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Abstract

The efficiency of deep neural networks is increasing, and so is the amount of annotated data
required for training them. Wepropose a solution improving the learning process of a classification
network with less labeled data. Our approach is to inform the classifier of the elements it should
focus on to make its decision by supplying it with some shape priors. These shape priors are
expressed as binary masks, giving a rough idea of the shape of the relevant elements for a
given class. We resort to Siamese architecture and feed it with image/mask pairs. By inserting
shape priors, only the relevant features are retained. This provides the network with significant
generalization power without requiring a specific domain adaptation step. This solution is tested
on some standard cross-domain digit classification tasks and on a real-world video surveillance
application. Extensive tests show that our approach outperforms the classical classifier by
generating a good latent space with less training data. Code is available at https://github.
com/halqasir/MG-Siamese

Keywords: Deep learning, Siamese networks, Shape prior, Domain generalization, Proxy-based
learning

1. Introduction

Recently, there has been a growing interest in using Siamese networks on visual tasks in the
context of few-shot learning or self-supervised learning [1, 2]. The principle of Siamese networks
is to learn a high dimensional latent space where similar images are projected near each other and
dissimilar ones are projected far from each other. They have the structure of two twin networks
that accept distinct inputs and are joined by a contrastive loss to compare the two outputs. Once
the Siamese network has been trained, the class prediction can accurately be done with a nearest
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neighbor classifier operating in the latent space [3]. Siamese networks can also be used in the
context of unsupervised training, where the two inputs are one image and a transformed version of
this image. The resulting latent space gets interesting invariance properties and provides powerful
image features that standard classifiers can exploit.

In this paper, we explore the potential of Siamese networks in an original image classification
setting where, in addition to the training images, we have a shape prior (used as a proxy) given by
a particular binary mask for each class. This is the case when each class can be represented by an
object having a discriminant shape easily described by a binary mask. The purpose of the shape
prior is to highlight the most important parts of the images for solving the classification task.
Typically, the binary mask can be drawn by a human using image editing software by delineating
the object in a selected training image characteristic of the class. In numerous applications, this
kind of prior is easy to obtain because it corresponds to the general shape of the class. For
example, in digit recognition it is the basic shape of the digits. In sign language recognition, it is
the prototype of each sign to recognize. In this paper, we also consider a real-life application in
the field of video surveillance where the goal is to determine whether people boarding a chairlift
have properly set their safety bar1. In this case, the mask corresponds to the shape of the safety
bar both in open or closed positions. Figure 1 shows a few examples of binary masks and the
respective image instances of the corresponding class. In such applications, it is clear that the
mask is only a coarse representation of the geometry of the important element. Its shape, location
and orientation are approximated. Furthermore, it is worth mentioning that a single binary mask
is expected for each class, limiting the effort of the user to introduce shape priors.

Figure 1: Examples where binary masks can help for classification. Note that, for our approach, one mask is expected for
each category, not for each image.

In this context, we propose a Mask-Guided Siamese approach (referred to as MG-Siamese
below) built upon the combination of Siamese network architecture and specific training and
testing configurations exploiting the binary masks and the ability of Siamese networks to learn
relevant latent spaces. More precisely, each binary mask (from one domain and one category) is
used as a proxy in the metric learning process so that all the images from the same category and
the same domain concentrate around this mask in the embedding space. This is a smart solution

1in collaboration with Bluecime company as part of Mivao project
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to remove the irrelevant background from the final features. We show that this approach provides
a simple yet effective solution for two important problems in image classification: (i) inserting
shape priors in a deep architecture in order to guide the network towards the relevant features and
so reducing the amount of training data; (ii) generalizing well on a new domain with only some
shape priors or even without any information from the target domain.

The most important finding of this paper is to show that using binary masks as simple shape
priors in Siamese networks helps the model generate good latent space with less training data
and that this space is robust to slight distribution discrepancy between the source and target data.
In case of more considerable discrepancy, the user just needs to provide the shape priors of the
new data, with a single binary image, in order to get good results. These properties are studied
experimentally using three different experiments in the context of digit classification and chairlift
safety.

In a recent study, we have shown that shape priors can be introduced in Siamese architectures
in order to boost the performances on large-scale datasets in the context of intra-domain exper-
iments [4]. This paper goes a step further by assessing the quality of such an approach trained
with small datasets from different domains. Furthermore, we run more experiments and provide
a deep analysis of the results. Indeed, we experimentally assess the impact of each element of
our framework and answer important questions:

1. What kind of prior is it better to introduce in the network?

2. Should we learn domain invariant features or domain-specific features to improve the
generalization property of the solution?

3. Should we train our Siamese network with a pair-based or a proxy-based approach?

4. What is a good proxy for proxy-based learning?

Our contributions are multiple:

• We challenge the generalization properties of a Siamese network learned on a small source
dataset over a new unseen target dataset, i.e., domain generalization.

