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RESTRICTED RAMIFICATION IN DIHEDRAL AND FAKE Zp-EXTENSIONS

FILIPPO A. E. NUCCIO MORTARINO MAJNO DI CAPRIGLIO

Abstract. We study restricted ramification in dihedral extensions of number fields, with a focus on its ℓ-adic

properties along fake Zp-extensions, for p and ℓ distinct odd primes. Our results generalise previous works in

the (pro)-dihedral setting, with applications to the study of more general fake Iwasawa theories beyond the
classical case of standard class groups.

1. Introduction

Dihedral extensions of number fields have long been a key object of interest, not only because they represent
the “first step” beyond abelian extensions, whose arithmetic is controlled by class field theory, but also in light
of the role that they play in the theory of complex multiplication: for a very explicit example of the connection
between class field theory for imaginary quadratic fields and dihedral Galois representations arising from CM
modular forms, a reader might consult [BN18, Théorème 1.1]. It is therefore natural to extend to the dihedral
setting the analysis of “restricted ramification” that is normally performed in the abelian case through class
field theory.

The aim of Section 2 is to establish a formula relating the orders of the T -class groups in a dihedral extension,
generalising the main result of [CN20] (see Theorem 2.12 below). Although some arguments can be borrowed
from ibid ., one needs to take into accounts that class field theory for the regular class group and for the T -
class group ClT• are different, because the local cohomology of the units at the ramified places that lie in T
is different in the two cases. Beyond analysing these local contributions in detail, we also devise a general
strategy different from the one in [CN20] that allows us to replace global cohomology arguments with local
ones altogether. Beside its intrinsic interest, this generalisation is motivated by applications to Iwasawa theory.
Indeed, studying Iwasawa-theoretic properties in geometric settings (as for elliptic curves or, more generally,
modular forms), typically requires to focus on Galois groups with restricted ramification: this is discussed in
detail in by Coates–Sujatha in [CS10], and specific examples where this is needed are in the definition of the
fine Selmer groups in [NS23, Theorem 4.20] or in [NOR23, Theorem 4.3].

In Section 3, we consider the setting of a fake Zp-extension, as first defined in [CN23] (see Definition 3.1
below for the precise definition). Prototypical examples of fake Zp-extensions are provided by anticyclotomic
Zp-extensions: given an imaginary quadratic field F , the anticyclotomic Zp-extensions L∞/F is the unique Zp-
extension of F that is Galois but non abelian over Q, and all its layers Ln are normal extensions of the rationals
with Gal(Ln/Q) ∼= Dpn . It gives rise to a tower {Kn/Q}n≥0 of extensions of degree pn that are not Galois,
being the fixed fields of the non normal subgroup of order 2 in Dpn : this tower is a fake Zp-extension. While
it is a classical result that many p-adic arithmetic properties of F are encoded in the behaviour of class groups
along the anticyclotomic Zp-extension (we refer the reader to the fundamental work [Rub88] and references
therein), recent advances show the importance of analysing primes above from p, as in [KNS24, Theorem 3.1],
or in [KL23, Theorem A] (see also the introduction of [BL23] for a thorough literature review). The aim of this
section is to generalise some results obtained in [CN23] about fake Zp-extensions of dihedral type, even beyond
the anticyclotomic cases, but for primes ℓ different from p.
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2 F. A. E. NUCCIO

We conclude this introduction by observing that a full formalization of the results in this paper in the proof
assistant Lean1 through its mathematical library Mathlib (see [mC20]) should be within reach. The definition
of the ideal class group, together with its finiteness for number fields, has recently been obtained (see [BDNN21]
and [BDNN22] for a longer version); the full formalization of the topological group of the idèles and of its class
group is discussed in [dFF22]; in the recent work [dFFN24] de Frutós-Fernandez and the author implemented
the basics of the arithmetic of local fields; finally, Livingston has developed in [Liv23] the foundations of group
cohomology in Lean, thus providing the full technical machinery to implement results about dihedral extensions
and their class field theory in Lean.
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I take this opportunity to correct two typos introduced by the copy-editor while preparing the publisher
version of my joint work [CN20]:

p. 5, line -5: . . . cδ is multiplied by −1 on H2(G,Z). . .→ . . . cδ is multiplication by −1 on H2(G,Z). . .
p. 11, line 1: . . . since NL/K ◦ ιTL/K is multiplied by 2 = [L : K] . . .→ . . . since NL/K ◦ ιTL/K is multiplication

by 2 = [L : K] . . .

