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Abstract. Majorization-minimization (MM) is a versatile optimization tech-

nique that operates on surrogate functions satisfying tangency and domination
conditions. Our focus is on differentiable optimization using inexact MM with

quadratic surrogates, which amounts to approximately solving a sequence of
symmetric positive definite systems. We begin by investigating the conver-

gence properties of this process, from subconvergence to R-linear convergence,

with emphasis on tame objectives. Then we provide a numerically stable im-
plementation based on truncated conjugate gradient. Applications to multi-

dimensional scaling and regularized inversion are discussed and illustrated

through numerical experiments on graph layout and X-ray tomography. In
the end, quadratic MM not only offers solid guarantees of convergence and

stability, but is robust to the choice of its control parameters.
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1. Introduction

Majorization-minimization (MM) is a general principle for designing descent
algorithms [1–3]. An MM iteration for minimizing an objective f : Rn → R consists
of two steps. First, majorize f by a simpler surrogate function tangent to f at the
current iterate. Second, minimize the surrogate function to obtain the next iterate.
More precisely, a surrogate for f is a family of functions f( · |x) such that for all
x,y ∈ Rn,

(1.1) f(x |x) = f(x) and f(y |x) ⩾ f(y).

Starting with an initial guess x0, an (exact) MM algorithm generates a sequence
of iterates xp by taking

(1.2) xp+1 ∈ arg min
y∈Rn

f(y |xp) =: Φ0(x).

This process goes downhill, since

(1.3) f(xp+1) ⩽ f(xp+1 |xp) ⩽ f(xp |xp) = f(xp).

It is usually assumed that f is continuous and coercive and that the map Φ0 is
single-valued and continuous, which ensures that the sequence {xp} converges to
the set of fixed points of Φ0 (see, e.g., [3, Proposition 7.3.2]). If, in addition, f
and all the surrogate functions f( · |x) are continuously differentiable, then {xp}
converges to the set Sf of stationary points of f (see [4] and the references therein),
and hence converges in norm to a stationary point when Sf is discrete.

We focus on minimizing differentiable objectives using MM with quadratic surro-
gate functions. This framework, which we call quadratic majorization-minimization
(QMM), has two advantages. First, it allows to refine the convergence results for
MM and to derive weak conditions for finite-length convergence (that is,

∑
∥xp+1−

xp∥ < ∞). Second, QMM is well suited to large-scale problems in that it can be
efficiently implemented using conjugate gradient (CG) to minimize the surrogate
functions. Applications of QMM include logistic regression [5], compressed sens-
ing [6], phase retrieval [7], target tracking in sensor networks [8], and the general
problems of multidimensional scaling [9] and regularized inversion [10].

It is important to realize that there is no need to minimize the surrogate function
for the descent property (1.3) to hold: it suffices that f( · |xp) be decreased at
each iteration. This suggests that MM is stable even when xp+1 approximates
the minimizer of f( · |xp), making it of great practical interest. To account for
inexactness in the minimization step, we consider the iteration

(1.4) xp+1 ∈ Φγ(xp), γ ∈ (0, 1),

where Φγ(x) is the sublevel set of f( · |x) at height (1 − γ) minf( · |x) + γf(x), as
illustrated in Figure 1. We call the constant γ the contraction number.

Our contribution is threefold. First, we investigate the different types of conver-
gence of inexact QMM, from weak to strong: subconvergence, convergence in norm,
finite-length convergence, R-sublinear convergence (meaning that there are a point
x and an integer s ⩾ 1 such that ∥xp −x∥ = O(p−1/s)), and R-linear convergence
(that is, ∥xp − x∥ = O(ηp) for some η ∈ (0, 1)). Second, we provide a large-scale
implementation using truncated CG, with emphasis on numerical stability. Third,
we describe applications to multidimensional scaling and regularized inversion, and
we present numerical experiments illustrating the convergence results.
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Figure 1. Inexact QMM iteration: xp+1 belongs to the sub-level set 
of the quadratic surrogate function f(·|xp) at height min f(·|xp) + 
γd(xp).

Note that MM procedures have also been studied in the general context of non-
smooth optimization [11–16], with the following limitations (which will be described 
in more detail later): on the theoretical side, the convergence guarantees are weak 
and/or do not cover all differentiable objectives, not even tame ones; on the imple-
mentation side, the question of the feasibility of the inner optimization problems 
is not addressed, and nor are the computational issues in minimizing the surro-
gate functions (let alone numerical stability). Our results complement those for 
nonsmooth MM in all these respects.

The outline of this paper is as follows. After introducing some notation in Sec-
tion 2, inexact QMM algorithms are described in Section 3, followed by elementary 
properties in Section 4. The exposition is then structured in two parts.

The first part (Sections 5–11) is about theoretical convergence. We begin with 
subconvergence in Section 5, which is the basis for the global and local convergence 
results established in Sections 6 and 7. In Section 8 we exploit the ubiquitous 
Kurdyka- Lojasiewicz (KL) inequality to show that QMM sequences form trajecto-
ries of finite length. Sections 9 and 10 are devoted to two special classes of objectives 
that together cover most applications of differentiable optimization: tame suban-
alytic C 1 objectives, for which the rate of convergence is R-linear or -sublinear 
depending on the flatness around the limit of the sequence; and C 2 objectives, for 
which convergence is R-linear when the limit x is isolated in Sf and the Hes-sian is 
nonzero at x. In Section 11, we summarize the convergence results in the form of a 
commented Venn diagram and we put them in perspective with those for nonsmooth 
MM.

The second part (Sections 12–14) is concerned with the implementation of in-
nexact QMM and its numerical behavior. Section 12 describes a numerically stable 
implementation using truncated CG. The proposed algorithm includes an inner 
stopping criterion that controls the contraction number γ at the cost of delaying the 
termination of CG by a small number of iterations, say k. Aside from the outer 
termination tolerance, γ and k are the only control parameters of the algorithm. In 
Section 13 we detail the construction of surrogates for multidimensional scal-ing and 
regularized inversion, and we discuss the convergence properties specific to these 
problems. Section 14 concludes the paper with numerical experiments on
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graph layout (an instance of multidimensional scaling) and X-ray tomography (an 
instance of regularized inversion). The main takeaways are the robustness to the 
choice of γ and k and the closeness of the practical solutions produced by inexact 
QMM to the limit solutions produced by exact QMM.

In the end, the advantages of QMM are versatility coupled with strong conver-
gence guarantees, numerical stability, and robustness to control parameters. It has
two limitations. First, its performance rests on properly designing the surrogate,
which is problem dependent; this is the inevitable price to pay for versatility. Sec-
ond, the rate of convergence may be only sublinear; but this is not an issue for
problems where it is not necessary to locate a minimizer to very high accuracy, as
is usually the case in large-scale optimization.

2. Notation

We denote matrices by bold uppercase roman letters (e.g., A), vectors by bold
lowercase roman letters (e.g., x), sets by calligraphic uppercase letters (e.g., A),
and set-valued maps by bold Greek letters (e.g., Φ).

The symbol ∥ ·∥ denotes the ℓ2-norm, and ∥ ·∥2A is the squared ℓ2-norm weighted
by the matrix A, that is, ∥x∥2A := xTAx.

Let A ⊂ Rn. If A is nonempty, the distance from a point x ∈ Rn to A is

(2.1) dist(x,A) := inf
y∈A

∥y − x∥.

A sequence {xp} in Rn is said to converge to A if limp dist(xp,A) = 0. When {xp}
converges in norm to some point, we simply say that it converges. The limit set of
{xp} is denoted by L{xp} (that is, x ∈ L{xp} if and only if {xp} has a subsequence
converging to x).

The interior of A is denoted by A◦ and its boundary by ∂A (so ∂A = A \ A◦,
where A is the closure of A). We let B(x, r) and B(x, r) denote, respectively, the
open and closed ℓ2-balls with center x and radius r.

Let f be a real-valued function on Rn. Given a binary relation R on R and a
real number α, we use the shortcut notation

(2.2) {fRα} :=
{
x ∈ Rn : f(x)Rα

}
.

For example, {f = α} and {f ⩽ α} are the level and sublevel sets of f at height
α, respectively. Similarly, the inverse image of a set I ⊂ R is denoted by {f ∈ I}.

If f is differentiable, we denote its set of stationary points by Sf (that is, x ∈ Sf
if and only if ∇f(x) = 0, where ∇f is the gradient of f). Finally, C 1 and C 2

are, respectively, the classes of continuously and twice continuously differentiable
functions from Rn to R.

3. Quadratic majorization-minimization algorithms

Definition 3.1. A (quadratic) surrogate for an objective f : Rn → R is a family
of functions f( · | ·) := {f( · |x) : Rn → R}x∈Rn satisfying the following conditions
for all x :

(i) f(x |x) = f(x) (tangency).

(ii) f(y |x) ⩾ f(y) for all y ∈ Rn (domination).

(iii) f( · |x) is a positive definite quadratic function.

A function f( · |x) having these properties is called a surrogate function.
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In other words, there are functions w : Rn → Rn and W : Rn → Sym+(n) (the
set of n× n symmetric positive definite matrices) such that for all x,y ∈ Rn,

f(y |x) = f(x) + (y − x)Tw(x) + 1
2 ∥y − x∥2W(x)(3.1)

⩾ f(y).

We call the functions w and W the (first- and second-order, respectively) weighting
functions of the surrogate.

The following proposition shows that when f is differentiable the affine compo-
nent of the surrogate function is the first-order Taylor approximation of f .

Proposition 3.2. Let x ∈ Rn. If f is differentiable at x then w(x) = ∇f(x).

Proof. We have for all h ∈ Rn that

f(x + h) = f(x) + hT∇f(x) + o
h→0

(∥h∥).

Furthermore, by the differentiability of f( · |x) at x,

f(x + h |x) = f(x |x) + hTw(x) + o
h→0

(∥h∥).

Using the tangency and domination properties, it follows that

0 ⩽ f(x + h |x) − f(x + h) = hT
(
w(x) −∇f(x)

)
+ o

h→0
(∥h∥).

Hence, for all h ̸= 0,

0 ⩽ (hT/∥h∥)
(
w(x) −∇f(x)

)
+ ε(h),

where ε(h) goes to zero as h → 0. Consider the sequence (hp)p defined by hp :=
−(1/p)

(
w(x) −∇f(x)

)
for all p ⩾ 1. Then

0 ⩽ lim
p

(
− ∥w(x) −∇f(x)∥ + ε(hp)

)
= −∥w(x) −∇f(x)∥,

so w(x) −∇f(x) must be zero. □

For any γ ∈ [0, 1), we define the set-valued map Φγ : Rn → 2Rn

by

Φγ(x) :=
{
y ∈ Rn : f(y |x) − min f( · |x) ⩽ γd(x)

}
,(3.2a)

d(x) := f(x) − min f( · |x).(3.2b)

Definition 3.3. A sequence {xp}p∈N ⊂ Rn is called a QMM sequence if there is a
constant γ ∈ [0, 1) (called the contraction number) such that

(3.3) xp+1 ∈ Φγ(xp) for all p ∈ N.

If, in addition, the weighting functions w and W are continuous, we say that {xp}
is a C 0-QMM sequence. The iteration (3.3) starting from a given point x0 is called
a (C 0-)QMM algorithm.

The gradient of the surrogate function is given by

(3.4) ∇f( · |x)(y) = w(x) + W(x)(y − x).

Therefore, in the special case γ = 0, we have

Φ0(x) = arg min
y∈Rn

f(y |x) = {ϕ(x)},(3.5a)

ϕ(x) := x−W(x)−1w(x).(3.5b)
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The QMM process defined by the single-valued map Φ0 is called exact, as opposed
to the general inexact process in which the contraction number sets the accuracy
of the approximation to ϕ(x).

4. Elementary properties

In this section we give some terminology and some miscellaneous results that
will be needed later.

Definition 4.1. Let Φ be a set-valued map from Rn to the subsets of Rn.

(i) A point x ∈ Rn is called a fixed point of Φ if Φ(x) = {x}. The set of fixed
points of Φ is denoted by FΦ.

(ii) A set A ⊂ Rn is said to be stable with respect to Φ if

Φ(A) :=
⋃
x∈A

Φ(x) ⊂ A .

(iii) The map Φ is said to be strictly monotonic with respect to f if for all
x ∈ Rn \ FΦ, we have Φ(x) ⊂ {f < f(x)}.

(iv) The map Φ is said to be outer semicontinuous if its graph, that is, the set

graphΦ :=
{

(x,y) ∈ Rn× Rn : y ∈ Φ(x)
}
,

is closed.

Proposition 4.2. For any γ ∈ [0, 1), x ∈ FΦγ if and only if w(x) = 0.

Proof. We have

(4.1) d(x) = 0 ⇐⇒ arg min
y∈Rn

f(y |x) = {x} ⇐⇒ w(x) = 0

(the first equivalence follows from the fact that f( · |x) is a positive definite quadratic
function such that f(x |x) = f(x) and the second equivalence follows from (3.5)).
Let α(x) := γd(x) + min f( · |x). Then

x ∈ FΦγ
⇐⇒

{
f( · |x) ⩽ α(x)

}
= {x}

⇐⇒ α(x) = min f( · |x) and arg min
y∈Rn

f(y |x) = {x}.

Since d(x) = 0 implies that α(x) = min f( · |x), it follows from (4.1) that x ∈ FΦγ

is equivalent to w(x) = 0. □

Propositions 3.2 and 4.2 yield the following corollary.

Corollary 4.3. If f is differentiable then FΦγ = Sf for all γ ∈ [0, 1).

Recall that a connected component C of a set A ⊂ Rn is a maximal connected
subset of A (that is, C is connected and C is not a proper subset of a connected
subset of A).

Definition 4.4. A connected component of a sublevel set of f is called a basin.

Proposition 4.5. The basins of f are stable with respect to Φγ for all γ ∈ [0, 1).

Proof. Let α ∈ R be such that {f ⩽ α} is nonempty and let C be a connected
component of {f ⩽ α}. Let x ∈ C and let y ∈ Φγ(x). Since f( · |x) is a positive
definite quadratic function, the set

Φ1(x) =
{
y ∈ Rn : f(y |x) ⩽ f(x)

}
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is an ellipsoid and is therefore convex. Since x ∈ Φ1(x) and Φγ(x) ⊂ Φ1(x) ⊂
{f ⩽ α}, it follows that

[x,y ] :=
{
x + t(y − x) : t ∈ [0, 1]

}
⊂ {f ⩽ α}.

Consequently, C ∪ [x,y ] is a connected subset of {f ⩽ α}, so y must be in C. □

Proposition 4.6. For any γ ∈ [0, 1), Φγ is strictly monotonic with respect to f .

Proof. For any x ∈ Rn, we have

(4.2) min f( · |x) = f
(
ϕ(x)

∣∣x) = f(x) − 1
2∥w(x)∥2W(x)−1 .

Suppose x ̸∈ FΦγ
. By Proposition 4.2 we have w(x) ̸= 0 and so min f( · |x) < f(x).

Thus, for any y ∈ Φγ(x) we have

f(y) ⩽ f(y |x) ⩽ γd(x) + min f( · |x)

= γf(x) + (1 − γ) min f( · |x)

< f(x). □

Corollary 4.7. Let {xp} be a QMM sequence. Then {f(xp)} is decreasing, and
it is strictly decreasing as long as xp ̸∈ FΦγ

.

Definition 4.8. Let A be a nonempty subset of Rn.

(i) A is said to be flat with respect to f (or just flat) if f is constant on A.

(ii) A is called a continuum if it is compact and connected.

(In particular, a singleton is a flat continuum.)