• We propose a solution to exploit shape priors at test time when the target masks are
available.

• We run extensive tests and show that our solutions always outperform the classical classi-
fication models.

The rest of the paper is organized as follows. Section 2 is a review of the related works,
section 3 presents our MG-Siamese approach to introduce shape prior and explains different
generalization scenarios. Section 4 describes experiments and results for three different contexts
to evaluate the domain generalization capability of MG-Siamese. Finally, section 5 concludes
with a summary of the method and main results.

2. Related Works

The works related to our paper deal with the insertion of priors in the deep architecture
and domain generalization are detailed below, emphasizing the approaches based on Siamese
architectures.
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2.1. Siamese networks
The general purpose of Siamese networks is to provide a suitable embedding space to compare

two inputs [5]. They have thus naturally been used in various contexts as object tracking [6],
face or signature verification [7, 5], or few-shot learning [3]. They recently became a crucial
component in the fields of unsupervised/self-supervised visual representation learning [8, 9, 1, 2].
The principle relies on an unsupervised pretext task involving comparing two images to learn a
representation space that can further be used for another task. A simple example of a pretext task
is determining if the two inputs are augmented versions of the same image, or if two image crops
come from the same original image. In this work, we propose an original setting where one of
the two inputs is a proxy image used as a shape prior, and we study the generalization properties
of this solution in the context of a small training set and domain generalization.

A part of related works concerns the use of Siamese networks for comparing multimodal
images. Indeed, by providing pairs of images as input and designing specific losses, Siamese
networks are smart solutions to compare patches from different modalities (color, infra-red,
thermal, sketch, etc.). When the two sub-networks share their weights, the idea is to extract
features that are common to the two modalities, while when the two sub-networks are different
(pseudo-Siamese network), the aim is to discover the features specific to each modality. En et
al. [10] propose to exploit the benefits of these two approaches in a single three-stream network.

2.2. Domain generalization
In real-world applications, it is not rare that a domain shift occurs between the training data

and the test data. This shift can result from many factors such as variations in background,
locations, viewpoints, lighting conditions, acquisition devices, modalities, or image quality. A
key challenge is to bridge the gap between the domains to the extent that a system trained on a
source domain will generalize well to a target domain.

When (unlabeled) target data is available while training the network, domain adaptation can
be applied with interesting results [11, 12]. When only one labeled example of the target (domain
or task) is given, we refer to one-shot domain adaptation. Liu et al. [13] proposed to address
the gap between source and target tasks in one-shot learning by filtering some features that could
harm the target task. The authors’ filtering process is straightforward; they randomly select a
binary mask and multiply it by the embedding. They make several attempts and finally choose
the mask that yields the best accuracy.

When no target data is available at learning time, people resort to zero-shot domain adapta-
tion [14, 15, 16, 17] or domain generalization [18, 19, 20]. For zero-shot domain adaptation, Yang
and Hospedales propose associating each domain (source and target) with a vector of discrete
parameters called a semantic descriptor [17]. Then, they use a two-branches network whose
inputs are the sample features and the domain descriptor from this sample. The output of the
network (the predicted sample class) is a fusion of the outputs of the two branches. This is a
way to adapt the classifier to the domain provided as input. For a new unseen target domain,
given its semantic descriptor, the network is able to accurately predict the class of its samples.
This approach requires the user to be able to describe all the domains with a vector of discrete
parameters. Kumagai and Iwata use a similar architecture, but instead of using an attribute vector
for each domain, they propose to extract a latent domain vector from the set of features of each
domain [15]. This approach requires the knowledge of the whole target features in order to start
predicting the classes of the target data.

Zhou et al. propose to solve the problem of domain generalization by mapping source
learning data into synthesized data from unseen domains [19], using a domain transformation
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network (DoTNet). This is accomplished with a learning objective formulated to minimize label
classification loss while maximizing domain classification loss using domain adversarial training.
Ghifary et al. present a robust feature learning technique using auto-encoders that improve cross-
domain generalization properties [20]. Their multi-task strategy suggests that auto-encoders are
not only a robust framework for unsupervised feature learning, but also for invariant feature
learning. Motiian et al. [21] seek to align marginal distributions across domains using a Siamese
architecture, making the distance (in the embedding space) of samples from different domains
with the same labels closer while those with different labels are further apart. This approach
is similar to ours since it is based on a Siamese architecture, but they consider pairs of images
from different domains, while we use image/mask pairs from the same domain. Many studies
have compared the proxy-based solutions and the pair-based solutions for metric learning, and it
appears that the main weakness of the latter approaches is that they suffer from a high training
complexity because of the huge number of image pairs [22]. Our image/mask pairs are a good
solution to cope with this problem. Second, training a network to be invariant to any eventual
domain shift requires large-scale datasets with many domains. In our context, where only a small
set of labeled data is available, we notice that it is much better to learn specific features for each
domain instead of invariant features for all the domains. This is the solution we are proposing
by using different masks for different domains. The advantages of our approach over [21] are
experimentally shown in the experiments section.