2. A formula for T -class groups in dihedral extensions

The main result of [CN20] is a formula expressing the ratio of the class numbers in dihedral extensions of
number fields:

Theorem 2.1 ([CN20, Theorem 3.14]). Let L/k be a Galois extension of number fields whose Galois group
D = Gal(L/k) is dihedral of order 2q with q odd. Let Σ ⊆ D be a subgroup of order 2 and let G ⊆ D be the
subgroup of order q. Set K = LΣ and F = LG. Then

|ClL| · |Clk|2

|ClF | · |ClK |2
=

ĥ0
(
D,O×

L [
1
2 ]
)

ĥ−1
(
D,O×

L [
1
2 ]
) =

ĥ0(D,O×
L )

ĥ−1(D,O×
L )

ĥ−1(Σ,O×
L )

ĥ0(Σ,O×
L )

,

where, for any group Γ and any Γ-module B, ĥi(Γ, B) denotes the order of the Tate cohomology group Ĥi(Γ, B),
and B[ 12 ] denotes B ⊗ Z[ 12 ].

Given any number field2 M and any finite set T of primes of M , we introduce the following notation

Notation 2.2. A×
M is the group of idèles of M , and CM = A×

M/M× is its idèle class group. The group of
prime-to-T fractional ideals — isomorphic to the free abelian group generated by the primes not in T — is
denoted by IdTM and PrTM is its subgroup of prime-to-T principal fractional ideals. The T -class group of M is

the quotient IdTM/PrTM and is denoted ClM . The group of T -units ET
M is defined as

ET
M = {x ∈M× such that vp(x) = 0 for all finite primes p /∈ T},

while the symbol UT
M denotes the group of idèles of valuation 0 at every finite place not in T ,

UT
M =

∏
p∈T

M×
p ×

∏
p/∈T

O×
Mp
×

∏
v|∞

M×
v .

1see https://lean-lang.org/.
2In this paper, by “number field” we mean a finite field extension of Q.

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://lean-lang.org/
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The S-class group of M appears in the bottom-right corner of the following commutative diagram, analogous
to [CN20, Diagram (3.6)],

(2.1)

1

��

1

��

1

��

1 // ET
M

//

��

M× //

��

PrTM //

��

1

1 // UT
M

//

��

A×
M

//

��

IdTM //

��

1

1 // QT
M

//

��

CM //

��

ClTM
//

��

1

1 1 1

where QT
M is defined by the exactness of the diagram. It is easy to see that ClTM is the quotient of ClM modulo

the subgroup generated by the classes of the primes in T . Moreover, given a finite Galois extension of number
fields M ′/M , all groups appearing in (2.1) are Gal(M ′/M)-modules, and the diagram is exact and commutative
in the category of Gal(M ′/M)-modules. We refer the reader to [Tat67] for the main results of class field theory
that we use.

The following is an adaptation of the notation introduced in [CN20, §3]:

Notation 2.3. For an extension M ′/M of number fields, ιTM2/M1
: ClTM1

→ ClTM2
and NM2/M1

: ClTM2
→ ClTM1

denote the map induced by extending ideals from M1 to M2 and by taking the norm of ideals from M2 to M1,
respectively.

Given a finite group Γ, we denote by NmΓ the element

NmΓ =
∑
g∈Γ

g ∈ Z[Γ];

for a Γ-module B, we let the same symbol denote the map NmΓ : B → B induced by multiplication by NmΓ.

Similarly, we let B[NmΓ] denote the kernel of multiplication by NmΓ. Writing Ĥi(Γ, B) (resp. Hi(Γ, B)) for

the Tate (resp. ordinary) i-th cohomology group of Γ with values in B, the symbol ĥi(Γ, B) (resp. hi(Γ, B))

denotes the order of Ĥi(Γ, B) (resp. of Hi(Γ, B)). We occasionally write BΓ to denote the group H0(Γ, B).

One of our first results is a generalisation of [Nuc10, Proposition 2.2] to the setting of T -class groups.