Proposition 4.9. Let {xp} be a QMM sequence with continuous objective. If
{xp} is bounded and {xp+1 −xp} converges to 0, then the limit set L{xp} is a flat
continuum.

Proof. Since {xp} is bounded and the set of limit points of a sequence is closed,
L{xp} is nonempty and compact. Since xp+1 − xp goes to zero, it follows from
[17, Theorem 26.1] that L{xp} is connected.

Suppose L{xp} is not flat, that is, there exist x,y ∈ L{xp} such that f(x) < f(y).

Let ρ := 1
2 (f(y) − f(x)). Since f is continuous, there exists r > 0 such that

f(B(x, r)) ⊂ B(f(x), ρ) and f(B(y, r)) ⊂ B(f(y), ρ). Furthermore, there exists
integers p and q > p such that xp ∈ B(x, r) and xq ∈ B(y, r). Therefore

f(xq) − f(xp) = f(y) − f(x) + f(xq) − f(y) − f(xp) + f(x)

⩾ 2ρ− |f(xq) − f(y)| − |f(xp) − f(x)|
> 0,

which contradicts Corollary 4.7. So L{xp} must be flat. □

Proposition 4.10. If the weighting functions w and W are continuous, then for
any γ ∈ [0, 1), Φγ is outer semicontinuous.

Proof. If w and W are continuous, then the function (x,y) ∈ Rn×Rn 7−→ f(y |x)
is continuous. Furthermore, since W(x) is invertible for all x, the function x 7−→
W(x)−1 is continuous and it follows from (4.2) that x 7−→ γd(x) + min f( · |x) is
continuous.
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Let {(xp,yp)} be a sequence in graphΦγ and suppose that {xp} and {yp} con-
verge to some points x and y, respectively. We have

f(y |x) = lim
p
f(yp |xp) ⩽ lim

p

(
γd(xp) + min f( · |xp)

)
= γd(x) + min f( · |x),

so (x,y) ∈ graphΦγ . □

5. Subconvergence

From now on, we focus on bounded C 0-QMM sequences with differentiable ob-
jectives. Theorem 5.2 below shows that the limit points of such a sequence are
stationary points of the objective and form a flat continuum; it will be used in the
proofs of the convergence theorems in Sections 6 through 10. (Note that by Propo-
sition 4.5, a QMM sequence is bounded whenever its starting point is in a bounded
basin. In particular, QMM sequences with coercive objectives are bounded.)

Lemma 5.1. Let {xp} be a bounded sequence in Rn.

(i) For any x ∈ L{xp}, {xp} has a subsequence {xpk
} converging to x such

that {xpk+1} is convergent.

(ii) If {xp+1 − xp} does not converge to 0, then {xp} has a convergent subse-
quence {xpk

} such that {xpk+1} is convergent and limk ∥xpk+1−xpk
∥ > 0.

Proof. Since x is a limit point, {xp} has a subsequence {xqi
} converging to x.

Because {xp} is bounded, {xqi+1} has a convergent subsequence {xqik
+1}. Letting

pk := qik proves the first assertion.
Since ∥xp+1 − xp∥ does not tend to zero, there exist ε > 0 and a subsequence

{xqi} such that ∥xqi+1 − xqi∥ > ε for all i. Because {xp} is bounded, {xqi} has a
convergent subsequence {xqij

}, and in turn {xqij
+1} has a convergent subsequence

indexed by qijk + 1. Letting pk := qijk proves the second assertion. □

Theorem 5.2. Let {xp} be a C 0-QMM sequence with differentiable objective f .
If {xp} is bounded then

(i) ∅ ≠ L{xp} ⊂ Sf ;

(ii) {xp+1 − xp} converges to 0, so L{xp} is a flat continuum;

(iii) {f(xp)} decreases to the value of f on L{xp}, and it is strictly decreasing
as long as xp ̸∈ Sf .

Proof. First note that FΦγ
= Sf (Corollary 4.3) and that Φγ is strictly monotonic

and outer semicontinuous (Propositions 4.6 and 4.10).
(i) Since {xp} is bounded, it has at least one limit point. Let x ∈ L{xp} and

suppose x ̸∈ FΦγ
. From Lemma 5.1(i) there is a subsequence {xpk

} converging to
x such that {xpk+1} converges to some point y. Since xpk+1 ∈ Φγ(xpk

) for all k,
it follows from outer semicontinuity that y ∈ Φγ(x). Hence f(y) < f(x) by strict
monotonicity. But {f(xp)} is decreasing, so

f(x) = lim
k
f(xpk+1

) ⩽ lim
k
f(xpk+1) = f(y),

which is a contradiction. Thus x ∈ FΦγ
.

(ii) Suppose that {xp+1−xp} does not converge to 0. From Lemma 5.1(ii) there
is a convergent subsequence {xpk

} such that {xpk+1} is also convergent and

x := lim
k

xpk
̸= lim

k
xpk+1 =: y.
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But x ∈ FΦγ
by (i) and y ∈ Φγ(x) by outer semicontinuity; so x = y, which is a

contradiction. Therefore xp+1−xp goes to zero and it follows from Proposition 4.9
that L{xp} is a flat continuum.

(iii) This result follows immediately from Corollary 4.7 and (ii). □

6. Global convergence

As a consequence of subconvergence, the next theorem shows that a C 0-QMM
sequence {xp} converges when the stationary points of the objective f are isolated
in its level sets. If not, we are guaranteed that {xp} converges to Sf , which has two
implications: the gradient norm goes to zero when f is C 1, and {xp} converges to
the set of global minimizers when f is convex and coercive.

Definition 6.1. Let A be a nonempty subset of Rn. We say that A is level-discrete
(with respect to f) if for any α ∈ R, A ∩ {f = α} is discrete or empty.

Theorem 6.2. Let {xp} be a C 0-QMM sequence with differentiable objective f and
suppose that {xp} is bounded.

(i) If Sf is level-discrete, then {xp} converges to a stationary point of f .

(ii) {xp} converges to L{xp} and hence to Sf .

Proof. First note that L{xp} is a flat continuum contained in Sf , by Theorem 5.2.
(i) Suppose Sf is level-discrete. Then L{xp} is discrete (as a flat subset of Sf )

and hence is a singleton (otherwise L{xp} is not a continuum). Let x be the unique
limit point of {xp} and suppose that {xp} diverges. Then there exist ε > 0 and a
subsequence {xpk

} such that ∥xpk
−x∥ > ε for all k. Since {xp} is bounded, {xpk

}
has a further subsequence converging to some point y ̸= x, contradicting the fact
that L{xp} = {x}. Thus {xp} converges.

(ii) Suppose {xp} does not converge to L{xp}. Then there exist ε > 0 and a
subsequence {xpk

} such that dist(xpk
,L{xp}) > ε for all k. Since L{xpk

} ⊂ L{xp}, it

follows that L{xpk
} is empty, which contradicts the boundedness of {xp}. Therefore

{xp} converges to L{xp}. □

Corollary 6.3. Let {xp} be a C 0-QMM sequence with differentiable objective f .

(i) If {xp} is bounded and f is C 1 then {∇f(xp)} converges to 0.

(ii) If f is convex and coercive, then {xp} converges to arg min f .

Proof. (i) It follows from Theorem 6.2(ii) that there is a sequence {yp} ⊂ Sf such
that limp ∥xp−yp∥ = 0. If f is C 1 then ∇f is uniformly continuous on any compact
set containing {xp}, and hence limp ∥∇f(xp)∥ = limp ∥∇f(xp) −∇f(yp)∥ = 0.

(ii) If f is coercive then its sublevel sets are bounded, and thus so are its basins.
By Proposition 4.5, {xp} is bounded and it follows from Theorem 6.2(ii) that {xp}
converges to Sf . If, in addition, f is convex, then Sf is the set of global minimizers
of f (see, e.g., [18, Theorem 7.4-4]). □

7. Local convergence

Theorem 6.2 does not exclude the possibility that C 0-QMM sequences be at-
tracted by saddle points. Nevertheless, Theorem 7.3 below shows that stationary
points isolated in bounded basins are strict local minimizers and are points of at-
traction.
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Lemma 7.1. Let f : Rn → R be a continuous function and let B be a basin of f .
Then there is an α ∈ R such that B ⊂ {f ⩽ α} and ∂B ⊂ {f = α}.

Proof. By definition, B is a connected component of a sublevel set {f ⩽ α}. Sup-
pose there is a point x ∈ ∂B ∩ {f < α}. Since f is continuous, there is an r > 0

such that B(x, r) ⊂ {f < α}, and hence B ∪ B(x, r) is a connected subset of
{f ⩽ α}. Since B(x, r) ̸⊂ B (for otherwise x ∈ B◦), we have a contradiction. □

Lemma 7.2. Let f : Rn → R be a differentiable function and let B be a bounded
basin of f such that B◦∩ Sf is a singleton {x}. Then arg minB f = {x}.

Proof. Let α be as in Lemma 7.1 and suppose minB f = α. Then B is flat and
so B◦ ∩ Sf = B◦. This contradicts the fact that B◦ ∩ Sf is a singleton. Thus
arg minB f = arg minB◦ f . Since B is compact and arg minB◦ f ⊂ B◦∩ Sf = {x},
we conclude that arg minB f = {x}. □

Theorem 7.3. Let {xp} be a C 0-QMM sequence with differentiable objective f
and let B be a bounded basin of f such that B◦∩Sf = {x}. The point x is a strict
local minimizer, and if the starting point x0 is in B◦ then {xp} converges to x.

Proof. It follows immediately from Lemma 7.2 that x is a strict local minimizer.
Suppose that x0 ∈ B◦. Then {xp} ⊂ B (Proposition 4.5) and hence converges to
L{xp} (Theorem 6.2(ii)), so we must show that x is the only limit point of {xp}.

Using Theorem 5.2, we have that ∅ ̸= L{xp} ⊂ B ∩ Sf ⊂ ∂B ∪ {x}. Moreover,
L{xp} is flat and we have from Lemmas 7.1 and 7.2 that f(x) < α, where α is the
value of f on ∂B. So either L{xp} ⊂ ∂B or L{xp} = {x}.

If x0 ∈ Sf then x0 = x, which implies that xp = x for all p (Corollary 4.3)
and hence L{xp} = {x}. If x0 ̸∈ Sf then f(x0) < α (for otherwise x0 ∈ B◦ ∩
arg maxB f ⊂ Sf ), and it follows from Theorem 5.2(iii) that the value of f on
L{xp} is smaller than α; therefore L{xp} ̸⊂ ∂B, which completes the proof. □

8. Finite-length convergence

In this section we extend the previous convergence properties by showing that
C 0-QMM algorithms generate finite-length trajectories when the objective satisfies
the KL inequality. We also discuss the scope of this assumption.

For any ρ ∈ R, we denote by D(ρ) the class of continuously differentiable func-
tions ψ : (0, ρ) → (0,+∞) that are concave and strictly increasing.

Definition 8.1. Let f : Rn → R be a differentiable function, let x ∈ Rn, and set
fx := f − f(x). We say that f has the KL property at x (or that f satisfies the
KL inequality at x) if there are positive constants r and ρ and a function ψ ∈ D(ρ)
such that

(8.1) ∥∇(ψ ◦ fx)(y)∥ ⩾ 1 for all y ∈ B(x, r) ∩ {fx ∈ (0, ρ)}.

We call f a KL function if it has the KL property at all points.

The KL property holds at every point x ̸∈ Sf and every maximizer. If x is a strict
minimizer, the KL property means that f can be concavely distorted into a function
that is steep around x (the distortion ψ is called a desingularizing function). The
following lemma shows that the KL property is uniform on flat compact sets.
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Lemma 8.2. Let f : Rn → R be a differentiable function, let C be a flat compact
set, let α be the value of f on C, and set fα := f − α. Suppose that f has the
KL property at all points of C. Then there are positive constants r and ρ and a
function ψ ∈ D(ρ) such that

(8.2) ∥∇(ψ ◦ fα)(y)∥ ⩾ 1 for all y ∈ B(C, r) ∩ {fα ∈ (0, ρ)},

where B(C, r) := {dist( · , C) < r}.

Proof. For every x ∈ C, there are positive constants rx and ρx and a function
ψx ∈ D(ρx) such that

(8.3) ∥∇(ψx ◦ fα)(y)∥ ⩾ 1 for all y ∈ B(x, rx) ∩ {fα ∈ (0, ρx)}.

Since C is compact, there is a finite set of points {x1, . . . ,xk } ⊂ C such that the
open balls B(xi, rxi), i = 1, . . . , k, cover C. Let ρ := min i ρxi . The function
φ : t ∈ (0, ρ) 7−→ max i ψ

′
xi

(t) is positive, decreasing, and continuous. Moreover, for
any t ∈ (0, ρ) and any ε ∈ (0, t), we have∫ t

ε

φ ⩽
k∑

i=1

∫ t

ε

ψ′
xi

⩽
k∑

i=1

ψxi(t),

so

∫ t

0

φ =: ψ(t) converges and ψ ∈ D(ρ) with ψ′ = φ. Let

O :=

k⋃
i=1

B(xi, rxi
) and r := inf

Rn\O
dist( · , C).

Suppose that r = 0. Then there are sequences {xp} ⊂ Rn \ O and {yp} ⊂ C such
that limp ∥xp − yp∥ = 0. The sequence {yp} has a subsequence {ypl

} converging
to a point y ∈ C, so xpl

∈ O for sufficiently large l, which is a contradiction. Hence
r > 0. Let y ∈ B(C, r). There is a point z ∈ C such that ∥y − z∥ < r, so y ∈ O
and thus y ∈ B(xi, rxi

) for some i. If fα(y) ∈ (0, ρ) then, using (8.3),

1 ⩽ ∥∇(ψxi
◦ fα)(y)∥ = ψ′

xi
(fα(y))∥∇f(y)∥

⩽ φ(fα(y))∥∇f(y)∥ = ∥∇(ψ ◦ fα)(y)∥,

which completes the proof. □

We also need the following lemma which gives an upper bound on the difference
between two successive iterates of a bounded C 0-QMM sequence.

Lemma 8.3. Let f : Rn → R be a differentiable function, let γ ∈ [0, 1), and let C
be a compact subset of Rn. If W is continuous, then there is a positive constant δ
such that for all (x,y) ∈ graphΦγ with x ∈ C, we have

(8.4) f(x) − f(y) ⩾ δ∥∇f(x)∥∥y − x∥.

Proof. Let x ∈ C \ Sf and y ∈ Φγ(x) (if x ∈ Sf then (8.4) holds trivially by
Corollary 4.3). Substituting (3.1) and (4.2) into the definition of Φγ in (3.2), and
recalling that w = ∇f (Proposition 3.2), we obtain

(8.5) ∥y − x∥2W(x) + 2(y − x)T∇f(x) + (1 − γ)∥∇f(x)∥2W(x)−1 ⩽ 0.

Hence, using (3.1) again and the domination property,

f(x) − f(y) ⩾ 1
2 (1 − γ)∥∇f(x)∥2W(x)−1 .
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For any z ∈ Rn, let λ1(z) and λn(z) denote the smallest and largest eigenvalues of
W (z), respectively. Since C is compact and W is a continuous function from Rn to
Sym+(n), we have a := infC λ1 > 0 and b := supC λn < +∞, so ∥v∥2W(x) ⩾ a∥v∥2

and ∥v∥2W(x)−1 ⩾ (1/b)∥v∥2 for all v. It follows from (8.5) that

a
∥y − x∥2

∥∇f(x)∥2
+ 2

∥y − x∥
∥∇f(x)∥

+
1 − γ

b
⩽ 0.