Unlike other solutions that use domain features to predict labels, Shankar et al. propose to
learn a domain invariant classifier [16] using multi-domain training data to generalize to unseen
domains. Their original solution consists of artificially transferring data between domains to
learn invariant features, and they show that this augmented data helps to generalize to unseen
domains better. The new domain-guided samples are created by augmenting the original samples
with their gradient from a domain classifier.

In our case, the problem is slightly different from all the previous approaches since we have
additional geometric features that are domain-dependent and that can be inserted into the model.
For this reason, our solution is complementary to all these solutions and could help to improve
their results if geometric priors are available.

2.3. Inserting priors
The insertion of geometric features in a deep neural network has not been much studied

in the literature. Conditional networks could be interesting solutions to exploit such available
data [23, 24]. For example, Zhao and Snoek propose modulating the RGB features of a video
with optical flow features in order to improve the action detection accuracy. The proposed motion
condition and motion modulation layers incorporate motion and modulate the contribution of the
RGB features. Such conditional networks require the different features (optical flow and RGB)
to be well spatially registered, which is not the case for our images and binary masks.

One solution to guide a classification network towards the relevant elements of a category
is to transform it into a detection network, such as Faster R-CNN [25], CornerNet [26], or
DetectoRS [27]. Indeed, providing bounding boxes around the relevant elements at training time
is a good solution to help solve the classification task [28]. Given all the elements detected in one
test image, a decision rule can be used to deduce the category of this image. In our experiments,
we will show that detecting objects can indeed boost the classification results. Unfortunately,
inserting bounding boxes priors requires a considerable effort since several boxes have to be
provided for each training image. Our solution reduces this effort significantly since only one
binary mask is required for each category and not for each image.
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The attention mechanism also gives the network the ability to focus on a subset of its inputs
or features rather than processing the whole image at once, allowing regions of interest to be
localized and the scene to be analyzed selectively. These mechanisms have been applied to a wide
variety of tasks; one approach that could be related to ours deals with a person re-identification
task [29], where the idea is to help the network to extract features only from the body of the
person in the image and not from the cluttered background. In this aim, the authors propose to
use a binary mask of the person to create three images: the full image, the body image, and the
background image. Then a triplet loss is used to bring the features of the full image closer to those
of the body alone, and to move away the features of full images from those of the background
image. Thus, the network is trained to automatically extract the most important features (i.e.,
from the body only) from the full image. This approach requires designing a triplet loss to extract
features from the body but also a Siamese network in order to bring closer images from the same
person and move away images from different persons. This complex architecture is not adapted
to our problem with a small set of labeled images and requires a perfect match between the binary
mask and each image.

In this paper, we propose to use Siamese networks to enforce the model to concentrate on
specific features in the images that are essential for the classifier to make its decision. We show
that these geometrical constraints are also very interesting to generalize to new unseen domains
without any specific adaptation step. The approach is presented in the next section.

3. Mask-Guided Siamese approach

To insert shape priors in our model, we resort to a Siamese architecture that learns a mapping
that projects the images and the masks into a feature embedding space, each mask corresponding
to the specific class to be tested [30]. Euclidean distances are evaluated in the feature space at
test time to decide to which class the input image belongs.

In this work we address a classification problem with a significant shape prior in the classes.
This is the case when each class can be represented by an object with a discriminant shape easily
described by a binary mask. Furthermore, we assume that the general shape does not change from
one instance of the class to the next so that the binary mask remains specific to the corresponding
class. Moreover, we assume a reasonable number of classes (several dozen at most) to enable an
expert to choose a binary mask for each class. In practice, the binary mask can be drawn by the
expert using an image editing software by roughly delineating the object in a selected training
image characteristic of the class.

Formally, we consider a set of domains � split in source and target domains denoted �( and
�) , respectively, such as � = �( ∪�) . All these domains share the same set of classes. . Each
source domain 3 ∈ �( comes with a set of masks "(

3
= {<(

3,H
}H∈. where <(

3,H
is the mask

associated with class H in domain 3. Similarly, each target domain 3 ∈ �) comes with a set of
masks ")

3
= {<)

3,H
}H∈. where <)

3,H
is the mask associated with class H in domain 3. Finally, we

have two sets of source and target images denoted -( and -) respectively, with - = -( ∪ -) ,
and each image is associated with a class H ∈ . and a domain 3 ∈ �. Following our previous
conventions, the set of images of the source domain 3 ∈ �( is denoted -(

3
and the set of images

of the target domain 3 ∈ �) is denoted -)
3
.