Lemma 2.4. Let M ′/M be a Galois extension of number fields, with Galois group Γ = Gal(M ′/M). Then
there are isomorphisms

Ker(ιTM ′/M ) ∼= Ker
(
H1(Γ, ET

M ′)→ H1(Γ,UT
M ′)

)
and Coker(ιTM ′/M ) ∼= H1(Γ, QT

M ′).

Proof. Taking Γ-cohomology of the bottom row of (2.1) yields the exact sequence

(2.2) 0 −→
(
QT

M ′

)Γ−→ (
CM ′

)Γ −→ (
ClTM ′

)Γ −→ H1(Γ, QT
M ′) −→ H1(Γ, CM ′) = 0.

The sequence (2.2) sits in the second line of the following exact, commutative diagram

0 // QT
M

//

��

CM // ClTM
//

ιT
M′/M
��

0

0 //
(
QT

M ′

)Γ
//
(
CM ′

)Γ
//
(
ClTM ′

)Γ
// H1(Γ, QT

M ′) // 0
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and the snake lemma yields isomorphisms

(2.3) Ker(ιTM ′/M ) ∼=
(
QT

M ′

)Γ
/QT

M and Coker(ιTM ′/M ) ∼= H1(Γ, QT
M ′)

already establishing the second isomorphism in the statement. Taking Γ-cohomology of the left-most column
in (2.1) gives rise to the commutative diagram of exact rows

0 // ET
M

// UT
M

// QT
M

//

��

0

0 //
(
ET

M ′

)Γ
//
(
UT
M ′

)Γ
//
(
QT

M ′

)Γ
// H1(Γ, ET

M ′) // H1(Γ,UT
M ′)

By applying the snake lemma again, we get an isomorphism(
QT

M ′

)Γ
/QT

M
∼= Ker

(
H1(Γ, ET

M ′)→ H1(Γ,UT
M ′)

)
which, combined with the first isomorphism in (2.3), yields the first isomorphism of the statement. □

From now on in this section, we work in the dihedral setting and we need the following notation:

Notation 2.5. Fix be a number field k and let L/k be a Galois extension whose Galois group D = Gal(L/k)
is isomorphic to Dq the dihedral group of order 2q, where q is any odd number. Write G ◁ D for the normal
subgroup of order q and fix a subgroup Σ < D of order 2. Fix also the choice of a generator ρ of G and σ of Σ,
letting Σ′ denote the subgroup ⟨σρ⟩ < D, again of order 2. Let F/k be the subextension of L/k fixed by G and
let K/k (resp. K ′/k) be the subextension of L/k fixed by Σ (resp. fixed by Σ′). Finally, we let T be a fixed,
finite set of primes in k and we denote by Ts ⊆ T its subset of primes that split in F/k.

The first ingredient for the proof of Theorem 2.12 is a generalisation of [CN20, Proposition 3.2], extending
the result in loc. cit. to T -class groups. Before stating it, observe that there are equalities

(2.4)
(
ClTL [

1
2 ]
)Σ

= ιTL/K

(
ClTK [ 12 ]

)
and

(
ClTL [

1
2 ]
)Σ′

= ιTL/K′

(
ClTK′ [ 12 ]

)
:

to see this (we provide the argument for K, the one for K ′ being analogous), observe first that ιTL/K is in-

jective when restricted to ClTK [ 12 ], because its composition with NL/K : ClTL [
1
2 ] → ClTK [ 12 ] coincides with the

multiplication by 2. Moreover, the “algebraic” norm NmΣ : ClTL → ClTL can be factored as

NmΣ : ClTL
NL/K−−−−→ ClTK

ιTL/K−−−→ ClTL .

Hence, given any class c ∈
(
ClTL [

1
2 ]
)Σ

, we have 2c = c+ σc = NmΣc = ιTL/K(NL/Kc): since multiplication by 2

is an automorphism, this implies that ιTL/K is also surjective, establishing (2.4).

Proposition 2.6. In the setting of Notation 2.5, there is an equality

|ClTL [
1
2 ]|

|ClTK [ 12 ]|2
=

h0(G,ClTL [
1
2 ])

h0(D,ClTL [
1
2 ]) · ĥ−1(D,ClTL [

1
2 ]) · |NmDClTL [

1
2 ]|

.