The quadratic equation at2 − 2t + (1 − γ)/b = 0 has positive roots, so there are
positive constants c and c ′ independent of x and y such that

(8.6) c∥∇f(x)∥ ⩽ ∥y − x∥ ⩽ c ′∥∇f(x)∥.
Consequently,

f(x) − f(y) ⩾
1 − γ

2b
∥∇f(x)∥2 ⩾

1 − γ

2bc ′
∥∇f(x)∥∥y − x∥. □

The next result shows that a C 0-QMM sequence with a KL objective forms a
finite-length trajectory to a stationary point. We denote by CKL the class of KL
functions on Rn.

Theorem 8.4. Let {xp} be a bounded C 0-QMM sequence with objective f ∈ CKL.
Then the series

∑
∥xp+1 − xp∥ converges and limp xp ∈ Sf .

Proof. If xp ∈ Sf for some p then ∥xp+1 − xp∥ is eventually zero (Corollary 4.3)
and the result is trivial; so we assume that {xp} ∩ Sf is empty. By Theorems 5.2
and 6.2, L{xp} =: C is a flat continuum contained in Sf (so Lemma 8.2 applies),
{f(xp)} decreases to the value of f on C (denoted by α), and {xp} converges to C.

Let r, ρ ∈ (0,+∞) and ψ ∈ D(ρ) be defined as in Lemma 8.2, and let tp :=
f(xp) − α. For sufficiently large p, xp ∈ B(C, r) and tp ∈ (0, ρ), so there is an
integer q such that for all p ⩾ q, ψ′(tp) ⩾ 1/∥∇f(xp)∥. Hence, since ψ is concave,

ψ(tp) − ψ(tp+1) ⩾
(
f(xp) − f(xp+1)

)
/∥∇f(xp)∥ for all p ⩾ q.

Furthermore, Lemma 8.3 tells us that there exists δ > 0 such that

f(xp) − f(xp+1) ⩾ δ∥∇f(xp)∥∥xp+1 − xp∥ for all p.

Therefore, for all p ⩾ q,

(8.7) δ

∞∑
k=p

∥xk+1−xk ∥ ⩽
∞∑

k=p

(
ψ(tk)−ψ(tk+1)

)
= ψ(tp)− lim

t→0
ψ(t) ⩽ ψ(tp).

Thus the series
∑

∥xp+1−xp∥ converges, so {xp} converges, and since L{xp} ⊂ Sf ,
we have limp xp ∈ Sf . □

The KL inequality is named after S.  Lojasiewicz, who showed that it holds
everywhere for any real analytic functions [19, Proposition 1, p. 92] (see also [20,
Proposition 6.8] and [21, Theorem 2.7]), and K. Kurdyka, who showed that this is
also the case for definable C 1 functions, that is, C 1 functions whose graphs belong
to o-minimal structures [22, Theorem 1]. (We refer to [23–25] for a comprehensive
introduction to the theory of o-minimal structures.) More generally, CKL contains
the C 1 functions that are tame in the sense that their restrictions to open balls
are definable in a same o-minimal structure [10, Proposition 6.2]. Tame functions
behave well in two respects. First, their restrictions to line segments are piecewise-
smooth and -monotone (see, e.g., [25, Section 2]). Second, the set of stationary
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points of a tame C 1 function either is discrete or contains a flat continuum [10,
Proposition 6.5] and so cannot be both level-discrete and nondiscrete.

We conclude this section with examples of increasingly large o-minimal structures
on the real field to illustrate the extent of CKL.

The simplest o-minimal structure is Ralg := (Sn)n∈N, where Sn is the class of
semialgebraic sets in Rn, that is, sets of the form

(8.8)

k⋃
i=1

l⋂
j=1

{
x ∈ Rn : fij(x) = 0, gij(x) > 0

}
,

where the functions fij , gij : Rn → R are polynomials. Any o-minimal structure
(Tn) is an expansion of Ralg in the sense that Tn ⊃ Sn for all n (in contrast, there
is no “largest” expansion containing all o-minimal structures [26]).

The two other fundamental o-minimal structures are the structure Ran of globally
subanalytic sets [27] and the structure Ran,exp of analytic-exponential sets [28].
The structure Ran is the smallest o-minimal structure containing the graphs of
the restricted analytic functions (that is, the functions f : Rn → R such that the
restriction f |[−1,1]n has an analytic extension on a neighborhood of [−1, 1]n and
f |Rn\[−1,1]n is identically zero). The sets in Ran can be described in a way similar
to semialgebraic objects by letting the functions fij and gij in (8.8) be defined by
composition from (i) polynomials, (ii) the restricted analytic functions, and (iii) the
extended reciprocal function

(8.9) inv : t ∈ R 7−→

{
1/t if t ̸= 0,

0 if t = 0.

The structure Ran is polynomially bounded [29] and hence does not define the
infinite branches of the exponential function. The structure Ran,exp is the small-
est expansion of Ran containing the graph of the exponential; it is obtained by
also allowing composition from (iv) the exponential function and (v) the extended
logarithm function t ∈ R 7−→ ln t if t > 0, 0 if t ⩽ 0.

Finally, note that some special functions such as the Riemann zeta function, the
gamma function, and the error function are not definable in Ran,exp [30]. The zeta
and gamma functions are separately definable in two larger o-minimal structures
constructed by taking the Pfaffian closures [31] of expansions of Ralg with special
power series [32, 33]. These structures also define the error function, but the exis-
tence of a further o-minimal expansion defining both the zeta and gamma functions
remains a conjecture [34].

9. The case of tame subanalytic objectives

Here we consider the special case where the objective f is tame in Ran. We make
the following definition.

Definition 9.1. A function f : Rn → R is said to be tame subanalytic if its
restrictions to open balls are definable in Ran.

The motivation is twofold. First, tame subanalyticity ensures that f has the
classical  Lojasiewicz property at every stationary point (see Definition 9.2 below).
This will allow us to relate the convergence rate of C 0-QMM algorithms to the
geometry of the graph of f around attractors. Second, the class of tame subana-
lytic functions covers many practical objectives. The reason is that tameness is a
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local definability property, making it possible to use infinite branches of analytic
functions that are not definable in Ran (for example, the exponential function is
tame subanalytic).

Definition 9.2. Let f : Rn → R be a differentiable function. We say that f
has the  Lojasiewicz property at x (or that f satisfies the  Lojasiewicz inequality at
x) if there is an integer σ ⩾ 2 such that f satisfies the KL inequality at x with
ψ(t) ∝ t1/σ.

The next result is a corollary of the  Lojasiewicz inequality for subanalytic C 1

functions [22]. We denote by C 1
TS the class of tame subanalytic C 1 functions on

Rn.

Theorem 9.3. A function f ∈ C 1
TS has the  Lojasiewicz property at every point

x ∈ Sf .

Proof. Let x ∈ Sf (assuming Sf ̸= ∅). The restriction f |B(x,1) is Ran-definable and
thus subanalytic. Let fx := f − f(x). Theorem  LI in [22] tells us that there are
positive constants c and ρ and an integer σ ⩾ 2 such that

∥∇f(y)∥ ⩾ c
(
fx(y)

)1−1/σ
for all y ∈ B(x, 1) ∩ {fx ∈ (0, ρ)},

which shows that f has the KL property at x with ψ(t) = (σ/c)t1/σ. □

The  Lojasiewicz property means that |f−f(x)|1−1/σ∥∇f∥−1 is bounded around
x for some integer σ ⩾ 2. The smallest such integer is called the desingularizing
exponent of f at x and is also denoted by σ for simplicity. (The rational number
1 − 1/σ is known as the  Lojasiewicz exponent.) The desingularizing exponent is a
local flatness measure: the larger σ, the steeper the desingularizing function ψ near
zero, and hence the flatter f around x. This suggests that the convergence rate is
inversely related to σ, as we now show.

Theorem 9.4. Let {xp} be a C 0-QMM sequence with differentiable objective f .
Assume that {xp} converges, let x := limp xp, and let

(9.1) Rp :=

∞∑
k=p

∥xk+1 − xk ∥.

Assume also that f satisfies the  Lojasiewicz inequality at x.

(i) If σ = 2 then there exists η ∈ (0, 1) such that Rp = O(ηp).

(ii) If σ ⩾ 3 then Rp = O
(
p−1/(σ−2)

)
.

Proof. The limit x is a stationary point by Theorem 5.2(i). Suppose {xp} ∩ Sf is
empty (otherwise, by Corollary 4.3, Rp is eventually zero and we are done). By the
 Lojasiewicz property, we have

t 1−1/σ
p = O

(
∥∇f(xp)∥

)
, tp := f(xp) − f(x).

From (8.6) and (8.7), we have, respectively,

∥∇f(xp)∥ = O
(
∥xp+1 − xp∥

)
and Rp = O

(
t1/σp

)
.

Therefore, since ∥xp+1 − xp∥ = Rp −Rp+1,

R σ−1
p = O

(
t 1−1/σ
p

)
= O

(
∥∇f(xp)∥

)
= O(Rp −Rp+1).
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Suppose that σ = 2. Then Rp+1 ⩽ Rp = O(Rp − Rp+1), so there exists η ∈ (0, 1)
such that Rp+1 ⩽ ηRp for sufficiently large p, and hence Rp = O(ηp). Suppose
now that σ ⩾ 3. Then there exist c > 0 and q ∈ N such that for all p ⩾ q,

c ⩽ (Rp −Rp+1)R 1−σ
p ⩽

∫ Rp

Rp+1

t1−σ dt =
1

σ − 2

(
R 2−σ

p+1 −R 2−σ
p

)
.

Letting c ′ := c(σ − 2), we have for p > q that

c ′(p− q) ⩽
p−1∑
k=q

(
R 2−σ

k+1 −R 2−σ
k

)
⩽ R 2−σ

p ,

and so Rp ⩽
(
c ′(p− q)

)−1/(σ−2)
= O

(
p−1/(σ−2)

)
. □

Corollary 9.5. Let {xp} be a bounded C 0-QMM sequence with objective f ∈ C 1
TS,

let x := limp xp, and let σ be the desingularizing exponent of f at x.

(i) If σ = 2 then there exists η ∈ (0, 1) such that ∥xp − x∥ = O(ηp).

(ii) If σ ⩾ 3 then ∥xp − x∥ = O
(
p−1/(σ−2)

)
.

In other words, {xp} converges R-linearly if σ = 2 and R-sublinearly otherwise.

Proof. By Theorems 8.4 and 9.3, {xp} converges to a stationary point x and f
has the  Lojasiewicz property at this point. So Theorem 9.4 applies and the result
follows from the fact that, for all p,

□(9.2) ∥xp − x∥ = lim
q

∥xp − xq ∥ = lim
q

∥∥∥∥∥
q−1∑
k=p

(xk − xk+1)

∥∥∥∥∥ ⩽ Rp.

10. The case of C 2 objectives

We now focus on the convergence rate of a C 0-QMM sequence {xp} whose
objective is twice continuously differentiable around the limit x. Theorem 10.2
below shows that {xp} converges R-linearly if the sequence of the unit vectors in
the directions of xp−x has no limit point in the null space of ∇2f(x) (the Hessian
at x), or, in other words, if the trajectory of the iterates does not hug the null space
of ∇2f(x) too tightly. A consequence is that {xp} converges R-linearly if x is an
isolated stationary point and ∇2f(x) is nonzero (Corollary 10.3).

We need the following Lemma.

Lemma 10.1. Let A ∈ Rn×n be a symmetric matrix. There are positive constants
c and c ′ such that for all y ∈ Rn,

(10.1) c ∥Ay∥ ⩽ dist(y,null(A)) ⩽ c ′∥Ay∥ .

Proof. Given a subspace S of Rn, we let PS ∈ Rn×n denote the orthogonal pro-
jection onto S. Since A is symmetric, the orthogonal complement of null(A) is
ran(A) (the range of A), and thus

(10.2) dist(y,null(A)) = ∥y − Pnull(A)(y)∥ = ∥Pran(A)(y)∥.

The matrix A can be factored as A = V diag(λ1, . . . , λn)V T, where V is an orthog-
onal matrix whose columns v1, . . . ,vn are eigenvectors of A, and where λ1, . . . , λn
are the corresponding eigenvalues. Let m := rank(A). If m = 0, the result is
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trivial, so assume that m ⩾ 1. Without loss of generality, assume also that λi ̸= 0
for all i = 1, . . . ,m. Then for all y ∈ Rn we have

(10.3) ∥Ay∥2 =

m∑
i=1

λ2i (vT
i y)2 and ∥Pran(A)(y)∥2 =

m∑
i=1

(vT
i y)2.

From (10.2) and (10.3) it follows that(
max

i=1,...,m
λ2i

)−1

∥Ay∥2 ⩽ dist(y,null(A))2 ⩽
(

min
i=1,...,m

λ2i

)−1

∥Ay∥2. □

Theorem 10.2. Let {xp} be a C 0-QMM sequence with differentiable objective f .
Suppose that {xp} converges and let x := limp xp. Suppose also that f is C 2 in a
neighborhood of x and that xp ̸= x for all p. If

(10.4) L{up} ∩ null(∇2f(x)) = ∅, up :=
xp − x

∥xp − x∥
,

then {xp} converges R-linearly.

Proof. The limit x is a stationary point by Theorem 5.2(i). Using the second-order
Taylor-Lagrange formula for f , we find that there is an r > 0 such that for all
y ∈ B(x, r) we have

|f(y) − f(x) | ⩽ 1
2∥y − x∥2 sup

t∈[0,1]

∥∇2f(x + t(y − x))∥.

Hence, since {f(xp)} is decreasing,

f(xp) − f(x) = O
(
∥xp − x∥2

)
.

Furthermore, from the proof of Theorem 9.4, {xp} converges R-linearly if(
f(xp) − f(x)

)1/2
= O

(
∥∇f(xp)∥

)
.

Thus, it suffices to show that

∥xp − x∥ = O
(
∥∇f(xp)∥

)
,

or, equivalently,

lim inf
p→∞

∥∇f(xp)∥
∥xp − x∥

> 0.

By the differentiability of ∇f at x, we have for all y ∈ Rn that

∇f(y) = ∇2f(x)(y − x) + ∥y − x∥ε(y − x),

where ε(h) goes to zero as h → 0. Therefore

∥∇f(xp)∥ ⩾ ∥xp − x∥
(
∥∇2f(x)up∥ − ∥ε(xp − x)∥

)
and hence

lim inf
p→∞

∥∇f(xp)∥
∥xp − x∥

⩾ lim inf
p→∞

∥∇2f(x)up∥.

By Lemma 10.1, lim infp ∥∇2f(x)up∥ > 0 if and only if

lim inf
p→∞

dist
(
up,null(∇2f(x))

)
> 0,

which in turn is equivalent to (10.4), completing the proof. □

Corollary 10.3. Let {xp} be a C 0-QMM sequence with differentiable objective f .
Assume that {xp} converges and that f is C 2 in a neighborhood of x := limp xp.
If x is isolated in Sf and ∇2f(x) ̸= 0, then {xp} converges R-linearly.
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converges to and is attracted by isolated local minimizers

has finite length and converges to a point in

converges R-linearly or -sublinearly

converges to a point in 

converges to

converges to if is

Differentiable objectives

Figure 2. Convergence of bounded C 0-QMM sequences with dif-
ferentiable objectives (Theorems 5.2 and 6.2, Corollary 6.3, Theo-
rems 7.3 and 8.4, and Corollary 9.5).