Figure 2 shows a simplified view of our classification problem, in which we have, for each
source domain 3 ∈ �( , a set of training images -(

3
and a set of binary masks "(

3
, such that each

class is represented by one mask in its specific domain. For the sake of clarity, we illustrate the
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Figure 2: The proposed training process on source domains with image/mask pairs. The training set comprises two source
domains (green and blue background respectively), with |. | = 3 categories (circle, star or diamond). Each domain 8
comes with a set of images -(

8
and a set of masks "(

8
which are used to generate positive and negative pairs. Each pair

feeds the MG-Siamese. Thanks to the contrastive loss, the output of the MG-Siamese (� ()) for each input (image or
mask) is a class-specific discriminative feature vector. It is preferable to use color for this figure in print.

process in this figure with three different classes and two different source domains, although our
model can be trained with any number of classes or domains.

3.1. Training the model
A Siamese network, composed of two sister CNNs sharing their weights, is used at training

time. Training pairs from {-(
3
×"(

3
}3∈�( are fed to the Siamese network, each pair is composed

of an image G and a mask < of the same source domain 3 ∈ �( . Each pair is labeled positive
or negative, such that a positive pair is composed of an image and a mask of the same class and
a negative pair is composed of an image and a mask of different classes. Each sister CNN is
learned so that the two inputs G and < are transformed into two vectors that will be similar if
they are from the same class, and different if they are from two different classes. Denoting � the
function mapping the input image (or mask) to the corresponding output vector, the two outputs
� (G) and � (<) are compared through a contrastive loss function L defined by [31]:

L(� (G), � (<)) = U‖� (<) − � (G)‖2 + (1 − U)max(1 − ‖� (<) − � (G)‖, 0)2 (1)

where ‖.‖ denotes the !2 norm, U = 1 for a positive pair, and U = 0 for a negative one.
Minimizing this loss forces the CNN to extract features from the images that are similar to the

features from the correspondingmask of the same class. This is a smart way to inform the network
of the element it needs to focus on in order to classify the image. By learning this model over
multiple domains and projecting all source images and masks into the same embedding space, the
model learns to extract automatically class-specific discriminative features of the images. The
following sections present different inference processes depending on the domain of the tested
data (source or target), and on the available masks.
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3.2. Testing on source data
In this section, we consider that test images come from a given source domain 3 ∈ �( for

which the binary masks representing the shapes priors are available. Considering one test image
G ∈ -(

3
, we can use one branch of the trained Siamese network and feed it with each mask <(

3,H

from "(
3
. In total |. | masks (where |. | denotes the number of elements of . ) are available as

illustrated on Figure 3. The corresponding outputs are denoted � (<(
3,H
).

Given a test image G, its inferred class Ĥ is the class of the nearest mask, in terms of Euclidean
distance, in the embedding space:

Ĥ = arg minH∈. ‖� (<(3,H) − � (G)‖
2. (2)

Figure 3: Test on a source image when the corresponding source masks are available. The image G and the set of masks
"(

1 , which all belong to the same source domain 3(1 ∈ �
( are fed to one branch of the model. Then the output in the

embedding space indicates the class of the image.

Figure 4: Test on a target image when the corresponding target masks are available. The image G and the set of masks
")

1 , which all belong to the same target domain 3)1 ∈ �
) are fed to one branch of the model. Then the output in the

embedding space indicates the class of the image.

3.3. Generalizations scenarios
In this section, we consider the case where the test images come from a target domain, i.e.,

a domain that has not been used to train the model. Two different cases are considered: (i) the
corresponding target masks are available; (ii) the corresponding target masks are not available. It
is worth mentioning that in both cases the target data distribution is not available and is not used
at training time, unlike classical domain adaptation approaches.
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Testing on target data with target masks
In this section, we assume that for each target domain, the masks are available. In this case,

the solution is straightforward. Considering the given target domain 3 ∈ �) , we feed the network
with the masks ")

3
= {<)

3,H
}H∈. as well as the test image G ∈ -)

3
. Then, the Euclidean distances

between the image feature vector and the masks feature vectors allow us to infer the class of this
test image (see Figure 4):

Ĥ = arg minH∈. ‖� (<)3,H) − � (G)‖
2. (3)

Where � (G) and � (<) are the output vectors of the image and themask, respectively. This solution
fully exploits the advantages of our learning process that allows learning domain-dependent
discriminators by comparing each image only with its corresponding masks while projecting all
the feature vectors in the same embedding space so that the features of different domains can help
to improve each other.

Testing on target domain without target masks
In this section, we consider the most challenging case, where we would like to infer the class

of images from a target domain for which we do not have any information i.e., neither the image
distribution in the embedding space, nor the binary masks informing about the shape priors.