Proof. Let ηT : ClTK ⊕ ClTK′ → ClTL be the map defined by

ηT (c, c′) = ιTL/K(c)ιTL/K′(c′) for c ∈ ClTK , c′ ∈ ClTK′ .

The proposition will follow from the following two equalities:(
ClTL [

1
2 ] : Im(ηT )[ 12 ]

)
=

h0(ClTL [
1
2 ], )

ĥ−1(D,ClTL [
1
2 ]) · |NmDClTL [

1
2 ]|

(2.5)

and ∣∣Ker ηT [ 12 ]
∣∣ = h0(D,ClTL [

1
2 ]).(2.6)
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Indeed, comparing orders in the tautological exact sequence

0 −→ Ker ηT [ 12 ] −→ ClTK [ 12 ]⊕ ClTK′ [ 12 ] −→ ClTL [
1
2 ] −→ ClTL [

1
2 ]/Im ηT [ 12 ] −→ 0

and using (2.5) and (2.6) yields the statement.
We start with the proof of (2.5). Before inverting 2, we can interpret the index in the left-hand side as

(2.7)
(
ClTL : Im ηT

)
=

(
NmGClTL : NmG

(
Im ηT

))
·
(
ClTL [NmG] : Im ηT ∩ ClTL [NmG]

)
by applying equation [CN20, (3.4)] with f = NmG, B = ClTL and B′ = Im ηT . Moreover, combining (2.4) with
the equality Im ηT = ιTL/K(ClTK)ιTL/K(ClTK′), that follows from the definition of ηT , yields

(2.8) Im(ηT [ 12 ]) =
(
ClTL [

1
2 ]
)Σ(

ClTL [
1
2 ]
)Σ′

.

Replacing (2.8) in the right-most term of (2.7) (after inverting 2) we obtain(
ClTL [

1
2 ] : Im(ηT [ 12 ])

)
=

(
NmGClTL [

1
2 ] : NmG

(
Im ηT [ 12 ]

))
·
(
ClTL [

1
2 ][NmG] :

(
(ClTL [

1
2 ])

Σ(ClTL [
1
2 ])

Σ′)
∩ ClTL [NmG]

)
.

The second isomorphism of [CN20, Lemma 2.5] (with B = ClTL [
1
2 ]) allows to simplify the right-hand side of the

above equation to

(2.9)
(
ClTL [

1
2 ] : Im(ηT [ 12 ])

)
=

(
NmGClTL [

1
2 ] : NmG

(
Im ηT [ 12 ]

))
· h1(D,ClTL [

1
2 ]).

Replacing again (2.8), this time in the first factor of the right-hand side of (2.9), gives the equality(
NmGClTL [

1
2 ] : NmG

(
Im ηT [ 12 ]

))
=

(
NmGClTL [

1
2 ] : NmG

(
(ClTL [

1
2 ])

Σ(ClTL [
1
2 ])

Σ′))
and since NmG

(
ClTL [

1
2 ]
)Σ

= NmG

(
ClTL [

1
2 ]
)Σ′

, this further simplifies to(
NmGClTL [

1
2 ] : NmG

(
Im ηT [ 12 ]

))
=

(
NmGClTL [

1
2 ] : NmG

(
ClTL [

1
2 ]
)Σ)

.

Applying again the equality NmΣClTL [
1
2 ] =

(
ClTL [

1
2 ]
)Σ

, we can continue the substitutions to obtain(
NmGClTL [

1
2 ] : NmG

(
Im ηT [ 12 ]

))
=

(
NmGClTL [

1
2 ] : NmGNmΣ

(
ClTL [

1
2 ]
))

=
(
NmGClTL [

1
2 ] : NmD

(
ClTL [

1
2 ]
))

and inserting this back into (2.9) gives

(2.10)
(
ClTL [

1
2 ] : Im(ηT [ 12 ])

)
=

(
NmGClTL [

1
2 ] : NmD

(
ClTL [

1
2 ]
))
· h1(D,ClTL [

1
2 ]) =

∣∣NmGClTL [
1
2 ]
∣∣ · h1(D,ClTL [

1
2 ])∣∣NmD

(
ClTL [

1
2 ]
)∣∣ .