Proof. Suppose that ∇2f(x) ̸= 0. Then ∇2f( ·) is nonzero around x and so the
null space of ∇2f(x) is equal to the tangent space of Sf at x. It follows from
Theorem 10.2 that {xp} converges R-linearly if no limit point of {up} is tangent to
Sf at x, meaning that Sf does not contain any C 1 curve ω : (−a, a) → Rn, a > 0,
such that ω(0) = x and ω′(0) ∈ L{up}. This is trivially the case when x is isolated
in Sf . □

11. Summary of the convergence results

The convergence properties proved in Sections 5–9 are summarized in Figure 2,
where CLD denotes the subclass of functions whose set of stationary points is level-
discrete (Definition 6.1), and where CCC is the subclass of convex and coercive
functions. Recall that CKL is the subclass of functions satisfying the Kurdyka-
 Lojasiewicz inequality at all points (Definition 8.1) and C 1

TS is the subclass of tame
subanalytic C 1 functions (Definition 9.1). Example showing that the sets C 1

TS\CLD,
C 1 ∩ CKL \ CLD \ C 1

TS, and C 1 ∩ CLD ∩ CKL \ C 1
TS are nonempty are given in [10].

It is important to emphasize that these results also hold when the objective f
is restricted to an open set O provided {xp} remains in a compact set contained
in O. Since we assume that {xp} is bounded, this is equivalent to imposing that
infp dist(xp,Rn \ O) > 0. A sufficient (but not necessary) condition for this to
happen is that the starting point x0 is in a basin of f contained in O.

The convergence to a stationary point x is R-linear if x is isolated in Sf and f
is C 2 around x with ∇2f(x) ̸= 0 (Corollary 10.3). In particular, the convergence
rate is R-linear if f is C 2 around x and ∇2f(x) is nonsingular.
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We now highlight how our results complement those relating to MM in the
general context of nonsmooth optimization.

First, it comes as no surprise that the convergence properties are weak when f is
only assumed to be directionally differentiable: it is shown in [12] (respectively, [16])
that any limit point x of a block-coordinate exact MM sequence (respectively, an in-
exact MM sequence) is stationary in the usual sense that the directional derivatives
∇vf(x) := limt→0+(1/t)(f(x+ tv)− f(x)) are all nonnegative. A slightly stronger
convergence guarantee is given in [14] for exact MM sequences whose approximation
errors f( · |xp)−f are L-smooth with L independent of p (a function g is said to be
L-smooth if it is differentiable and ∇g is L-Lipschitz continuous); such sequences are
asymptotically stationary in the sense that lim infp inf∥v∥=1∇vf(xp) ⩾ 0. However,
this does not exclude the possibility that {xp} diverges.

Second, the convergence results for nonsmooth MM do not cover all differen-
tiable objectives or even one of the subclasses CLD, CCC or C 1

TS. Theorem 4.1
in [13] ensures finite-length convergence of C 0-QMM provided that f is coercive,
L-smooth, and subanalytic. Similarly, Theorem 8.4 is a special case of Theorem 3.2
in [11] if f is L-smooth on a compact set containing {xp} for sufficiently small L.
Under this assumption, Theorem 6 in [15] yields the same convergence rates as in
Corollary 9.5, though only for exact QMM.

Finally, note that in [12,14,15] the inner optimizations problems are assumed to
be solved exactly without questioning their feasibility (be it theoretical or compu-
tational), while the studies in [11, 13, 16] do not address the problem of generating
iterates satisfying the assumptions made. In constrast, proper C 0-QMM sequences
can be generated efficiently with good stability properties, as we show in the next
sections.

12. Large-scale implementation

12.1. Generating QMM sequences using truncated CG. We begin by moti-
vating the use of the CG method to compute each iterate of a QMM sequence.

Recall from (3.5) that the exact QMM map Φ0 : x 7−→ {ϕ(x)} is defined as
follows: ϕ(x) is the global minimizer of the surrogate function f( · |x), which is the
solution to the system

(12.1) W(x)y = v(x), v(x) := W(x)x−w(x).

The next lemma defines Φγ in terms of an upper bound on the energy norm of the
error E( · |x) defined by

(12.2) E(y |x) := ∥y − ϕ(x)∥W(x).

Lemma 12.1. Let γ ∈ (0, 1) and x,y ∈ Rn. Then y ∈ Φγ(x) if and only if

(12.3) E(y |x) ⩽
√
γ E(x |x) .

Proof. For any z ∈ Rn we have

E(z |x)2 = ∥z − x + W(x)−1w(x)∥2W(x)

= ∥z − x∥2W(x) + 2(z − x)Tw(x) + ∥w(x)∥2W(x)−1

= 2
(
f(z |x) − f(x)

)
+ ∥w(x)∥2W(x)−1

= 2
(
f(z |x) − min f( · |x)

)
,
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where the last equality follows from (4.2). Hence (12.3) is equivalent to

f(y |x) − min f( · |x) ⩽ γ
(
f(x) − min f( · |x)

)
⇐⇒ y ∈ Φγ(x). □

It follows that each iteration of a QMM algorithm consists of solving the follow-
ing inner optimization problem: given x := xp, find an approximate solution to the
system (12.1) within the error bound (12.3), for some contraction number γ inde-
pendent of p. In practical applications of QMM, the weighting matrices W(x) are
usually large and sparse, and since these matrices are symmetric positive definite,
CG is the natural choice for the inner solver.

The next result shows that QMM sequences can be generated by using truncated
CG. We assume the use of a preconditioner: given a nonsingular matrix H(x) ∈
Rn×n, the preconditioned inner system has the form

(12.4) H(x)−1W(x)H(x)−T︸ ︷︷ ︸
=: W ′(x)

y′ = H(x)−1v(x), y′ := H(x)Ty.

We define Ψ(x) := {yj(x)}j⩾1, where yj(x) is the approximate solution to (12.1)
obtained after j steps of the preconditioned conjugate gradient (PCG) algorithm
starting from y0 := x (equivalently, H(x)Tyj(x) is the jth iterate of unprecon-
ditioned CG for (12.4) starting from H(x)Tx). For simplicity, we will omit the
dependence of yj on x when there is no ambiguity.

Theorem 12.2. Let f : Rn → R and suppose W is continuous. Any bounded
sequence {xp} such that xp+1 ∈ Ψ(xp) for all p is a QMM sequence.

Proof. Let ϕ′(x) be the solution to the preconditioned system and let E′( · |x) be
the corresponding error energy norm. For any y′ ∈ Rn we have

E′(y′ |x) := ∥y′ − ϕ′(x)∥W ′(x)

= ∥H(x)T(y − ϕ(x))∥H(x)−1W(x)H(x)−T

=
(
(y − ϕ(x))TW(x)(y − ϕ(x))

)1/2
= E(y |x).(12.5)

Let j ⩾ 1 and let κ′(x) denote the spectral condition number of W ′(x). From
Theorem 3.1.1 in [35] it follows that

(12.6a) E(yj |x) ⩽ gj(h(x))E(x |x) ,

where h : Rn → [0, 1] and gj : [0, 1] → [0, 1] are defined by

(12.6b) h(x) :=
κ′(x)1/2 − 1

κ′(x)1/2 + 1
and gj(t) :=

2tj

1 + t2j
.

Suppose {xp} is bounded and let C be a compact set containing {xp}. From the
continuity of W we have supC κ

′ < +∞, and hence supC h < 1. Since gj(t) increases
with increasing t and decreases with increasing j, we have for all p that

gj(h(xp)) ⩽ gj(supC h) ⩽ g1(supC h) < 1 .

Let γ := (g1(supC h))2. Using Lemma 12.1, we deduce that yj(xp) ∈ Φγ(xp) and
the result follows. □
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Algorithm 1 PCG for the inner system W(x)y = v(x).

Input: starting point y0.

r0 = v(x) −W(x)y0

p0 = s0 = M(x)−1r0
β0 = rT

0 s0
for j = 0, 1, 2, . . . do

qj = W(x)pj

αj = βj /(pT
j qj)

yj+1 = yj + αjpj

rj+1 = rj − αj qj
sj+1 = M(x)−1rj+1

βj+1 = rT
j+1sj+1

pj+1 = sj+1 + (βj+1/βj)pj

end for

The PCG method is given in Algorithm 1. Ideally, the preconditioner

(12.7) M(x) := H(x)H(x)T

should be chosen so that (i) linear systems with coefficient matrix H(x) are easy
to solve and (ii) W ′(x) has a condition number close to one or properly distributed
eigenvalues [35].

12.2. Control of the contraction number. We now describe an inexpensive
stopping criterion for PCG that allows to control the contraction number of a
QMM sequence.

Let j1 and j2 be nonnegative integers with j1 < j2. The j1th and j2th error
energy norms are related by the identity

(12.8) E(yj1 |x)2 − E(yj2 |x)2 =

j2−1∑
i=j1

αiβi =: ζj1, j2 ,

where αi is the step length in the ith conjugate direction and βi is the square of
the weighted norm of the ith residual [36,37] (to simplify the notation, we omit the
dependence of αi and βi on x). Note that αj βj ⩾ 0 with equality if and only if
rj = 0, so the sequence {E(yj |x)} is strictly decreasing until the residual is zero.
Using (12.8) and Lemma 12.1, we find that yj ∈ Φγ(x) if and only if

(12.9) (1 − γ)E(yj |x)2 ⩽ γζ0, j .

Let k be a positive integer. If the error energy norm decreases sufficiently between
iterations j and j + k (so that E(yj+k |x)2 ≪ E(yj |x)2), it follows from (12.8)
that

(12.10) E(yj |x)2 ≈ ζj,j+k .

Using this approximation in (12.9) and the fact that ζ0, j + ζj,j+k = ζ0, j+k , we
obtain the stopping criterion

(12.11) ζj,j+k ⩽ γζ0, j+k .

This test ensures that for sufficiently large k the QMM sequences covered by The-
orem 12.2 have an actual contraction number close to γ (that is, xp+1 ∈ Φγ′(xp)
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for all p and some γ ′ ≈ γ). We call the integer k the stopping delay. Because it
takes j+k iterations to test whether yj ∈ Φγ(x), we expect the actual contraction
number to be smaller than γ in practice (see Section 12.4). Furthermore, the defi-
nition of ζ ·, j+k involves only quantities that are available in the algorithm, so the
cost of checking (12.11) is negligible.

12.3. Numerical stability. An important question is the numerical stability of
CG-based QMM. In exact arithmetic, the direction vectors are mutually conjugate
and the residuals are mutually orthogonal (that is, pT

j W(x)pk = rT
j sk = 0 if

j ̸= k). Consequently, yj minimizes the error energy norm over the affine space

(12.12) y0 + span
{
s0,M(x)−1W(x)s0, . . . , (M(x)−1W(x))j−1s0

}
.

Recalling the relation (12.5), this property yields the following sharp upper bound [35,
Section 3.1]:

(12.13)
E(yj |x)

E(y0 |x)
⩽ min

P ∈Pj,1

max
i=1,...,n

|P (λ′i(x))| ,

where Pj,1 is the set of polynomials of degree at most j with constant term 1,
and λ′1(x) ⩽ · · · ⩽ λ′n(x) are the eigenvalues of the preconditioned matrix W ′(x).
The error bound (12.6) is obtained by taking P to be the jth-degree Chebyshev
polynomial shifted to the interval [λ′1(x), λ′n(x)] and normalized so that P (0) = 1.
Thus Theorem 12.2 relies on the conjugacy of the direction vectors and the orthog-
onality of the residuals. However, these properties can be rapidly and completely
lost in finite precision arithmetic (see, e.g., [38, Section 5] and [39, Section 5.1]),
which calls into question the practical relevance of the theorem. Fortunately, we
can remove this doubt.

The following results are immediate consequences of the stability analysis given
by Greenbaum in [40, Theorems 1′ and 3′].

(i) The coefficients αj and βj generated by a finite precision PCG recurrence
applied to the inner system W(x)y = v(x) are equal to those generated
by an exact CG recurrence applied to a larger system W (x)y = v(x).
Furthermore, the eigenvalues of W (x) all lie in the set

(12.14) Λ(x) :=

n⋃
i=1

[
λ′i(x) − τ, λ′i(x) + τ

]
,

where τ ≪ λ′n(x) depends on the machine precision. (Greenbaum gives an
upper bound on τ that largely overestimates the size the intervals containing
the eigenvalues of W (x); empirical evidence suggests that τ can be chosen
much smaller than the proven bound [41].)

(ii) Let E(yj |x) denote the energy norm of the error of the jth iterate of the
exact CG recurrence applied to the larger system. If τ is sufficiently small,
then

(12.15)
E(yj |x)

E(y0 |x)
⩽
(
1 +O

(
τ/λ′n(x)

))E(yj |x)

E(y0 |x)
.



22 MARC C. ROBINI, LIHUI WANG, AND YUEMIN ZHU

The ratio E(yj |x)
/
E(y0 |x) has an upper bound similar to (12.13), with λ′1(x),

. . . , λ′n(x) replaced by the eigenvalues of W (x); so it follows that

(12.16)
E(yj |x)

E(y0 |x)
⩽
(
1 +O

(
τ/λ′n(x)

))
min

P ∈Pj,1

max
λ∈Λ(x)

|P (λ)| .

Hence if the smallest eigenvalue of W ′(x) satisfies (λ′1(x)− τ)/λ′1(x) ≈ 1, then the
error bound (12.13)—and hence the Chebyshev bound (12.6)—holds to a close
approximation in finite precision arithmetic. We conclude that Theorem 12.2 holds
in finite precision arithmetic under the additional assumption that supB λ

′
1 is not

too small, which can be ensured by proper preconditioning.
Turning to the stability of the inner stopping criterion (12.11), we need to check

whether ζj,j+k :=
∑j+k−1

i=j αiβi is a reliable estimate of E(yj |x)2 in finite precision

arithmetic. Let m(x) be the maximum number of nonzeros per row of W(x), and
let κ(x) and κ†(x) denote the spectral condition numbers of W(x) and M(x),
respectively. Suppose that

(12.17)
(
n+m(x)n1/2

)
κ(x)u ≪ 1 and n2κ†(x)u ≪ 1,

where u is the unit roundoff. From Theorem 4.4 in [37] the iterates and the scalar
quantities generated by the PCG algorithm in finite precision arithmetic satisfy

(12.18) E(yj |x)2 − E(yj+k |x)2 = ζj,j+k(1 + ε̇j,k) + E(yj |x) ε̈j,k +O(u2),

where ε̇j,k and ε̈j,k account for rounding errors and depend on x. The first error
term, ε̇j,k, is negligible, and

(12.19) |ε̈j,k| ⩽ κ(x)1/2P (n, k)Qj(x)u +O(u2),

where P is a small degree polynomial in n and k with constant coefficients and

(12.20) Qj(x) := ∥W(x)∥1/2
(
∥ϕ(x)∥ + max

i=0,...,j+1
∥yi∥

)
.

It follows that if the error energy norm decreases sufficiently between iterations j
and j + k, then

(12.21)
∣∣E(yj |x)2 − ζj,j+k

∣∣ ≲ E(yj |x)κ(x)1/2P (n, k)Qj(x)u,

and hence the computed value of ζj,j+k is a good estimate of E(yj |x)2 as long as

(12.22) E(yj |x) ≫ κ(x)1/2P (n, k)Qj(x)u.

It is easy to see that Qj(x) is a sharp upper bound for E(y0 |x), so it follows that
the computed estimate ζj,j+k is reliable until E(yj |x) is of the order of E(y0 |x)u.
Therefore, under assumptions (12.17), the inner stopping criterion is numerically
stable as long as the contraction number γ is not too small (so j does not become
too large), which is also recommended to avoid increasing the running time unnec-
essarily. In particular, since n+m(x)n1/2 ⩽ n(1+n1/2) ≈ n3/2, the inner stopping
criterion works well in any basin B such that

(12.23) max

(
supB κ

n1/2
, supB κ

†
)

≪ 1

n2u
.
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Algorithm 2 PCG-QMM.