Figure 5: Test on a target image when target masks are not available. The image which belongs to the target domain
3)1 ∈ �

) and the two sets of masks "(
1 and "(

2 , which belong to the source domains 3(1 and 3(2 respectively, are fed
to one branch of the model. Then the output in the embedding space indicates the class of the image.

In this case, we propose exploiting the diversity of the source data and assuming that each
(unknown) target mask is similar to a source mask. Since the embedding space has been learned
on several source domains, this assumption is highly likely to be true in practice. Thus, we
propose to project the target image G ∈ -) and all the source masks "(

3
into the embedding

space. Then, by looking at the nearest neighbors, we derive the class of the target image as (see
Figure 5):

Ĥ = arg min(3,H) ∈�(×. ‖� (<(3,H) − � (G)‖
2. (4)

The experiments confirmed our assumption that the feature vectors of the source masks could
provide an approximation of the location of the feature vector of any new unseen target example,
even in case of a high source/target distribution discrepancy. We will show that, although this is
not a constraint in our learning process, the network automatically discovered that masks in one
class share geometric properties that help to discriminate them from masks in other classes.
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4. Experiments

We carried out experiments on three different contexts to evaluate the domain generalization
capability of our proposed system. After presenting the datasets used in these contexts and the
associated experimental settings, we will answer four questions about the best priors, the best
features for generalization, and proxy-basedmetric learning. Then some geometric interpretations
will be conducted before concluding this work.

4.1. Datasets and settings
The performances of our approach are assessed in three different contexts with different

datasets. The experimental setting is adapted to each context for a fair comparison. The
experiments range in their degree of difficulty and nature from the authentic chairlift safety
problem to the traditional digit classification problem, with the intent of evaluating the proposed
approach in different settings and number of classes, however in all cases we address the problem
of domain generalization for datasets with non-deformable objects where shape priors could be
obtained easily with almost no cost.

4.1.1. Context 1: chairlifts safety problem
The safety of chairlifts is a major concern for ski resort operators. To prevent possible

accidents, it is necessary to detect dangerous situations on chairlifts as early (after boarding) as
possible. As part of an authentic project to develop a system to provide a thorough analysis of
the boarding scene, one but not the only aspect is to detect users who have not properly closed
the safety bar before leaving the boarding station. A major challenge of the project is that the
system must learn to configure itself automatically, taking into account new situations or types of
chairlifts not previously recognized. Without the need for a costly domain adaptation step or any
additional annotated data.

Our chairlift dataset2 consists of images from 21 different chairlifts acquired using the follow-
ing process. For a given chairlift, several video recordings are first made in the ski resort in real
conditions. Then, each video is pre-processed to extract a set of frames containing the passage
of a single chairlift carrier. Then, each image is registered and cropped according to a reference
image to have the chairlift carrier roughly at the same 2D position, scale and orientation. As
we can see in the example images in Figure 6, there is a great diversity between chairlifts: 3D
geometry of the carrier, number of seats, viewpoints, weather conditions, background, . . . . The
images are labeled “open” or “close” according to the position of the safety bar of the chairlift
carrier.

Data setup. As we want to test the ability of our model to generalize, we randomly chose 6
chairlifts to be the target domains �) = {3)1 , ..., 3

)
6 } and the remaining 15 chairlifts to be the

source domains �( = {3(1 , ..., 3
(
15}. Given that the annotation step is very time-consuming, we

chose a challenging setting with very little labeled data. Specifically, only 20 random images from
each of the 15 source chairlifts are labeled as open or closed, resulting in 300 training images in
total. The number of test images is different depending on the target chairlift, as shown in Table
1.

2provided by Bluecime company
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Some source images and masks Some target images and masks

Figure 6: Some source and target images and the corresponding chairlift masks (experimental context 1). Each column
contains images and masks from the same chairlift (top:open and bottom:closed). Note that each chairlift stands for one
domain, where there are many images and only one mask per class. One may notice the diversity between chairlifts
(domains): point of view, background, 3D geometry of the carrier, number of seats, etc.

Masks generation. Each chairlift (domain) comes with two binary masks (open and closed) that
were easily drawn from one image of each category. Since the safety bar is a non-deformable
object which is always observed with the same viewpoint for a given chairlift, we can create two
binary masks that represent the chairlift carrier shape when it is open (open mask) and when it is
closed (closed mask). Each time a new chairlift is installed, the operator can easily create these
two mask images by acquiring one image of each class (open and closed) and by drawing two
binary masks representing the shape of the safety bar.