By [CN20, Proposition 2.1] there is an equality

h1(D,ClTL [
1
2 ]) =

h1(G,ClTL [
1
2 ])

ĥ−1(D,ClTL [
1
2 ])

whereas, by definition of Tate cohomology and thanks to the vanishing of the Herbrand quotient of a finite
module, ∣∣NmGClTL [

1
2 ]
∣∣ = ClTL [

1
2 ]

G

ĥ0(G,ClTL [
1
2 ])

=
ClTL [

1
2 ]

G

h1(G,ClTL [
1
2 ])

:

thus we can rewrite the numerator in the right-most term of (2.10) as∣∣NmGClTL [
1
2 ]
∣∣ · h1(D,ClTL [

1
2 ]) =

h0(G,ClTL [
1
2 ])

h1(G,ClTL [
1
2 ])
·
h1(G,ClTL [

1
2 ])

ĥ−1(D,ClTL [
1
2 ])

=
h0(G,ClTL [

1
2 ])

ĥ−1(D,ClTL [
1
2 ])

.

Inserting the above equality in (2.10) finally yields (2.5).
Passing now to (2.6), we are actually going to show that the arrow

θ : Ker ηT [ 12 ] −→ H0(D,ClTL [
1
2 ])
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defined by θ(c, c′) = ιTL/K(c) is an isomorphism, as in the end of the proof of [CN20, Proposition 3.2]. That θ

is well-defined follows from the equality ιTL/Kc =
(
ιTL/K′c′

)−1 ∈ ClTL (by definition of ηT ), and therefore both Σ

and Σ′ fix ιTL/K(c), so this class is actually invariant under the whole D. That θ is injective has already been

observed during the proof of (2.4), when we established that the restriction of ιTL/K to the prime-to-2 component

is injective. To show that it is surjective, let b ∈ H0(D,ClTL): in particular, b is fixed by both Σ and Σ′ and we
can write

b = ιTL/K(c) = ιTL/K(c′)

for some c ∈ ClTK [ 12 ], c
′ ∈ ClTK′ [ 12 ], thanks to (2.8). It follows that the element (c, c′) is in Ker ηT [ 12 ] and

b = θ(c, c′), concluding the proof that θ is an isomorphism and establishing (2.6). □

Before stating the next result, we introduce one more piece of notation:

Notation 2.7. Given any abelian group B, write B(2) to denote its 2-Sylow subgroup.

Remark 2.8. The restriction of the morphism ιTL/F to (ClTF )
(2)

is injective: indeed, the composition NL/F ◦ ιTL/F

coincides with raising to the q-th power, that is an automorphism of the 2-Sylow subgroup. The same argument

shows that the restrictions of ιTK/k and ιTK′/k to (ClTk )
(2)

are injective: we thus identify the 2-Sylow subgroup(
ιTL/FClTF

)(2)
(resp.

(
ιTK/kClTk

)(2)
, resp.

(
ιTK′/kClTk

)(2)
) with (ClTF )

(2)
(resp. with (ClTk )

(2)
).

Lemma 2.9. The 2-adic valuations of the T -class groups in the dihedral extension L/k satisfy the relation

v2

(
|ClTL |
|ClTF |

)
= 2 · v2

(
|ClTK |
|ClTk |

)
.

Proof. It follows from Walter’s isomorphism (see [Wal77, Lemma 5.2]) that

(2.11)
∣∣∣(ClTL)

(2)
/H0(G,ClTL)

(2)
∣∣∣ = ∣∣∣H0(Σ, ClTL)

(2)
/H0(D,ClTL)

(2)
∣∣∣ · ∣∣∣H0(Σ′, ClTL)

(2)
/H0(D,ClTL)

(2)
∣∣∣.

We claim that there are isomorphisms

H0(Σ, ClTL)
(2)

/H0(D,ClTL)
(2) ∼=

(
ClTK/ClTk

)(2)
, H0(Σ′, ClTL)

(2)
/H0(D,ClTL)

(2) ∼=
(
ClTK′/ClTk

)(2)
,(2.12)

as well as

H0(G,ClTL)
(2) ∼= (ClTF )

(2)
.(2.13)

Granting (2.12) and (2.13), the lemma follows from (2.11).

Concerning (2.13), it is enough by Remark 2.8 to show that every class in (ClTL)
(2)

fixed by G is in

the image of ιTL/F : identifying H0(G,ClTL)
(2)

with H0(G, (ClTL)
(2)

) and then with NmG(ClTL)
(2)

(because

Ĥ0(G, (ClTL)
(2)

) ∼= H2(G, (ClTL)
(2)

) = 0), it is enough to show that every class of the form NmGx is in the
image of ιTL/F . This follows from the factorization NmG = ιTL/F ◦NL/F .

