_add (-D))

↔ (∀ n : Z, n < D → f.coeff n = 0)

that a Laurent series has valuation bounded by of_add (-D

) if and only if its =-th coefficient vanishes for each = < � .
Once we can relate the valuation and the vanishing of the
coefficients, the proof that  (- ) has dense image in  ((- ))
is very smooth. The proof of completeness heavily relies on
the formalism of filters, as explained in [8, §4]. The main

ingredient is the W

lemma uniform_continuous_coeff (d : Z)

(h : uniformity K = P id_rel) :

uniform_continuous (coeff d)

It shows that if is endowedwith the discrete uniformity ([5,
Chapitre II, §1, n◦1, Exemple 2]), the map 5 ↦→ 03 (5 ) send-
ing a Laurent series to its 3-th coefficient is uniformly con-
tinuous, for every3 ∈ Z. The consequence (see [5, Chapitre II,
§3, n◦1, Proposition 3]) is that for every Cauchy filter F in

5Despite having the same name, these valuations are associated to different
ideals: one is (- ) ⊆  [- ] and the other is (- ) ⊆  [[- ]] .
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 ((- )), the push-forward 5 (F ) is a Cauchy filter of the dis-
crete space  and thus converges to a point 23 (F ). It is
then easy to combine the above results linking coefficients
and valuation to show that, for every Cauchy filter F , the
value 23 (F ) vanishes for 3 ≪ 0 and therefore

5 (F ) =
∑

3 ∈Z
23-

3 ∈  ((- )).

In the lemma cauchy.eventually_mem_nhdsW we then show
that F converges to the principal filter P(5 (F )), proving
that  ((- )) is complete. Finally, we can specialize to  [[- ]]
the equivalence laurent_series_ring_equiv to get its in-

tegral version: W

def power_series_ring_equiv : (power_series K)

≃+∗ ((ideal_X K).adic_completion_integers

(ratfunc K))

Code excerpt 6. The isomorphism between power series
and the unit ball in the completion of rational functions.

In particular, we see that the residue field of � (- ) is iso-
morphic to the residue field of ((- )), hence to  itself. The
special case when = F? yields the finiteness of the residue

field of �F? (- ) mentioned in §3.1.

3.2 Mixed characteristic

Themain formalization challengewe facewhen formalizing
the definition of mixed characteristic local fields is analo-
gous to the issue discussed in Remark 3.4. The basic API for
the ?-adic numbers Q? was already available in mathlib,
but it predated the formalization of adic valuations. Since
we want to take advantage of this more general theory, our

approach is to define a new type Q̂(?)
W

def Q_p : Type* :=

adic_completion Q (p_height_one_ideal p)

and to prove that it is isomorphic, as a valued field, to the
field Q? . This isomorphism is established in the definition

padic_equivW and its construction follows the main strat-
egy explained in §3.1.1. Namely, we provide two abstract
completions padic_pkg and padic_pkg' of Q and we up-
grade the equivalence as uniform spaces to an isomorphism

of valued fields. As a consequence, the unit ball
(
Q̂(?)

)◦
,

called W (Z_p p) in our code, is proved to be isomorphic

to the ?-adic integers Z? in the declaration W

def padic_int_ring_equiv : (Z_p p) ≃+* Z_[p]
Code excerpt 7.The isomorphism between

(
Q̂(?)

)◦
andZ? .

We are now ready to give the following definition:

Definition 3.5. A mixed characteristic local field is a finite

dimensional field extension of the field Q̂(?) , for some ? .

This is implemented as W

class mixed_char_local_field (p : N)

[nat.prime p] (K : Type*) [field K]

extends algebra (Q_p p) K :=

[to_finite_dimensional : finite_dimensional

(Q_p p) K]

In particular, Q̂(?) is a mixed characteristic local field W.
We formalize the proof that anymixed characteristic local

field  is a local field as in Definition 3.1. The proof is anal-
ogous to the one in the equal characteristic case: the only
difference is that every mixed characteristic local field  is
automatically separable over Q̂(?) , since this holds for every
algebraic extension of a field of characteristic 0. Hence, we
do not need to assume separability. Finally, the ring isomor-
phism in the code excerpt 7 implies that the residue field

of
(
Q̂(?)

)◦
is isomorphic to F? , since this is the case for Z? .

As above, this ensures that every mixed characteristic local

field is indeed a local field according to Definition 3.1: W

def mixed_char_local_field.local_field :

local_field K :=

{ complete := mixed_char_local_field.

complete_space p K,

is_discrete := v.valuation.is_discrete p K,

finite_residue_field := ...,

..(mixed_char_local_field.valued p K) }

The extension of the?-adic valuation to W is the unique

nontrivial discrete W valuation on  , and the field  is com-
plete with respect to the induced topology W.
The ring of integers O of amixed characteristic local field

 is the integral closure of (Q̂(?))
◦
in  W.

def ring_of_integers :=

integral_closure (Z_p p) K

As in the equal characteristic case, we have that O =  ◦,

so in particular O is a discrete valuation ring W.

4 Discussion

4.1 Future work

Our next project is to prove that every local field is either a
mixed characteristic local field or an equal characteristic lo-
cal field, and that completions of global fields at finite places
are local fields. We will then relate unramified extensions of
local fields with extensions of their residue fields, showing
that they are all (pro-)cyclic. This paper describes one of the
first steps in a larger scale project aiming at formalizing lo-
cal class field theory. We plan to formulate it in cohomolog-
ical terms, relying on the recent work [17] by Livingston.