The purpose of the masks is to have a rough idea of the geometric constraints of the object
of interest, it is not needed that they are perfect or superimposed on the real object in the RGB
image, and this is a strength of the proposed method, as it does not require expensive perfectly
segmented masks, instead it is the network’s job to make use of the features extracted from the
masks and those extracted from the image and to match them in the embedding space. Figure 7
shows that the open (resp. closed) mask of a chairlift carrier is not perfectly superimposed with
all the open (resp. closed) images of this chairlift carrier. But it gives a coarse idea about the
shape of the safety bar and its relative location in the image.
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The open mask of chairlift 3)2 superposition with 3 different open images of 3)2 .

Open/closed masks superposition with open/closed images from chairlifts
3(11 (on the left) and 3

(
14 (on the right).

Figure 7: Superposition of masks and the corresponding images.

Network and training settings. Our Siamese architecture has two identical networks with shared
weights, which are composed of the convolutional part of VGG16 [32] pre-trained on Ima-
genet [33] and two randomly initialized fully connected (FC) layers. The first FC layer has 4096
outputs and the second one has 1024. The networks are trained using back-propagation and the
stochastic gradient descent algorithmwith a learning rate equal to 10−5, a decay equal to 10−8, and
a momentum equal to 0.9. All tests are averaged over 10 runs, each of them consisting of 1000
epochs. As explained in the previous section, the input of the Siamese model is an image/mask
pair, both belonging to the same chairlift. A positive pair is composed of an image and a mask
of the same class (open or closed), and a negative pair is composed of an image and a mask of
different classes. At test time, we apply a K-Nearest Neighbors (KNN) classifier on the source
or target masks, depending on the experiment. All our tests are compared to a classical binary
classifier that uses the same architecture (augmented with a two-neuron classification layer) for
a fair comparison. Since the weights are shared between the two sister networks in our Siamese
architecture, the number of parameters of our solution is almost the same as that of the binary
classifier (the latter having 2048 more weights).

Table 1: The number of test images in each class in the target chairlifts (experimental context 1).

class 3)1 3)2 3)3 3)4 3)5 3)6
open 12 438 408 283 389 125
closed 385 462 277 302 329 62

12



4.1.2. Context 2: cross-domain digit recognition
Several digit datasets exist today with some important differences between them; in this

experimental context, we consider four digit datasets: MNIST,MNISTM, USPS, and SVHN [34].
Since they represent images of the same categories, i.e., digits between 0 and 9, they can be used
for cross-domain classification. Even though this problem seems to be very basic, it is important
to employ such a classical task to validate the effectiveness of our proposed method on more
widely known databases.

Data setup. As shown in Figure 8, MNIST and USPS are grayscale handwritten digits datasets.
MNISTM is a colored version of MNIST created artificially using image patches from the colored
BSD500 dataset [35]. SVHN dataset contains colored images of street numbers; in its cropped
digits version, only one digit is labeled and it is usually located in the center. The number of
training and test images in each dataset is shown in Table 2.

Table 2: The number of training and test images of the four digits datasets (experimental context 2).

dataset MNIST/MNISTM USPS SVHN
training images 60000 7291 73257
test images 10000 2007 26032

MNIST MNISTM USPS SVHN

Figure 8: Some images from the four digits datasets (experimental context 2).

Masks generation. FromMNIST dataset, we randomly selected one image per class and consid-
ered these 10 images as the masks for this experimental context. Again, these masks do not have
to be perfectly segmented and they do not have to superimpose all objects of the same category,
as it is the job of the network to match the features of the RGB images and the binary masks in
the embedding space.

Network and training settings. For this experiment, we follow the settings of [34]. All the
images are rescaled to 32 × 32 × 3. The backbone architecture is composed of 9 convolutional
layers with several dropout, Maxpooling, and global pooling layers, and one fully connected layer
serves as a classifier.

In this experiment, we consider 5 tasks, by learning the model on a single dataset (source
domain) and testing it on a different dataset (target domain). This setting is challenging for
domain generalization since only one domain is used at training time.
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4.1.3. Context 3: cross-domain digit recognition with Rotated MNIST
Another classical task in the field of domain generalization is digit recognition with Rotated

MNIST, which we will elaborate in the following.

Data setup. Different domains can be artificially created by applying geometric transformations,
such as rotations. This is the case of the rotated MNIST dataset used in [21]. There, a set "0◦ of
100 images per class (1000 in total) was randomly sampled from MNIST dataset. Then five new
domains "15◦ , "30◦ , "45◦ , "60◦ , and "75◦ were generated by rotating the original images by 15,
30, 45, 60, and 75 degrees, respectively. Sample images are depicted in Figure 9.

Masks generation. From MNIST dataset, we randomly selected one image per class and con-
sidered those 10 images as the masks for "0◦ . And then, for each rotated set, we apply a rotation
with the same angle to get the masks of each domain. For example to obtain the masks of the
rotated set "15◦ , we apply a 15◦ rotation on the 10 masks of "0◦ .