Input: starting point x0, contraction number γ, and PCG stopping delay k.
Output: approximate solution to the optimization problem minx f(x).

1: for p = 0, 1, 2, . . . do

2: y0 = xp

3: r0 = −w(xp)

4: p0 = s0 = M(xp)−1r0
5: β0 = rT

0 s0
6: ∆0 = δ0 = 0

7: for j = 0, 1, 2, . . . do ▷ PCG loop

8: qj = W(xp)pj

9: αj = βj /(pT
j qj)

10: yj+1 = yj + αjpj

11: ∆j+1 = ∆j + αj βj
12: δj+1 = δj + αj βj
13: if j ⩾ k then

14: δj+1 = δj+1 − αj−kβj−k

15: if δj+1 ⩽ γ∆j+1 then ▷ PCG stopping test

16: xp+1 = yj+1

17: break ▷ exits the PCG loop

18: end if

19: end if

20: rj+1 = rj − αj qj
21: sj+1 = M(xp)−1rj+1

22: βj+1 = rT
j+1sj+1

23: pj+1 = sj+1 + (βj+1/βj)pj

24: end for

25: end for

12.4. Pseudocode. Algorithm 2 generates the QMM recurrence xp+1 ∈ Φγ(xp)
using a PCG solver that computes an approximate solution to the system W(xp)y =
v(xp) starting from xp, so the initial residual is r0 = v(xp)−W(xp)xp = −w(xp),
which equals −∇f(xp) if f is differentiable at xp (Proposition 3.2). We call this
algorithm the PCG-QMM algorithm. It consists of two nested loops: the outer
QMM iteration and the inner PCG iteration.

The implementation of the PCG stopping criterion described in Section 12.2 uses
the local variables ∆j := ζ0, j and δj := ζj−k,j . The stopping test at the (j + 1)th
iteration is obtained by replacing j by j + 1 − k in (12.11):

(12.24) δj+1 ⩽ γ∆j+1 ⇐⇒
j∑

i=j+1−k

αiβi ⩽ γ

j∑
i=0

αiβi.

If this inequality holds, then yj+1−k ∈ Φγ′(xp) for some γ ′ ≈ γ. Hence, since
E(yj |xp) decreases with j, the solution yj+1 returned by the PCG solver will
usually belong to Φγ′′(xp) for some γ ′′ < γ.
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12.4.1. Least squares variant. If the weighting matrices are normal equations ma-
trices, that is, if they are given in a factored form W(x) = A(x)TA(x), then we
can use PCG for least squares (PCGLS) to avoid explicitly computing W(x). It
suffices to replace

line 8 by qj := A(xp)pj ,

line 9 by αj := βj /∥qj∥2,
line 20 by rj+1 := rj − αjA(xp)Tqj .

We call this variant the PCGLS-QMM algorithm.

12.4.2. Outer termination test. When f is C 1, the convergence results in Sec-
tions 6–8 suggest to terminate the QMM iteration by monitoring the norm of the
gradient. In our experience, a reliable criterion is

(12.25) ∥∇f(xp)∥ ⩽ ϵmax(1, |f(xp)|),

where ϵ is a given tolerance. The term max(1, |f(xp)|) serves two purposes: to
prevent the right-hand side from becoming too small if f(xp) gets close to zero;
and to ensure scale independence (the inequality ∥∇f∥ ⩽ ϵ |f | is unchanged if f is
replaced by cf for any c > 0, as opposed to ∥∇f∥ ⩽ ϵ).

12.4.3. Continuation. When f is nonconvex and/or approximates a nondifferen-
tiable objective, it may be advantageous to guide the first QMM iterations by
gradually increasing the optimization difficulty. This technique, which we call con-
tinuation, is reminiscent of graduated nonconvexity [42]. The design of a continu-
ation scheme involves two stages:

(i) the construction of a finite sequence (fp)0⩽p⩽q of C 1 relaxed objectives
such that f0 is convex, fq = f , and the difficulty of minimizing fp increases
with p ;

(ii) the construction of weighting functions Wp such that

(12.26) fp(y |x) := fp(x) + (y − x)T ∇fp(x) + 1
2∥y − x∥2Wp(x)

defines a surrogate for fp.

The implementation is straightforward: in the first q outer iterations, w and W are
replaced by ∇fp and Wp, respectively, and M(xp) is a preconditioner for the inner
system matrix Wp(xp). (For the least squares variant, Wp(x) must be factored as
Ap(x)TAp(x).)

Continuation leads to deeper minima and/or accelerates convergence when the
relaxed objectives fp approximate f with increasing accuracy and the relaxed sur-
rogates fp( · | ·) are sufficiently close to the fp.

13. Example applications

This section focuses on the application of CG-based QMM to the general prob-
lems of multidimensional scaling and regularized linear inversion. Each description
begins with the construction of the surrogate followed by a discussion on the con-
vergence results, which will be illustrated in Section 14.
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13.1. Multidimensional scaling. Multidimensional scaling (MDS) refers to a
family of methods for mapping similarity or dissimilarity data on pairs of objects
(say m) into distances between points in a low-dimensional space (usually R2 or
R3) [9,43]. A common way to carry out MDS is to minimize the so-called raw stress
function

(13.1) F (X) :=

m∑
i,j=1

cij
(
dij −

∥∥X(i)−X(j)
∥∥)2,

where X ∈ Rm×q is the coordinate matrix of the m objects in q dimensions, X(i) :=
X(i, :)T (the transpose of the ith row of X) contains the coordinates of object i, the
weights cij are nonnegative, and dij (also nonnegative) is the dissimilarity between
objects i and j.

13.1.1. A surrogate for the stress function. Up to an additive constant, F (X) has
the form

(13.2)
∑
i<j

c ′ij
(
d ′
ij −

∥∥X(i)−X(j)
∥∥)2

with c ′ij := cij + cji and d ′
ij := (cijdij + cjidji)inv(c ′ij), where inv is the extended

reciprocal function (8.9). Thus we can assume, without loss of generality, that the
matrices [cij ] and [dij ] are symmetric and have zero diagonal. We also assume that

(13.3)

m∑
i,j=1

cijd
2
ij = 1

(so F (0) = 1) and that [cij ] is irreducible (so the original MDS problem cannot be
decomposed into independent MDS subproblems).

Define

bij(X) := cijdij inv
(∥∥X(i)−X(j)

∥∥),(13.4)

⟨X,Y ⟩ij :=
(
X(i)−X(j)

)T(
Y (i)−Y (j)

)
.(13.5)

By the Cauchy-Schwarz inequality,

(13.6) bij(X)⟨X,Y ⟩ij ⩽ cijdij
∥∥Y (i)−Y (j)

∥∥
with equality if Y = X. Thus

F (Y |X) := 1 +

m∑
i,j=1

(
− 2bij(X)⟨X,Y ⟩ij + cij

∥∥Y (i)−Y (j)
∥∥2)(13.7)

⩾ F (Y )

and F (X |X) = F (X). In other words, the quadratic function F ( · |X) satisfies the
domination and tangency conditions for a surrogate (see Definition 3.1). However,
because of translational invariance, it is not positive definite. Before addressing
this issue, we write F ( · |X) in matrix form using the trace function. Recall that
the Laplacian of an m×m symmetric nonnegative matrix A := [aij ] is defined by

(13.8) L(A) := diag

(
m∑
j=1

aij

)
−A.

Clearly, L(A) is symmetric and diagonally dominant and has nonnegative diagonal
entries. Hence, by the Gershgorin disc theorem, L(A) is positive semidefinite. Let
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tr( ·) be the trace function and let eij := ei−ej , where ei denotes the ith standard
basis vector in Rm. It is easy to see that

(13.9) ⟨X,Y ⟩ij = tr
(
Y Teij e

T
ijX

)
and 2L(A) =

m∑
i,j=1

aij eij e
T
ij ,

from which it follows that

(13.10)

m∑
i,j=1

aij⟨X,Y ⟩ij = 2tr(Y TL(A)X).

Thus, with B(X) := [bij(X)] and C := [cij ], we have

(13.11) F (Y |X) = 1 − 4tr(Y TL(B(X))X) + 2tr(Y TL(C)Y ).

We remove the translational degree of freedom by setting, say, Xm = 0. The
MDS problem is then to minimize the stress

(13.12) F ′ := F ◦ µ, µ : X ′ ∈ R(m−1)×q 7−→
[

X ′

0 · · · 0

]
∈ Rm×q.

A surrogate for F ′ is

F ′(Y ′|X ′) := F (µ(Y ′) |µ(X ′))

= 1 − 4tr(Y ′TU(X ′)X ′) + 2tr(Y ′TV Y ′),(13.13)

where U(X ′) and V are the (m − 1) × (m − 1) leading principal submatrices
(that is, the submatrices obtained by deleting the last row and the last column)
of L(B(µ(X ′))) and L(C), respectively. It remains to explain why V is positive
definite. Since C is irreducible, it follows from the matrix-tree theorem (see, e.g.,
[44, Section II.3]) that all the cofactors of L(C) are equal and positive. So all
the (m − 1) × (m − 1) submatrices of L(C) are nonsingular. Furthermore, since
L(C) is positive semidefinite, all its principal submatrices are positive semi-definite.
Therefore the (m−1)× (m−1) principal submatrices of L(C) are positive definite.

13.1.2. Multidimensional scaling by PCG-QMM. Let n := (m−1)q and let ν be the
columnwise vectorization map from R(m−1)×q to Rn, so x ∈ Rn can be identified
with X ′ := ν−1(x) and hence with

(13.14) X := µ(ν−1(x)).

Minimizing the stress F ′ in (13.12) using the surrogate (13.13) is equivalent to
minimizing

(13.15) f(x) := F




x1 xm · · · x(q−1)m−q+2
...

...
...

xm−1 x2(m−1) · · · xq(m−1)

0 0 · · · 0




using

(13.16) f(y |x) := 1 − 4yT (Iq⊗U(x))x + 2yT (Iq⊗V )y,

where Iq is the q × q identity matrix and ⊗ is the Kronecker product operator.
The above surrogate can be expressed in the canonical form (3.1) with weighting
functions given by

(13.17) w(x) = 4(Iq⊗ (V −U(x)))x and W(x) = 4Iq⊗V .
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Thus the inner system (12.1) is

(13.18) (Iq⊗V )y = (Iq⊗U(x))x.

It is important to emphasize that the coefficient matrix Iq⊗V does not depend on
x, so we do not have to worry about the cost of computing the preconditioner.

The objective f is semialgebraic and hence tame subanalytic. It is analytic on
the open set O ⊂ Rn consisting of all points x such that Xi ̸= Xj whenever
cijdij > 0, but it is nondifferentiable at any point x ̸∈ O. The local minimizers
of f , however, all lie in O [45]; so we can ignore the points of nondifferentiability,
as we now argue. First, note that the surrogate function f( · |x) is well-defined for
all x, so the PCG-QMM algorithm does not fail if xp ̸∈ O for some p. Since one
of the objects is fixed at the origin, it follows from the irreducibility of C that f
is coercive. Thus the algorithm generates bounded sequences, and the convergence
results in Section 9 hold provided that lim infp dist(xp,Rn \O) > 0. This is the
case in practice, as the monotone convergence of {f(xp)} implies that points that
are not minimizers are not stable against round-off errors. In fact, no point of
nondifferentiability was encountered in our experiments. Should this occur, we can
ensure the generation of QMM sequences in O via a slight modification: if, starting
from xp, the PCG solver stops at a point yj+1 ̸∈ O, then set xp+1 to be the first
(or any) PCG iterate yj+1 ∈ O (such exists because Rn \ O is a finite union of
subspaces of dimension n− q and the conjugate directions have no connection with
the directions of these subspaces).

Regarding the convergence rate, Corollary 10.3 does not apply because no sta-
tionary point is isolated (since f is invariant under linear isometries of the coor-
dinate space). We can only assert that the convergence rate is either R-linear or
-sublinear (Corollary 9.5), and that it is R-linear when there is a minimum angle
between xp −x and the tangent space of Sf at x (Theorem 10.2 together with the
fact that ∇2f does not vanish on O [46]).

13.1.3. Comparison with the SMACOF algorithm. The semidefinite majorizing func-
tion F ( · |X) in (13.7) goes back to [47] and is the cornerstone of the well-known
SMACOF algorithm [9, 48, 49], which stands for “Scaling by MAjorizing a COm-
plicated Function.”

Let Φ+ : Rm×q → Rm×q be defined by

(13.19) Φ+(X) := L(C)+L(B(X))X,

where L(C)+ is the Moore-Penrose generalized inverse of L(C). The configuration
Φ+(X) is the minimizer of F ( · |X) with minimum Frobenius norm, and the SMA-
COF algorithm consists of the iteration Xp+1 = Φ+(Xp). With the proviso of no
rounding errors, the convergence properties of SMACOF sequences are limited to
the following [48]:

(i) L{Xp} (the limit set of {Xp}) is a flat continuum, and {F (Xp)} decreases
to the value of F on L{Xp}.

(ii) Any point in L{Xp} at which F is differentiable is a stationary point of F .

(iii) limp ∥L(C)1/2(Xp+1 −Xp)∥ = 0.

These properties are similar to the subconvergence properties in Theorem 5.2 (ex-
cept that {Xp+1−Xp} converges to 0 with respect to a seminorm). So PCG-QMM
offers stronger convergence guarantees than does SMACOF, with the further ad-
vantage of numerical stability.
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13.2. Regularized linear inversion. Linear inverse problems refer to the recov-
ery of a signal x⋆ ∈ Rn (typically a temporal sequence, an image, or a discretized
volume) from data of the form

(13.20) d := Dx⋆ + ε,

where D ∈ Rm×n models the deterministic part of the measurement process and
ε ∈ Rm is a noise vector whose components are realizations of independent zero-
mean random variables. This observation model covers many imaging applications
[50–52], the most prominent being deconvolution and tomographic reconstruction.
A common approach to estimating the original signal x⋆ is to minimize an objective
of the form (see, e.g., [10, 53])

(13.21) f(x) :=

m∑
i=1

θi
(∣∣[Dx− d ]i

∣∣) +
M∑

i=m+1

θi
(
∥Aix∥

)
,

where θ1, . . . , θM are increasing functions on R+, [ · ]i is the ith coordinate projec-
tion, and the Ai’s are matrices with possibly different ranges. The first sum—the
fidelity term—favors solutions consistent with the data. Usually, θ1 = · · · = θm = ϑ
with ϑ(t) ∝ t2 or with ϑ(t) convex and asymptotically linear (the former choice
yields the squared ℓ2-norm of the residual, while the latter reduces the sensitivity
to outliers). The second sum—the regularization term—incorporates prior knowl-
edge about the original signal. Often, {Ai}m<i⩽M is a discrete gradient operator;
more sophisticated alternatives include higher-order differential operators [54] and
sparsifying transforms such as wavelets [55], framelets [56], and patch dictionar-
ies [57].

13.2.1. A surrogate for the inversion objective. The objective (13.21) has the gen-
eral form

(13.22) f(x) :=

M∑
i=1

θi
(
∥Aix− ai∥

)
with Ai ∈ Rni×n and ai ∈ Rni for some positive integer ni. We call this function
the inversion objective and we call the θi’s the potentials (a term borrowed from
the Bayesian interpretation of regularization [58]). Restricting ourselves to the C 1

case, the minimal assumptions on the potentials for constructing the surrogate are
as follows [53]:

(i) θ1, . . . , θM are increasing and C 1;

(ii) the functions θ†i : t∈ (0,+∞) 7−→ θ ′i (t)/t are decreasing and bounded.