To prove (2.12) (we prove the relation for K, the proof for K ′ being analogous), consider the commutative
diagram with exact rows

0 // (ClTk )
(2)

//

ιTL/k

��

(ClTK)
(2)

//

ιTL/K

��

(
ClTK/ClTk

)(2)
//

��

0

0 // H0(D,ClTL)
(2)

// H0(Σ, ClTL)
(2)

// H0(Σ, ClTL)
(2)

/H0(D,ClTL)
(2)

// 0

The isomorphisms of Lemma 2.4 combined with [CN20, Lemma 2.9] show that the kernels (resp. the cokernels)
of the first and the second vertical arrow are isomorphic. The snake lemma yields the result. □
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As remarked before Proposition 2.6, and as the proof of Lemma 2.4 somewhat exemplifies, the cohomological
arguments in [CN20] generalise easily to the case of T -class groups, since they rely on the study of the com-
mutative square (2.1), analogous to [CN20, (3.6)]. In particular, the proof of the two equalities in the following
lemma is analogous to the corresponding ones ibid . and we simply sketch it.

Lemma 2.10. Let H ⊆ D be any subgroup and let M = LH be the subfield fixed by H. The equalities∣∣ClTM [ 12 ]
∣∣ = h0(H,ClTL [

1
2 ]) · h

1(H,ET
L [

1
2 ])

h1(H,UT
L [ 12 ]) · h1(H,PrTL[

1
2 ])

and

|ClTk [
1
2 ]| =

ĥ−1(D,ClTL [
1
2 ]) ·

∣∣NmDClTL [
1
2 ]
∣∣ · ĥ0(D,ET

L [
1
2 ])

ĥ0(D,UT
L [ 12 ]) · ĥ−1(D,PrTL[

1
2 ])

hold.

Proof. The proof of the first equality is the same as the proof of [CN20, Proposition 3.5], replacing Diagram (3.6)
ibid . with (2.1). Similarly, the second equality is obtained through the proof of [CN20, Proposition 3.7], invoking
our Lemma 2.4 instead of equation (3.14) ibid . □

Unlike Lemma 2.10, the following result requires some adaptation to take into account the primes in the set
T . Recall that we introduced in Notation 2.5 the symbol Ts to denote the primes in T that split in F/k.

Proposition 2.11. There is an equality

h1(G,UT
L [ 12 ]) = h1(D,UT

L [ 12 ]) · ĥ
0(D,UT

L [ 12 ]) ·
∏
p∈Ts

dp

where dp is the local degree of a prime p in the extension L/k.

Proof. Just for this proof, write T to denote the set of primes ideal in OF dividing the primes in T . Accordingly,
write Ram(L/F ) (resp. Ram(L/k)) for the set of primes in F (resp. in k) that ramify in L/F (resp. in L/k),
and let Ram(L/F ) \ T (resp. Ram(L/k) \ T ) denote the set difference Ram(L/F ) \

(
T ∩ Ram(L/F )

)
(resp.

Ram(L/k) \
(
T ∩ Ram(L/k)

)
).

Given any prime ideal p in k, choose and fix a prime ideal P in L diving it, and write G(P) (resp. D(P))
to denote the decomposition group of P in the extension L/F (resp. L/k). Whenever p splits in F/k we also

fix a conjugate ideal P̃ in L, dividing p but not dividing P ∩ F . Accordingly, given any prime l in F , denote
by L the prime in L lying above l ∩ k that has been fixed with the previous choice. Finally, denote by O×

P —

instead of O×
LP

— the local units at a prime P.