" "15◦ "30◦ "45◦ "60◦ "75◦

Figure 9: Some image examples from the Rotated MNIST (experimental context 3).

Network and training settings. We carried out 6 cross-domain experiments. In each, we omit
one domain, considered the target domain, and train the model using the remaining 5 sets. The
input of the Siamese model is an image/mask pair, both belonging to the same set (same rotation
degree). A positive pair is composed of an image and a mask of the same class, and a negative
pair is composed of an image and a mask of different classes. For this experimental context,
each sister network in our Siamese architecture is similar to the one proposed in [21], which is
composed of 4 convolutional layers and one fully connected layer.

4.2. Tested approaches
The experiments aim to measure the impact of the different choices we made in our final

solution. Since the heart of our work is the insertion of shape priors in a deep model, we cannot
compare with the domain generalization state-of-the-art approaches that do not make use of these
priors. We just keep in mind that our solution is complementary to most of the other domain
generalization approaches. In this section, we rather propose to test many alternatives on the three
experimental contexts, for which we run our own code for a fair comparison. These alternatives
use different architectures, priors, or metric learning approaches. Here is the list of the tested
methods with their detailed features, as summarized in Table 3:

• The Baseline is a branch of the two twin networks used in our MG-Siamese solution. Its
architecture is based on different experimental contexts, as mentioned before. Since the
weights are shared between the twin networks in our MG-Siamese, the number of learned
parameters in the Baseline is slightly higher because it is augmented with a two-neuron
classification layer (see above).
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• Our mask-guided Siamese solution is called MG-Siamese_S or MG-Siamese_ST, de-
pending on whether it exploits only source masks or source and target masks. It is worth
mentioning that, for our method MG-Siamese_ST, the target masks are used only at test
time and not at training time. This means we need to train a single network for all the
domains and exploit the target masks during the inference.

• The same architecture as ours is employed for the approaches Siam_Intra and Siam_Inter.
The difference is that these latter are trained with pairs of images without exploiting the bi-
narymasks, whereas our approach is trained onlywith image/mask pairs. Thus Siam_Intra
andSiam_Inter learn their embedding space through a pair-basedmetric learning approach,
while MG-Siamese_S and MG-Siamese_ST use proxy-based training [22]. The differ-
ence between Siam_Intra and Siam_Inter is that the former constitute pairs with images
from the same domain only, while the latter use also images from different domains in each
pair. The idea is to improve the invariance property of the embedding space by mixing the
domains [21].

• In order to disentangle the impacts of the proxy-based approach and this of the shape
priors insertion, we propose to test the approach Siam_Intra_Proxy, which is similar to
Siam_Intra but use a proxy-based training where the proxies are images instead of masks.
Thus, for this approach, one image is randomly selected in each domain and each category
and used as a proxy in the training. Since the random selection of the proxy can impact the
results, we have run many tests for this approach and averaged the results.

• One important question raised in this work is to know if some other priors can be introduced
in the network to guide the classification. When some small elements in an image are very
relevant for the final task, one solution could consist in detecting these elements with
classical object detection network such as Faster R-CNN [25]. For our experiment on the
chairlift dataset, we have trained such a network to detect “open” and “close” safety bars.
At inference time, the object detected with the highest score in one image provides the
whole image category. This solution is called Faster R-CNN. Of course, it requires many
bounding boxes at training time, unlike our shape priors that requires one binary image for
each category.

• The solution Siam_Inter is very similar to the approach proposed in [21], called CCSA,
but this latter is trained with two losses, namely the classical contrastive loss for image
pairs (positive and negative) and a classification loss. We did not run experiments ourselves
with this approach but just reported the results from [21] as it is also based on Siamese
architecture for generalization.

4.3. Results
Tables 4, 5, and 6 display the results obtained in the three experimental contexts. We

concentrate the main analysis on the context of chairlifts safety problem, because the masks are
very diverse across domains, whereas the variations are lower for the two other contexts. Thus
we do not need to insert target prior at test time for these latter.

From these three tables, many comments can be made, and we propose to organize them by
answering the following questions.

1. Are the provided binary masks good priors?
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Table 3: The tested approaches.
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Table 4: Accuracy on chairlifts safety problem (exper-
imental context 1).

Method Accuracy (± std)
Baseline 85.71
Siam_Intra 90.57
Siam_Inter 86.91
Siam_Intra_Proxy 89.35 ± 3.90
Faster R-CNN 87.12
MG-Siamese_S 94.09
MG-Siamese_ST 95.23

Table 5: Accuracy on cross-domain digit recognition
with Rotated MNIST (experimental context 3).

Method Accuracy
Baseline 88.0
CCSA [21] 89.1
MG-Siamese_S 89.5

Table 6: Accuracy on cross-domain digit recognition (experimental context 2).