Such potentials are called admissible. Apart from the square function, one usually
distinguishes three categories of admissible potentials: (i) convex and asymptoti-
cally linear, (ii) nonconvex and unbounded, and (iii) bounded (common examples
are listed in [10, Appendix A]). We recall that admissible potentials are twice right-
differentiable at zero with θ ′i (0) = 0 and θ ′′i (0) > 0, and hence behave quadratically
near zero.
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We assume from now on that the potentials θi are all admissible. We then say
that the inversion objective f is admissible. Let

(13.23) A :=

 A1

...
AM

 ∈ RN×n and a :=

 a1

...
aM

 ∈ RN, N :=

M∑
i=1

ni,

and let Q(x) be the N ×N nonnegative diagonal matrix defined by

(13.24) Q(x) := diag(qi(x)Ini
), qi(x) := θ†i

(
∥Aix− ai∥

)
,

with the convention that θ†i (0) = limt→0+ θ
†
i (t). The gradient of f is given by

(13.25) ∇f(x) = ATQ(x)(Ax− a).

Define

f(y |x) := f(x) + (y − x)T∇f(x) + 1
2 ∥y − x∥2W(x),(13.26a)

W(x) := ATQ(x)A.(13.26b)

In [53, Proposition 2.4] it is shown that the weighting matrix W(x) is positive
definite for all x (so f( · | ·) is a surrogate for f) if and only if

(13.27)

M⋂
i=1

θi strictly increasing

null(Ai) = {0}.

This condition is satisfied if f is coercive; regardless, its violation can be considered
a failure of the regularization scheme.

13.2.2. Regularized inversion by PCGLS-QMM. The weighting matrix can be fac-
tored as

(13.28) W(x) = A(x)TA(x), A(x) := Q(x)1/2A,

so we can use the least squares variant of the PCG-QMM algorithm (see Sec-
tion 12.4.1). The behavior of the PCGLS-QMM algorithm depends on the prop-
erties of the potentials. Two special cases deserve attention: when the θi’s are
piecewise analytic, as are the potentials encountered in the literature, and when
they are convex.

Definition 13.1. A potential θ is said to be piecewise analytic if there is a finite
partition of R+ into intervals I1, . . . , Il such that for each j ∈ {1, . . . , l} the re-
striction θ|Ij

has an analytic extension on a neighborhood of the closure of Ij (that

is, there exist an open interval Oj ⊃ Ij and an analytic function gj : Oj → R such
that θ(t) = gj(t) for all t ∈ Ij).

Theorem 13.2. Let {xp} be a bounded C 0-QMM sequence with admissible inver-
sion objective f, and assume that the potentials are piecewise analytic. Then {xp}
converges at least R-sublinearly to a stationary point of f.

Proof. By Theorem 6.8 in [10] the objective is tame subanalytic. Therefore {xp}
converges to a stationary point (Theorem 8.4) and the convergence rate is R-linear
or -sublinear (Corollary 9.5). □
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Theorem 13.3. Let {xp} be a C 0-QMM sequence with admissible inversion objec-
tive f, and assume that the potentials are convex. Consider the following conditions:

M⋂
i=1

lim
t→+∞

θi(t)=+∞

null(Ai) = {0},(13.29)

M⋂
i=1

θi strictly convex

null(Ai) = {0}.(13.30)

(i) If (13.29) holds, then {xp} converges to arg min f .

(ii) If (13.30) holds, then {xp} converges to the global minimizer of f .

(iii) If, in addition to (13.30), the potentials are C 2, then the convergence rate
is R-linear.

Proof. (i) Let x and y be distinct points in Rn and let α ∈ (0, 1). Since the
potentials are increasing and convex, we have for all i that

θi
(
∥Ai(αx + (1 − α)y) − ai∥

)
⩽ αθi

(
∥Aix− ai∥

)
+ (1 − α)θi

(
∥Aiy − ai∥

)
,

(13.31)

and hence

f(αx + (1 − α)y) ⩽ αf(x) + (1 − α)f(y).

So f is convex. Furthermore, (13.29) is equivalent to f being coercive [53, Propo-
sition 2.5]. The result then follows from Corollary 6.3(ii).

(ii) Since (13.30) implies (13.29), f is coercive and {xp} converges to arg min f .
So it suffices to show that f is strictly convex. There is an index i such that θi is
strictly convex and Ai(y − x) ̸= 0. Let

vi := Aix− ai and wi := Aiy − ai.

If ∥vi∥ ̸= ∥wi∥, then inequality (13.31) is strict. Now suppose that ∥vi∥ = ∥wi∥.
Then (13.31) becomes

(13.32) θi
(
∥αvi + (1 − α)wi∥

)
⩽ θi

(
∥vi∥

)
.

It is easy to check that

2vT
i (wi − vi) = −∥wi − vi∥2.

Using this identity, we have

∥αvi + (1 − α)wi∥2 = ∥vi + (1 − α)(wi − vi)∥2

= ∥vi∥2 + 2(1 − α)vT
i (wi − vi) + (1 − α)2∥wi − vi∥2

= ∥vi∥2 − α(1 − α)∥wi − vi∥2

< ∥vi∥2.

Since θi is strictly increasing, it follows that inequality (13.32) is strict.
(iii) It can be shown that if the θi’s are C 2, then f is C 2 with Hessian

∇2f(x) =

M∑
i=1

θ ′′i
(
∥Aix− ai∥

)
AT

iAi.



QUADRATIC MAJORIZATION-MINIMIZATION 31

Let y ̸= 0. There is an index i such that θi is strictly convex and Aiy ̸= 0. Hence,
for any x, we have

yT∇2f(x)y ⩾ θ ′′i
(
∥Aix− ai∥

)
∥Aiy∥2 > 0.

Thus the Hessian is nowhere zero, and the result follows from Corollary 10.3. □

13.2.3. Continuation. The design of a continuation scheme (see Section 12.4.3) is
facilitated by the form of the inversion objective:

(i) A sequence (fp)0⩽p⩽q of relaxed objectives is constructed by replacing
some or all of the potentials by relaxed potentials θi,p such that θi,q = θi
and θi,p approximates θi with increasing accuracy.

(ii) The relaxed surrogates fp( · | ·) are obtained by defining Qp analogously to
Q using the relaxed potentials, and substituting into (13.25) and (13.28)
to get ∇fp and Wp.

Improvement in the quality of the solutions and acceleration of convergence are
usually achieved with relaxed C 2 potentials following two guidelines. First, if θi is
nonconvex then the maximum concavity of θi,p (that is, the quantity − inf t⩾0 θ

′′
i,p(t))

should increase to that of θi . In this way the nonconvexity of f increases with the
number of iterations, and thus so does the optimization difficulty. Second, if θi
approximates a potential whose first derivative does not vanish at zero (a case in
point is when f approximates a nondifferentiable objective) then the sequence of
second derivatives (θ ′′i,p(0))p should increase to θ ′′i (0). This speeds up convergence
by gradually reducing the range over which θi,p behaves quadratically.

14. Experiments

In this section we present experiments on graph layout and X-ray tomography as 
instances of multidimensional scaling and regularized inversion, respectively. The 
PCG- and PCGLS-QMM algorithms are implemented in MATLAB and run on a 
PC with an Intel Core i7-9850H CPU and 64 GB DDR4 2666 MHz RAM.

14.1. Graph layout. We consider the problem of producing aesthetically pleasing
layouts of undirected graphs by mapping the edges to line segments in the plane
(see [59, chapter 10] and [60] for an introduction to this subject). To do so, we
seek to minimize the energy function introduced by Kamada and Kawai [61], which
is a weighted sum of the squared differences of the Euclidean and graph-theoretic
distances between vertices.

Let G be an undirected connected graph with vertex set V := {v1, . . . , vm} and
edge set E (a set of unordered pairs of vertices). Let ω : E → (0,+∞) be a weight
function specifying the ideal edge lengths in the layout, and define the dissimilarity
dij between the vertices vi and vj as the length of the shortest weighted path(s)
between them:

(14.1) dij := min
π a (vi, vj)-path

∑
ω(e)

e∈π

(dij > 0 for all i, j, since G is connected). The Kamada-Kawai energy is a spe-

cial case of the raw stress function (13.1) in which q = 2 and the matrix [cij ] is
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Table 1. Graphs considered in the experiments: number of ver-
tices (m), number of edges (card E), and spectral condition number 
(κ) of the corresponding inner system matrix.

m card E κ

1138 bus 1138 1458 3.58 × 103

tuma2 12992 20925 2.58 × 104

filter2D 1668 4541 3.49 × 103

rajat19 819 1151 1.07 × 104

proportional to [1/dij2 ], that is,

(14.2) F (X) ∝
m∑

i,j =1

( ∥
1 − ∥X(i) −X(j)

∥∥/dij )2,
where X(i) and X(j) contain the two-dimensional cartesian coordinates of vi and vj , 
respectively. The corresponding objective f and its surrogate are defined by (13.15) 
and (13.16).

We use the weight function proposed in [62], which assigns to each edge {v, v′ } 
the number of vertices that are neighbors of v or v′, but not both:

− card
(( ′ ) ′ )(14.3) ω({v, v′ }) := card N (v) ∪ N (v ) N (v) ∩ N (v ) ,

where N (v) := {u ∈ V : {u, v } ∈ E } (and similarly for v′). In other words, each edge 
is weighted by the cardinality of the symmetric difference of the neighborhoods of its 
endvertices. This penalizes dense aggregations around high-degree vertices, which 
produces more aesthetically pleasing layouts than does uniform weighting.

2

Figures 3 and 4 show examples of layouts produced by the PCG-QMM algorithm 
with a contraction number γ = 10−6, a stopping delay k = 5, and an outer termi-
nation tolerance ϵ = 10−6 (see (12.25)). The adjacency matrices of these graphs are 
from the SuiteSparse Matrix Collection [63]. We will investigate the behavior of 
PCG-QMM with the graphs shown in Figure 3; Table 1 gives their numbers of 
vertices and edges together with the spectral condition number of their corre-
sponding inner system matrix I2 ⊗ V (see (13.18)). Each of these four graphs is 
assigned a fixed initial layout whose vertices are randomly distributed in [−r, r ]2, 
r := 1 maxi,j dij , so the same starting point is used in all the experiments. The

preconditioner M := HHT is an incomplete Cholesky factorization of I2 ⊗ V with a 
drop tolerance of 10−2 for 1138 bus and filter2D, and 10−3 for tuma2 and rajat19.

14.1.1. Effects of the accuracy of the PCG solver. Let NMM denote the number of 
outer iterations to termination and let jp denote the last PCG iteration number at 
the (p+1)th outer iteration (so xp+1 = yjp+1). The total number of PCG iterations is 
then

(14.4) NCG :=
NMM∑−1

p=0

(jp + 1) ⩾ (k + 1)NMM.

marc
Texte surligné 
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tuma2

lter2D rajat19

1138_bus

Figure 3. Examples of layouts produced by the PCG-QMM algo-
rithm. The color scheme ranges from red (shortest edges) to yellow
to green (longest edges).

Table 2 gives NMM, f(xNMM
) (the final objective value), NCG/NMM (the mean

number of PCG iterations per outer iteration), and the running time T for decreas-
ing values of γ when k = 5 and ϵ = 10−6. As expected, NMM and f(xNMM) stabilize
as γ → 0, while NCG/NMM and T increase as γ decreases. Furthermore, the fi-
nal layouts XNMM

are visually indistinguishable from those displayed in Figure 3,
independently of γ.

Figure 5 plots NMM and T as functions of a fixed number J of PCG iterations
per outer iteration (so NCG = NMMJ and increasing J amounts to decreasing γ).
Both NMM and T grow rapidly when J decreases towards 1; thus the stopping delay
is also a safeguard to limit the running time when γ is too large (γ ⩾ 0.1, say). By
construction, the running time is nearly linear in NMM and in NCG :

(14.5) T ≈ c1NMM + c2NCG,
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dwt_1242 airfoil1_dual

uk

Figure 4. Examples of layouts produced by the PCG-QMM algo-
rithm. The color scheme ranges from red (shortest edges) to yellow 
to green (longest edges).

where c1 and c2 are positive scalars depending on G . This is illustrated by the solid
curves in Figure 5(b), which represent the estimated running time (c1+c2J)NMM(J)
for c1 and c2 obtained by linear regression. When J is large enough so that NMM

is approximately constant, T increases linearly with J and hence increases with
decreasing γ. So overall there is a balance between the inner accuracy (controlled
by k and γ) and the running time. In our experience, taking k = 4 or 5 and
γ ∈ [10−4, 10−2 ] is a good initial compromise.

14.1.2. Behavior in the long run. There is a limit to the accuracy of the gradient norm 
in finite precision arithmetic: ∥∇f(xp)∥ eventually stagnates and we then say that 
the maximum accuracy has been attained. This is illustrated in Figure 6, which plots 
∥∇f(xp)∥ versus p for different values of the contraction number (the vertical dashed 
lines indicate the number NMM of outer iterations to termination when ϵ = 10−6). 
The maximum accuracy is reached after about 4500 iterations for 1138 bus, 600 
iterations for filter2D, 6 × 105 iterations for rajat19, and in between 6000 and 
11000 iterations for tuma2. In all cases, the mean value at

marc
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Table 2. Behavior of the PCG-QMM graph layout algorithm as a 
function of the contraction number (stopping delay k = 5, outer 
termination tolerance ϵ = 10−6).

γ NMM f(xNMM
) NCG/NMM T

1138 bus
10−2 304 42346.7318029 6.5 2.6s

10−4 291 42346.1555027 10.6 2.9s

10−6 278 42346.1637648 13.8 2.9s

10−8 278 42346.1637656 15.4 3.1s

10−10 278 42346.1637655 16.7 3.2s

tuma2

10−2 78 4147388.34310 7.8 1min 50s

10−4 76 4147397.29226 14.0 2min 30s

10−6 76 4147404.89779 15.6 2min 41s

10−8 78 4147385.53899 16.9 2min 54s

10−10 78 4147385.53906 18.1 3min 02s

filter2D

10−2 194 32566.5899785 7.0 4.3s

10−4 195 32566.5896021 10.6 5.0s

10−6 199 32566.8479516 13.7 5.7s

10−8 199 32566.8479722 16.9 6.8s

10−10 199 32566.8479722 20.1 7.1s

rajat19

10−2 484 26985.7363375 7.3 2.8s

10−4 487 26985.7841332 12.4 3.5s

10−6 494 26985.9640290 13.7 3.7s

10−8 494 26985.9640071 14.6 3.7s

10−10 494 26985.9640071 15.2 3.8s

maximum accuracy of the quantity

(14.6)

∥∥∥∥∇f(xp+1)

f(xp+1)
− ∇f(xp)

f(xp)

∥∥∥∥
∞

(where ∥ · ∥∞ is the maximum norm) is smaller than the unit roundoff u = 2−53 ≈ 
1.11 × 10−16. In other words, xp is eventually stationary to machine precision.