4.2 Related works

We formalize our work on top of the Lean 3 library mathlib
and the Lean 3 project [12] formalizing extensions of norms.
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The basic theory of DVR’s was available in mathlib at the
start of our project. The library includes a formalization of
the additive valuation on a DVR but we discuss in §4.3 our
choice of working with Zm0-valued valuations instead.
As far as other systems are concerned, the first formal-

ization of the ?-adic numbers appeared in the Coq UniMath
library in [18]. They were later formalized in Isabelle/HOL
in [10], where we also find a formalization of formal Puiseux
series [14], which are a generalization of Laurent series. To
the best of our knowledge, in none of these formalizations
the algebraic structure of those rings as DVR’s, nor the com-
parison between the adic and the metric topology, is dis-
cussed.

4.3 Remarks about the Implementation

Additive andmultiplicative valuations. The mathlib
library prioritizes multiplicative valuations over additive ones,
providing a much wider API for the first ones. For example,

the general theory of valuation rings W is framed in terms
of multiplicative valuations. Moreover, while mathlib does
not yet include the definition of discrete valuation, it does
provide specific examples, such as adic valuations onDedekind
domains, which take values in Zm0.
On the other hand, mathlib only provides the formaliza-

tion of the additive valuation add_valW on a discrete valu-
ation ring, taking values in part_enat, a decidable version
of the type enat=N ∪ {∞} . For consistency with the rest
of the library, we propose to replace add_val with our im-
plementation of the multiplicative valuation.

Uniformizers. To indicate that a term (c: R) in a ring
' is a uniformizer for a valuation E' , we provide a predicate

is_uniformizer: W

def is_uniformizer (c : R) : Prop :=

vR c = (of_add (- 1 : Z) : Zm0)

Wealso provide a bundled version of this definition, called

uniformizerW. Since any uniformizer is necessarily amem-
ber of the unit ball, we decided to make the field c in the
definition below a term of type vR.integer (as opposed to
type R). The bundled definition is more convenient to prove
results that involve fixing a uniformizer.

structure uniformizer :=

(c : vR.integer)

(valuation_eq_neg_one : is_uniformizer vR c)

Extensions and valued instances. In §2.5 we construct,
for each field  complete with respect to a discrete valua-
tion E and every finite extension !/ , a unique valuation
E! on !, recorded as (v_L : valuation L Zm0). However,
at this level of generality we do not put a global valued

instance on !: doing so would create infinitely many dia-
monds, since for every  , the original valuation E is propo-
sitionally but not definitionally equal to its trivial extension
E . Nevertheless, we provide a lemma trivial_extension_eq_valuation
W proving the equality E = E .
We make an exception to this rule when implementing

mixed and equal characteristic local fields, since we do de-
clare valued instances for them. Therefore this mild dia-
mond occurs for Q̂(?) and �F? (- ) but this does not cause
trouble in our formalization, thanks to the comparison lemma

trivial_extension_eq_valuationW.

Fraction fields. If  is a discretely valued field, then  ◦

is a DVR, so we put a [valued (fraction_ring K0) Zm0]

instance on Frac( ◦) W. Note that, while  and Frac( ◦)
are isomorphic, they are represented by different types in
mathlib, so the above valued instance has a different type
from the original [valued K Zm0] instance and no diamond
occurs. However, it would if we had instead decided to put
this valued instance on any field ! satisfying the condition
[is_fraction_ring K0 L], since this holds for  .

The normed_fieldand the valued instances. Recall from§2.5
that to each discrete valuation E on a field  we can as-
sociate a nonarchimedean multiplicative norm |·| . If E is
the unique discrete valuation on  , we often register it as a
valued instance:

{K : Type*} [field K] [hv : valued K Zm0]

In this situation, |·| would be the unique nontrivial norm
on  , up to rescaling, and we would like to record a corre-
sponding normed_field instance on  :

{K : Type*} [normed_field K Zm0]

Note that the datum of a field is embedded into the defini-
tion of the normed_fieldclass, while the class valued takes
the field structure as an argument. Threrefore, declaring a
normed_field instance on every field that carries a valued
one leads to a loop in the typeclass inference system6.
However, no problem arises when putting both a valued

and a normed_field instance on a specific field, like Q? .

Laurent series. As for general DVR’s, an additive valua-
tion was already available in mathlib for power series, with

the name hahn_series.add_valW. It is part_enat-valued
and it is defined as the greatest = such that -= divides the
power series. Although some basic API was available, the
same reasons that led us to systematically work with mul-
tiplicative valuations rather than additive ones pushed us
to rely on the general theory of Zm0-valued adic valuations
rather than with this ad hoc definition.

6Lean 4 can detect these kinds of simple loops, so this should not be an
issue once our project has been ported.
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Themain isomorphism laurent_series_ring_equivex-
hibited in the code excerpt 5 is defined as the inverse of an

isomorphism W

ratfunc_adic_compl_ring_equiv : � (- ) ≃+∗  ((- )).

The reason is that to prove additivity and multiplicativity
of the above map it suffices to observe that it coincides with
the extension �coe (in the sense of (1)) of the coercion

coe :  (- ) →+∗  ((- )).

The formalism of uniform completions suffices to establish
that �coe is a ring homomorphism simply because coe is,
whereas there exists no explicit ring homomorphismi such
that î = laurent_series_ring_equiv.

The field of ?-adic numbers as adic completion. Al-

though the formalization of the isomorphism Q̂(?) � Q?
follows in many respects the one for Laurent series, one
notable difference is that the type Q, unlike  (- ), already
bore an instance of metric_space, induced from the Eu-
clidean distance, and this induced a uniform structure on
Q. In order to define the term Q̂(?) we needed to access
the API concerning completions of adic spaces, and to do
so a valued instance needed to be defined on Q. The corre-
sponding uniform space structure would conflict with the
Euclidean one, and therefore we needed to locally disable
the metric_space instance on Q already just to define the

type Q̂(?) .
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