Source MNIST SVHN MNIST MNIST USPS
Target SVHN MNIST MNISTM USPS MNIST
Baseline 35.2 77.6 58.0 83.1 68.9
MG-Siamese_S 42.5 81.0 64.6 87.1 78.4

One crucial point of our approach is to insert shape priors in the network by using binary
images. As discussed earlier, one way to introduce priors about important elements in an image is
to apply object detection to these elements. Using Faster R-CNN led to an accuracy of (87.12%)
which surpasses the Baseline accuracy (85.71%). However, the insertion of shape priors with
binary masks using MG-Siamese_ST clearly outperforms these two approaches with an accuracy
of (95.23%), see Table 4. In the same table, we notice that the addition of masks surpasses the
performance of Siam_Intra (90.57%), showing that these binary images inform the network about
the most relevant part of the images for each category.

2. Should we learn domain invariant features or domain-specific features?
One way to reach generalization across domains is to mix all the data from the different

domains at training time and group them together in the feature space. This is the solution
selected by the Baseline, Siam_inter, CCSA, and Faster R-CNN. The other approaches rather
propose learning specific and accurate features for each domain, and using the adapted feature
subspace at test time. It seems that mixing the domains forces the network to spend a lot of energy
learning invariant features at the expense of the main task. Indeed, we can see that Siam_Inter
(86.91%) does not reach the same accuracy as Siam_Intra (90.57%) while being trained with the
same data, see Table 4.

3. Is it better to learn proxy-based or pair-based metrics?
There is a current discussion about the pros and cons of pair-based and proxy-based met-

ric learning solutions [22]. Our experiments show that randomly selecting a proxy for each
category per domain among the training data is irrelevant. Indeed, we can see in Table 4 that
Siam_Intra_Proxy (89.35%) does not improve over Siam_Intra (90.57%), which is a pair-based
training solution. Furthermore, the random selection of proxy makes the approach unstable. One
solution in the current approaches consists in learning the proxy with a specific network instead
of randomly selecting it. Obviously, this additional learning step requires much more training
data than in our settings.

4. Should we choose images or masks as a proxy?
On the other hand, when a shape prior is available, it should be used as a proxy for each
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category per domain, as done in our MG-Siamese networks. We can see that using the masks as
a proxy instead of images boosts the performance from (89.35%) to (95.23%), see Table 4.

Tables 5, and 6, also show that inserting shape priors through Siamese architecture is accurate
since it provides the best results in the other experimental contexts too, by concentrating the data
from the same category within each domain around a single point our MG-Siamese_S approach
outperforms the other solutions i.e., Baseline and CCSA.

4.4. Observing the embedding space
Since our approach consists in projecting the data into an embedding space, we propose to

look at their distribution in 2D. In order to observe the distribution of the data in the embedding
space, we applied tSNE (t-distributed Stochastic Neighbor Embedding) [36] on the output feature
vectors of our MG-Siamese_S model. We also applied tSNE to the feature vectors of the last
fully connected layer of the Baseline classifier in order to compare the two distributions.

Fig. 10 shows the embedding space of both the Baseline and MG-Siamese model in the
context of the chairlifts safety problem. On the two plots, we can see samples from the source
data that have been used to learn the network depicted with dot markers, and samples from the
target data (not used during training) depicted with crosses. The colors indicate the class of each
point. In these plots, we can clearly see that the binary classifier separates well the two classes
when considering the source data, but we can also see that the target data is sometimes not on
the correct side of the classifier. On the other hand, we can see that the Siamese architecture is
pushing far away the points from different classes thanks to the contrastive loss and that the target
points are also mainly following the source distribution. Also, we notice that the open (resp.
closed) masks are near to each other and far from the closed (resp. open) masks. We do not use
any constraint to enforce this behavior, but since we are learning on a set of different chairlifts
and projecting them in the same embedding space, the model automatically learns the features
that help to discriminate the open masks from the closed masks.

5. Conclusion

In this paper we have addressed a challenging case of image classification where a small
set of labeled images is available and generalization over unseen target domains is needed. Our
proposition rely on very intuitive ideas implemented in the framework of a specific embedding
space with Euclidean properties. Supposing each class comes with a binary mask focusing on
relevant elements to detect, the embedding space is first learned over a set of known source
domains with a Siamese network uses image/mask pairs as input. A contrastive loss is used to
provide Euclidean properties to the space. In the context of video-surveillance of chairlifts, we
shown that this approach performs better than a generic image classifier in the target domain.
Furthermore, we run extensive tests on many alternatives, measuring the impact of each choice.
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Figure 10: Source and target images and masks visualized using TSNE in the context of the chairlifts safety problem. (a)
Embedding space of the Baseline, (b) Embedding space of the MG-Siamese_S model with the corresponding open and
closed masks. It is preferable to use color for this figure in print.19
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