The separation of the gradient curves observed for 1138 bus and tuma2 indicates 
that different contractions may yield different trajectories in the objective land-

scape. However, when γ is sufficiently small (below 10−6 for 1138 bus and 10−8 for 
tuma2), the gradient curve does not change and hence represents the behavior of 
exact QMM until maximum accuracy is attained. Looking at the short run, we see 
that PCG-QMM behaves similarly to exact QMM until the outer termination 
criterion is satisfied.
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tuma2

1138_bus

210

310

3 5 7 9 11 13 151

lter2D

rajat19
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110
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tuma2

1138_bus

lter2D

rajat19

Figure 5. Behavior of the PCG-QMM graph layout algorithm
with a fixed number J of PCG iterations per outer iteration: num-
ber of outer iterations (left) and running time (right) versus J for
an outer termination tolerance of 10−6.
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Figure 6. Graph layout: norm of the gradient versus number of
outer iterations (stopping delay k = 5).
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We now distinguish three types of solutions:

(i) the practical solutions x̂ := xNMM obtained using both the inner and outer
termination criteria;

(ii) the limit solutions, denoted by x̂∗, obtained by continuing the outer itera-
tions up to maximum accuracy;

(iii) the double-limit solutions, denoted by x̂∗∗ and independent of γ, obtained
by letting the PCG solver reach its accuracy limit at every outer iteration
and by continuing the outer iterations up to maximum accuracy.

To assess the visual difference between two solutions, we use the Tucker distance

τ(x,y) := 1 −
∑

i,j ϱij(x)ϱij(y)(∑
i,j ϱij(x)2

)1/2(∑
i,j ϱij(y)2

)1/2 ∈ [0, 1],(14.7a)

ϱij(x) :=
∥∥X(i)−X(j)

∥∥/dij .(14.7b)

(The Euclidean distance ∥x − y∥ is inadequate because the objective is invariant
to proper and improper rotations of the layout around the origin.)

Figures 7 and 8 plot the normalized objective

(14.8) f∗(xp) :=
f(xp) − f(x̂∗)

f(x0) − f(x̂∗)

and the distance to the limit solution, ∥xp−x̂∗∥. The objective decreases monoton-
ically and plateaus between gradient peaks. In other words, the trajectory of the
iterates switches between nearly flat regions in the vicinity of x̂∗, which can be inter-
preted as aggregations of saddle or small-curvature points around minimizers. The
distance to x̂∗ eventually decays exponentially, indicating R-linear convergence.

Table 3 compares the limit, double-limit, and practical solutions: the second and 
third columns give the Euclidean and Tucker distances between x̂∗ and x̂∗∗, and 
the last two columns compare x̂ and x̂∗∗ in terms of relative objective difference 
and Tucker distance. Although the values of ∥x̂∗ − x̂∗∗∥ for γ = 10−2 and γ = 10−6 

differ significantly, the tucker distance τ(x̂∗, x̂∗∗) is smaller than 2 × 10−3,
meaning that the limit solutions for γ ⩽ 10−2 are visually indistinguishable from
x̂∗∗ (up to rotation). Furthermore, the relative objective difference and the Tucker 
distance between x̂ and x̂∗∗ are smaller than 3 × 10−4 and 5 × 10−3, respectively. 
So decreasing γ below 10−2 or decreasing the outer termination tolerance below 10−6 

does not improve the layout aesthetics.

14.1.3. Robustness to the parameters of the PCG solver. We set the outer termi-

nation tolerance ϵ to 10−6 and look at the behavior of the PCG-QMM algorithm for a 
stopping delay ranging from 1 to 32 and a contraction number between 10−8 and 10
−1. Table 4 gives the ranges of (i) the relative objective difference between the 
pratical and double-limit solutions x̂ and x̂∗∗, (ii) the Tucker distance between
x̂ and x̂∗∗, (iii) the running time, and (iv) the number of outer iterations. We see 
that the practical solutions are very close to the double limit solutions, and therefore 
not sensitive to the parameters of the PCG solver. Furthermore, the maximum-to-
minimum ratios of the running time and of the number of outer it-erations (less than 
4 and 2, respectively) are small relative to the ranges of k and γ. The running time is 
maximal for (k, γ) = (32, 10−8) and minimal or close to minimal for (k, γ) = (2, 10
−2), and the number of outer iterations is maximal for (k, γ) = (1, 10−1) and 
stabilizes as k increases and/or γ decreases.
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Figure 7. Graph layout: normalized objective (top) and distance 
to the limit (bottom) versus number of outer iterations (stopping 
delay k = 5).

14.1.4. Reliability of the PCG stopping criterion. Based on Lemma 12.1, we define the 
contraction from x to y by

(14.9) Γ(y |x) :=
(
E(y |x)
E(x|x)

)2

.

Then y ∈ Φγ (x) if and only if Γ(y |x) ⩽ γ, and the PCG stopping test (12.24) is 
designed to guarantee that

(14.10) Γ(yjp+1−k | xp) ≲ γ,
with the quality of the approximation increasing with k. (Recall that xp+1 = yjp+1, 
so the outer iterates are k PCG iterations beyond those actually needed to obtain a 
contraction close to γ.) From (12.23), this test is numerically stable if

(14.11) n2u max κ/
√
n, κ†( ) ≪ 1,

where n = 2(m − 1) and κ and κ† are respectively the condition numbers of the
inner system matrix and the preconditioner. The quantity on the left-hand side of

(14.11)√ is of order 10−5 for tuma2 and 10−8 for 1138 bus, filter2D and rajat19
(κ/ n > κ† in all cases). Therefore, failing to satisfy (14.10) is not due to finite
precision arithmetic but to the fact that k is too small.



QUADRATIC MAJORIZATION-MINIMIZATION 39

rajat19filter2D

100 200 300 400

-410

-810

-1210

-1610

500 110 210 310

-410

-810

-1210

-1610

410 510

210

010

-410

-810

-210

-610

-1010

100 200 300 400 500

010

-510

61056 ´ 1052 ´ 10 61.4 ´ 10

Figure 8. Graph layout: normalized objective (top) and distance 
to the limit (bottom) versus number of outer iterations (stopping 
delay k = 5).

We distinguish between the inner contraction Γ(yjp+1−k |xp) and the outer con-
traction Γ(xp+1 |xp). We denote by Γinner and Γouter their respective maximum
values over the course of the algorithm (before reaching maximum accuracy). As k
increases, we expect Γinner to get closer to γ and Γouter to decrease. Table 5 gives the
maximum inner and outer contractions for different values of k when γ = 10−6. We

see that the inner contraction is close to γ for k large enough (k ⩾ 6 for 1138 bus, k ⩾ 
7 for tuma2 and filter2D, and k ⩾ 5 for rajat19) and that Γouter is rapidly 
decreasing with increasing k.

14.2. X-ray tomography. The problem considered here is to reconstruct the mid-
dle cross-section of a walnut shown in Figure 9(a) from the limited fan-beam data in
Figure 9(b). These data are publicly available [64]; they consist of 120 projections
evenly spaced over 360◦, each containing 328 measurements with a step size of 0.35
mm. The ground truth x⋆ in Figure 9(a) is a 328 × 328 downsampled version of
a 2296 × 2296 filtered back-projection reconstruction from a 1200 × 2296 sinogram
(0.3◦ angular step, 50µm detector size). The observation matrix D has m = 39360
rows and n = 3282 columns. Its density (the percentage ratio of its number of
nonzero entries to its total number of entries) is about 0.37%.
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Table 3. Graph layout: comparison of the limit, double-limit, and 
practical solutions (x̂∗, x̂∗∗, and x̂, respectively). The stopping 
delay (for x̂∗ and x̂) is k = 5 and the outer termination tolerance 
(for x̂) is ϵ = 10−6.

γ ∥x̂∗− x̂∗∗∥ τ(x̂∗, x̂∗∗) f(x̂)/f(x̂∗∗) − 1 τ(x̂, x̂∗∗)
1138 bus

10−2 21.1 4.6 × 10−5 1.3 × 10−4

10−6 3.8 × 10−4 2.2 × 10−16

3.3 × 10−5 

1.9 × 10−5 3.0 × 10−5

tuma2

10−2 156.5 6.8 × 10−5 8.6 × 10−4

10−6 15.3 2.1 × 10−5

5.8 × 10−5 

6.2 × 10−5 8.5 × 10−4

filter2D

10−2 375.6 1.4 × 10−5 1.5 × 10−5

10−6 0.76 0

7.6 × 10−7 

3.5 × 10−7 9.9 × 10−7

rajat19

10−2 469.3 1.6 × 10−3 4.3 × 10−3

10−6 4.2 × 10−3 0

2.6 × 10−4 

2.7 × 10−4 4.0 × 10−3

Table 4. Overall behavior of the PCG-QMM graph layout al-
gorithm for (k, γ) ∈ {1, . . . , 32} × [10−8, 10−1] (outer termination 
tolerance ϵ = 10−6).

τ(x̂, x̂∗∗) T (s) NMM

1138 bus
f(x̂)/f(x̂∗∗) − 1
[0.0031, 1.0] × 10−4

[2.1, 5.6] [264, 461]

tuma2 [93, 371] [73, 139]

filter2D [3.9, 13] [193, 227]

rajat19

[0.67, 6.3] × 10−5 

[0.019, 1.2] × 10−5 

[1.6, 3.0] × 10−4

[0.30, 4.3] × 10−4 

[4.0, 9.3] × 10−4 

[0.048, 1.5] × 10−5 

[4.0, 6.1] × 10−3 [2.5, 7.5] [479, 574]

We look for solutions that minimize

(14.12) f(x) := ∥Dx − d∥2 + λ
l∑

j=1

θ
(
∥Rjx∥/δ

)
,

where λ > 0 controls the regularization strength and δ > 0 adjusts the scale of the 
operator {Rj }j . This objective has the form (13.22) with M = m + l and

(14.13) (Ai, ai, θi(t)) =

{
(D(i, :), [d ]i, t2 ) if i ⩽ m,(Ri

−m, 0, λθ(t/δ)) otherwise.

The experiments below illustrate the behavior of the PCGLS-QMM algorithm 
in convex and nonconvex settings. In the convex case,

(14.14) θ(u) = (1 + u2)1/2 − 1 =: θMS(u)
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Table 5. Graph layout: maximum inner and outer contractions 
versus stopping delay (target contraction γ = 10−6).

1138 bus tuma2

k Γinner Γouter Γinner Γouter

3 1.15 × 10−5 1.05 × 10−5 1.76 × 10−4 1.75 × 10−4

4 2.85 × 10−6 1.87 × 10−6 4.61 × 10−5 4.51 × 10−5

5 1.22 × 10−6 2.76 × 10−7 8.83 × 10−6 7.85 × 10−6

6 1.00 × 10−6 2.07 × 10−8 2.04 × 10−6 1.10 × 10−6

7 9.94 × 10−7 6.44 × 10−10 1.01 × 10−6 4.46 × 10−8

8 9.94 × 10−7 2.73 × 10−11 9.99 × 10−7 3.59 × 10−9

filter2D rajat19

k Γinner Γouter Γinner Γouter

3 2.32 × 10−5 2.23 × 10−5 3.79 × 10−6 2.79 × 10−6

4 9.91 × 10−6 8.93 × 10−6 1.41 × 10−6 4.06 × 10−7

5 4.18 × 10−6 3.25 × 10−6 1.05 × 10−6 4.67 × 10−8

6 1.96 × 10−6 9.95 × 10−7 1.02 × 10−6 5.76 × 10−10

7 1.07 × 10−6 1.66 × 10−7 1.01 × 10−6 8.09 × 10−12

8 1.01 × 10−6 2.32 × 10−8 1.01 × 10−6 2.10 × 10−14
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Figure 9. Tomography problem: cross-section of a walnut (left) 
and sinogram data (right).

(the function of minimal surfaces [65]), and {Rj }j is the usual spatial-gradient 
operator [53, Section 5.2]. The intersection of the null spaces of the Rj ’s is the set 
of constant images, and since the only constant image in null(D) is 0, Theorem 13.3 
guarantees R-linear convergence to the global minimizer of f. In the nonconvex 
case,

(14.15) θ(u) = ln(1 + u2) =: θLE(u)
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(the Lorentzian error function [66]), and {Rj}j consists of the high-pass operators
of a two-level framelet system generated from piecewise linear filters [67]. Since θLE
is analytic, Theorem 13.2 predicts R-linear or -sublinear convergence to a stationary
point of f .

14.2.1. Quality measures and parameter setting. The quality of the computed solu-
tions is assessed with the peak signal-to-noise ratio and with structural dissimilarity.
The peak signal-to-noise ratio (in dB) of a reconstruction x is defined as

PSNR := 20 log10

( √
nx⋆

pp

∥x− x⋆∥

)
,

where x⋆
pp is the peak-to-peak amplitude of the ground truth. The structural

dissimilarity is SD := 1 − SSIM, where SSIM is the popular structural similarity
index [68].

The free parameters λ and δ are selected as follows. Given the percentage area
α occupied by air in the ground truth, the αth percentile Pα of {∥Rjx

⋆∥}j can be
interpreted as the minimum magnitude for a regularization vector (or scalar) Rjx

⋆

to be considered significant; it is about 1.2 × 10−3 for the gradient operator and
about 2.1×10−4 for the framelet operator. We set δ = Pα/10 in the former case (so
the convex regularizer is a smooth approximation to the ℓ1-norm of the gradient)
and δ = Pα in the latter (so the significant framelet coefficients are preserved). We
then adjust λ to achieve near optimal PSNR (about 26.4 dB in both cases).

We use the following continuation sequences. In the convex case, the relaxed
objectives fp are the same as f but with θ( ·/δ) replaced by (δp/δ)θMS( ·/δp), where
(δp)0⩽p⩽q decreases linearly from 100δ to δ. In the nonconvex case, fp is obtained
by replacing θ by µpθLE + (1−µp)θMS, where (µp)0⩽p⩽q increases linearly from 0
to 1. The length q of the continuation sequences is set to 50.

The starting point is always the zero image and we use the Jacobi preconditioner

(14.16) M(x) = diag(W(x)) = diag
(
∥A(: , 1)∥2Q(x), . . . , ∥A(: , n)∥2Q(x)

)
.

As in the previous experiments, we distinguish between practical, limit, and double-
limit solutions (denoted by x̂, x̂∗, and x̂∗∗, respectively).

14.2.2. Robustness to the parameters of the PCG solver. We set the outer ter-
mination tolerance ϵ to 10−5. Figure 10 shows the reconstructions obtained for
(k, γ) = (5, 10−4). The nonconvex regularizer yields a sharper image, as expected
by design. Table 6 gives the mean and maximum relative difference of the objective
value, PSNR and structural dissimilarity of the practical solutions for a stopping
delay ranging from 1 to 32 and a contraction number between 10−8 and 10−1. Look-
ing at the relative differences, we see that the reconstructions are not sensitive to
the parameters of the PCG solver. In the nonconvex case, this robustness suggests
that the algorithm always ends up in the bottom of the same basin.

The running time is approximately affine in both k and − log10(γ) (the order of 
magnitude of the contraction number) as well as in the density of the factor A(x) of 
the weighting matrix. In the convex case, the running time ranges from about 2 
minutes for (k, γ) = (1, 0.1) to about 10 minutes for (k, γ) = (32, 10−8), and the 
number NMM of outer iterations is between 220 and 225. In the nonconvex case, the 
running time ranges from 15 to 52 minutes, and NMM is between 360 and 400 when k 
⩾ 4 and goes up to 660 for (k, γ) = (1, 0.1).
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Table 6. Overall behavior of the PCGLS-QMM reconstruction
algorithm for (k, γ) ∈ {1, . . . , 32}× [10−8, 10−1] (outer termination
tolerance ϵ = 10−5).

Convex regularizer Nonconvex regularizer

Mean Max. rel. diff. Mean Max. rel. diff.

f(x̂) 15.20 1.2 × 10−10 14.19 9.6 × 10−6

PSNR (dB) 26.44 1.3 × 10−7 26.36 4.6 × 10−5

SD 2.40 × 10−7 3.5 × 10−7 2.36 × 10−7 1.5 × 10−4

Figure 10. Reconstructions obtained using the convex gradient
regularizer (left) and the nonconvex framelet regularizer (right).

14.2.3. Behavior in the long run. Figure 11 plots the norm of the gradient, the
normalized objective (see (14.8)), and the Euclidean distance to the limit for differ-
ent values of the stopping delay and the contraction number (the vertical dashed
lines indicate the number of outer iterations to termination when ϵ = 10−5). We
make the same observations as for graph layout: the iterates at maximum accuracy
are stationary to machine precision, the objective decreases monotonically, and the
convergence is R-linear. In the convex case, PCGLS-QMM behaves similarly to
exact QMM independently of k when γ ⩽ 0.1, while in the nonconvex case the
trajectory of the iterates is stable when k ⩾ 5 and γ ⩽ 10−4. We also see that
decreasing γ does not necessarily improve the convergence rate.

Table 7 compares the practical solutions obtained for (k, γ) = (1, 0.1) with the
double-limit solutions. Their differences in terms of Euclidean distance, objective,
PSNR, and structural dissimilarity are negligible (and they are indeed visually in-
distinguishable from the reconstructions shown in Figure 10). So again we conclude
that there is no point in choosing γ or ϵ too small, be it in terms of execution time
or solution quality.

14.2.4. The PCG stopping test at work. Figure 12 plots the inner and outer con-
tractions Γ(yjp+1−k |xp) and Γ(xp+1 |xp) (as defined in Section 14.1.4) for different

values of the stopping delay and a target γ = 10−4. As expected, the maximum in-
ner contraction is close to γ for k large enough (k ⩾ 20 in the convex case and k ⩾ 5
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Figure 11. Long-run behavior of the PCGLS-QMM reconstruc-
tion algorithm. From top to bottom: norm of the gradient, nor-
malized objective, and distance to the limit versus number of outer
iterations.

in the nonconvex case), and the ratio of the outer to inner contraction decreases
rapidly with increasing k.

We notice that the minimum suitable value of k for matching γ is larger in the 
convex case. This indicates that, along the iterate trajectories, the spectra of the 
surrogates (that is, the distributions of the eigenvalues of the inner system matrices) 
are more spread out for the convex objective than for the nonconvex one. Indeed, we 
have seen in Section 12.2 that the larger k, the better the approximation
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Table 7. Tomographic reconstruction: comparison of the prac-
tical solutions obtained for (k, γ) = (1, 0.1) with the double-limit
solutions.

Convex regularizer Nonconvex regularizer

∥x̂− x̂∗∗∥/∥x̂∗∗∥ 1.1 × 10−5 2.7 × 10−3

|f(x̂)/f(x̂∗∗)−1 | 7.9 × 10−10 5.3 × 10−6

|PSNR(x̂)/PSNR(x̂∗∗)−1 | 6.4 × 10−7 2.5 × 10−6

|SD(x̂)/SD(x̂∗∗)−1 | 2.0 × 10−6 1.7 × 10−4
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Figure 12. Tomographic reconstruction: inner and outer con-
tractions (top and bottom, respectively) versus number of outer
iterations. The target contraction is γ = 10−4.

(12.10) of the inner error energy norm, and hence the closer the inner contraction to 
γ. At the same time, the error bound (12.13) not only shows that the quality of this 
approximation depends on the spectrum of the inner system matrix, but also gives 
insight into what qualifies as a favorable spectrum, namely tightly clustered 
eigenvalues away from the origin, and what constitutes an unfavorable one, namely 
widely spread out eigenvalues (see [35, Section 3.1]). Therefore, the more scattered 
the eigenvalues, the larger k must be for matching γ.
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Table 8. Comparison of PCGLS-QMM(k, γ) with nonlinear CG-
related methods: running time T and number of iterations N for an 
outer termination tolerance of 10−5.

Convex regularizer Nonconvex regularizer

T N T N

19min 51s 381 3h 03min 31s 502

20min 02s 400 3h 26min 56s 557

2min 28s 261 27min 51s 355

2min 05s 225 14min 55s 324

TN

CG-PR+

L-BFGS

PCGLS-QMM(1, 10−1) 
PCGLS-QMM(5, 10−2) 2min 30s 220 22min 16s 425

Table 9. Comparison of PCGLS-QMM(k, γ) with nonlinear CG-
related methods in the long run: minimum gradient norm attained 
and number of iterations to stagnation N∗.

Convex regularizer Nonconvex regularizer

minp ∥∇f(xp)∥ N∗ minp ∥∇f(xp)∥ N∗

483 582

522 662

399 589

1400 2300

TN

CG-PR+

L-BFGS

PCGLS-QMM(1, 10−1) 
PCGLS-QMM(5, 10−2)

2.9 × 10−6 

3.1 × 10−6 

2.6 × 10−6 

1.5 × 10−13 

1.4 × 10−13 1500

1.3 × 10−6 

6.2 × 10−6 

1.1 × 10−6 

3.3 × 10−14 

3.1 × 10−14 4000

14.2.5. Comparison with other nonlinear CG-related algorithms. Finally, we com-
pare PCGLS-QMM with three nonlinear CG-related methods: truncated Newton 
(TN) [69], Polak-Ribi`ere conjugate gradient (CG-PR+) [70], and L-BFGS [71]. 
These three algorithms are major tools for large-scale optimization, but they do not 
come with as strong convergence guarantees as PCGLS-QMM. The limited memory 
parameter of L-BFGS is set to the recommended value of 5 [72], and we consider 
PCGLS-QMM in fast and normal settings (namely, (k, γ) = (1, 0.1) and (5, 10−2), 
respectively). For an outer termination tolerance of 10−5, TN, CG-PR+ and L-
BFGS all produce similar reconstructions to PCGLS-QMM: the objective, PSNR 
and SD are the same to four significant digits in both the convex and non-convex 
cases. However, as Table 8 shows, there are significant differences in running time: 
PCGLS-QMM is 7 to 14 times faster than TN and CG-PR+, and up to twice as fast 
as L-BFGS. Furthermore, in the long run, the accuracy of TN, CG-PR+ and L-
BFGS plateaus prematurely compared to PCGLS-QMM. This is illustrated in Table 
9, which gives the number of iterations to and the value of the minimum gradient 
norm: the gradient norm of the iterates of TN, CG-PR+ and L-BFGS plateaus above 
10−6 after 400–700 iterations, while PCGLS-QMM plateaus below 1.5 × 10−13 after 
1400–4000 iterations.
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We gratefully thank the referee for evaluating our work and we apologize for our late answer (the referee’s

comments were made available to us on June 2023, for reasons independent from the editor,).

All recommendations have been carefully taken into account. Each of our answers is preceded by the

associated original comment typeset in a blue slanted font; highlights and changes in the manuscript are

displayed in red. Please note that this report has its own reference section.

1. In section 13, the authors point out that the algorithm can be applied to problems such as multidi-

mensional scaling and regularized linear inversion, and give some of the details. Why the authors do

not give the corresponding numerical experiments in the last section?

Our numerical experiments are on graph layout and X-ray tomography, which are instances of multi-

dimensional scaling and regularized linear inversion, respectively. To avoid confusion, we make it clear

in the introduction as well as in the experimental section :

• In the second-to-last paragraph of the introduction (page 3) :

“Section 14 concludes the paper with numerical experiments on graph layout (an in-

stance of multidimensional scaling) and X-ray tomography (an instance of regularized

inversion).”

• At the beginning of Section 14 (page 31) :

“In this section we present experiments on graph layout and X-ray tomography as in-

stances of multidimensional scaling and regularized inversion, respectively.”

• In the second paragraph of Section 14.1 (page 31), where we explain how the energy function for

graph layout is a special case of the stress function for multidimensional scaling :

“The Kamada-Kawai energy is a special case of the raw stress function (13.1) in which

q = 2 and the matrix [cij ] is proportional to [1/d 2
ij ], that is,

F (X) ∝
m∑

i,j=1

(
1−

∥∥X(i)−X(j)
∥∥/dij )2, (14.2)

where X(i) and X(j) contain the two-dimensional cartesian coordinates of vi and vj ,

respectively. The corresponding objective f and its surrogate are defined by (13.15) and

(13.16).”

• In the second paragraph of Section 14.2 (page 40), where we explain how the objective function

for X-ray tomography is a special case of that of regularized linear inversion :

“We look for solutions that minimize

f(x) := ∥Dx− d∥2 + λ

l∑
j=1

θ
(
∥Rjx∥/δ

)
, (14.12)
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where λ > 0 controls the regularization strength and δ > 0 adjusts the scale of the

operator {Rj}j . This objective has the form (13.22) with M = m+ l and

(Ai,ai, θi(t)) =

 (D(i, :), [d ]i, t
2 ) if i ⩽ m,

(R i−m, 0, λθ(t/δ)) otherwise.”
(14.13)

2. Four matrices from the SuiteSparse Matrix Collection are used for the numerical experiments in Sec-

tion 14.1. What are the reasons for choosing these four matrices? The authors give numerical results

for only two matrices in this paper. I suggest that the authors put the numerical results for the re-

maining two matrices and add more examples to make the numerical experiments more convincing.

We selected the matrices 1138 bus, tuma2, filter2D and rajat19 because we find them representative

of the layouts obtained by minimizing the multidimensional scaling stress function. To reinforce our

results, we now provide additional layout examples as well as the numerical results for filter2D and

rajat19. More specifically, we made the following additions:

• Figure 4 (page 34) shows the layouts of the graphs dwt 1242, airfoil1 dual and uk (also from

the SuiteSparse Matrix Collection) produced by the PCG-QMM algorithm.

• Table 1 (page 32) gives the numbers of vertices and edges of the graphs considered in the experi-

ments, together with the spectral condition number of their corresponding inner system matrix.

• Table 2 (page 35) and Figure 5 (page 36) are augmented with the numerical results associated

with filter2D and rajat19, which confirm the effects of the accuracy of the PCG solver observed

for 1138 bus and tuma2.

• Figure 6 (page 36) and Figure 8 (page 39) plot the gradient norm, the normalized objective and

the distance to the limit versus the number of outer iterations for filter2D and rajat19. The

observations are similar to those for 1138 bus and tuma2.

• Table 3 (page 40) and Table 5 (page 41) are augmented with the numerical results associated

with filter2D and rajat19 for further illustrating the behavior of PCG-QMM in the long run

and the reliability of the PCG stopping criterion.

3. It is suggested that the authors illustrate the effectiveness of the algorithm by comparing it with some

other methods. For example, in Section 14.2, a comparison with Gondzio’s method [GLLA+22] and

the Joint Total Variation (JTV) method mentioned in his paper [TMSK20] can be considered.

The methods described in [GLLA+22] and [TMSK20] are specific to multi-energy X-ray tomography,

which is beyond the scope of our experiments. However, the JTV regularizer considered in [TMSK20]

fits into our framework for regularized linear inversion (the inner product regularizer proposed in

[GLLA+22] does not, because the reversal matrix L is not positive). In [TMSK20] the optimization

problem is solved using a Polak-Ribière conjugate gradient method (CG-PR); so to meet the referee’s

requirement, we compare the PCGLS-QMM algorithm with the CG-PR+ algorithm [GN92] as well as

with two other nonlinear CG-related algorithms: truncated newton (TN) [DS83] and L-BFGS [NW06].

The comparison results are given in Section 14.2.5 (page 46) whose content is reproduced below.

“Finally, we compare PCGLS-QMM with three nonlinear CG-related methods: truncated

Newton (TN) [DS83], Polak-Ribière conjugate gradient (CG-PR+) [GN92], and L-BFGS

[NW06]. These three algorithms are major tools for large-scale optimization, but they do
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not come with as strong convergence guarantees as PCGLS-QMM. The limited memory

parameter of L-BFGS is set to the recommended value of 5 [LN89], and we consider PCGLS-

QMM in fast and normal settings (namely, (k, γ) = (1, 0.1) and (5, 10−2), respectively).

For an outer termination tolerance of 10−5, TN, CG-PR+ and L-BFGS all produce similar

reconstructions to PCGLS-QMM: the objective, PSNR and SD are the same to four signif-

icant digits in both the convex and nonconvex cases. However, as Table 8 shows, there are

significant differences in running time: PCGLS-QMM is 7 to 14 times faster than TN and

CG-PR+, and up to twice as fast as L-BFGS. Furthermore, in the long run, the accuracy

of TN, CG-PR+ and L-BFGS plateaus prematurely compared to PCGLS-QMM. This is

illustrated in Table 9, which gives the number of iterations to and the value of the minimum

gradient norm: the gradient norm of the iterates of TN, CG-PR+ and L-BFGS plateaus

above 10−6 after 400–700 iterations, while PCGLS-QMM plateaus below 1.5 × 10−13 after

1400–4000 iterations.”

4. In general, convex problems are easier to solve than non-convex problems. Why do convex problems

take more iterations than non-convex problems in 14.2.4? Besides, I think it is not convincing to

illustrate the robustness to the parameters of the PCG solver by just one tomography problem.

First we note that solving the convex problem is faster in terms of both the running time and the

number of outer iterations. This is mentioned in Section 14.2.2 (page 42) :

“In the convex case, the running time ranges from about 2 minutes for (k, γ) = (1, 0.1) to

about 10 minutes for (k, γ) = (32, 10−8), and the number NMM of outer iterations is between

220 and 225. In the nonconvex case, the running time ranges from 15 to 52 minutes, and

NMM is between 360 and 400 when k ⩾ 4 and goes up to 660 for (k, γ) = (1, 0.1).”

However, we agree that the results in Section 14.2.4 need to be clarified; so we added the following

paragraph (page 44) to explain why the stopping delay k for matching the target contraction γ is larger

in the convex case than in the nonconvex one :

“We notice that the minimum suitable value of k for matching γ is larger in the convex case.

This indicates that, along the iterate trajectories, the spectra of the surrogates (that is, the

distributions of the eigenvalues of the inner system matrices) are more spread out for the

convex objective than for the nonconvex one. Indeed, we have seen in Section 12.2 that the

larger k, the better the approximation (12.10) of the inner error energy norm, and hence

the closer the inner contraction to γ. At the same time, the error bound (12.13) not only

shows that the quality of this approximation depends on the spectrum of the inner system

matrix, but also gives insight into what qualifies as a favorable spectrum, namely tightly

clustered eigenvalues away from the origin, and what constitutes an unfavorable one, namely

widely spread out eigenvalues (see [Gre97, Section 3.1]). Therefore, the more scattered the

eigenvalues, the larger k must be for matching γ.”

Finally, we now also illustrate the robustness to the parameters of the PCG solver in the graph layout

experiments (Section 14.1.3, page 37) :

“We set the outer termination tolerance ϵ to 10−6 and look at the behavior of the PCG-QMM

algorithm for a stopping delay ranging from 1 to 32 and a contraction number between 10−8

and 10−1. Table 4 gives the ranges of (i) the relative objective difference between the pratical
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and double-limit solutions x̂ and x̂∗∗, (ii) the Tucker distance between x̂ and x̂∗∗, (iii) the

running time, and (iv) the number of outer iterations. We see that the practical solutions

are very close to the double limit solutions, and therefore not sensitive to the parameters

of the PCG solver. Furthermore, the maximum-to-minimum ratios of the running time and

of the number of outer iterations (less than 4 and 2, respectively) are small relative to the

ranges of k and γ. The running time is maximal for (k, γ) = (32, 10−8) and minimal or

close to minimal for (k, γ) = (2, 10−2), and the number of outer iterations is maximal for

(k, γ) = (1, 10−1) and stabilizes as k increases and/or γ decreases.”
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