We begin with the left-hand side in the statement. The description in [Tat67, Proposition 7.2] of the Galois
structure of the idèles yields an identification

H1(G,UT
L ) =

∏
l∈T

H1(G(L), L×
L )×

∏
l/∈T

H1(G(L),O×
L )×

∏
v|∞

H1(G(v), L×
v ) =

∏
l/∈T

H1(G(L),O×
L )

where the second equality follows from Hilbert 90. Since the cohomology of local units is trivial in unramified
extension, the product above simplifies as

H1(G,UT
L ) =

∏
l∈Ram(L/F )\T

H1(G(L),O×
L )
∼=

∏
l∈Ram(L/F )\T

Z/el

where el is the ramification degree of l in the extension L/F , and the isomorphism follows from local class field
theory. Given a prime l occurring in the above product, let p = l∩k; it lies in Ram(L/k)\T and its ramification
index ep in L/k satisfies

ep =

{
el if p splits or is inert in F/k;

2el if p is ramified in F/k.
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In particular,

(2.14) h1(G,UT
L ) =

∏
l∈Ram(L/F )\T

el =
∏

p∈Ram(L/k)s\T

e2p ×
∏

p∈Ram(L/k)i\T

ep ×
∏

p∈Ram(L/k)r\T

ep
2
.

where Ram(L/k)s (resp. Ram(L/k)i, Ram(L/k)r) denotes the subset of Ram(L/k) consisting of primes that
split (resp. that are inert, that ramify) in F/k.

Consider now to the right-hand side: when i = 1, the same argument as above shows that

Ĥ1(D,UT
L ) =

∏
p∈Ram(L/k)\T

Ĥ1(D(P),O×
P).

and therefore

(2.15) h1(D,UT
L ) =

∏
p∈Ram(L/k)\T

ep =
∏

p∈Ram(L/k)s\T

ep ×
∏

p∈Ram(L/k)i\T

ep ×
∏

p∈Ram(L/k)r\T

ep.

When i = 0 we need to distinguish between places in T and not in T : using again that local units have
trivial cohomology at unramified places together with the main statement of local class field theory ([Ser67, §2,
Theorem 1]), we find

Ĥ0(D,UT
L ) =

∏
p/∈T

Ĥ0(D(P),O×
P)×

∏
p∈T

Ĥ0(D(P), L×
P) =

∏
p∈Ram(L/k)\T

Ĥ0(D(P),O×
P)×

∏
p∈T

D(P)ab.

Consider now a prime p ∈ T : if it lies in Ts, the decomposition subgroup D(P) is cyclic of odd order (dividing q),
and D(P)ab ∼= Z/dp; when p /∈ Ts, the decomposition group is either cyclic of order 2 or dihedral, and in both
cases D(P)ab ∼= Z/2. Combining this argument with [CN20, Lemma 3.9] we find

(2.16) ĥ0(D,UT
L ) =

∏
p∈Ram(L/k)r\T

2 ·
∏

p∈Ram(L/k)s\T

ep ·
∏

p∈T\Ts

2 ·
∏
p∈Ts

dp.

Comparing (2.14) with (2.15) and (2.16) gives

(2.17) h1(G,UT
L ) = h1(D,UT

L ) · ĥ0(D,UT
L ) · 4|Ram(L/k)r| · 2|T\Ts| ·

∏
p∈Ts

dp

and after inverting 2 in (2.17) (taking into account that dp is odd for p ∈ Ts) we obtain the proposition. □

We are now ready to state the main result of this section:

Theorem 2.12. With the notation introduced in Notation 2.5, the following equality holds:

|ClTL | · |ClTk |2

|ClTF | · |ClTK |2
=

∏
p∈Ts

dp ·
ĥ0

(
D,ET

L [
1
2 ]
)

ĥ−1
(
D,ET

L [
1
2 ]
)

Proof. We proceed by first proving that the 2-parts of the left- and of the right-hand side coincide, and we
eventually analyse the prime-to-2 parts. The cohomology groups appearing in the right-hand side have trivial
2-part, because ET

L [
1
2 ] is a 2-divisible D-module; and all dp appearing in the product are odd, as observed in

the proof of Proposition 2.11, after (2.17). Hence the 2-adic valuation of the right-hand side is trivial, as is the
one of the left-hand side by Lemma 2.9.

We now move on to prove the equality for the prime-to-2 parts, replacing all T -class groups ClT• by their
prime-to-2 components ClT• [

1
2 ] in what follows. Applying Proposition 2.6, we just need to verify that

(2.18)

∣∣ClTk [
1
2 ]
∣∣2∣∣ClTF [

1
2 ]
∣∣ ?
=

∏
p∈Ts

dp ·
ĥ0

(
D,ET

L [
1
2 ]
)

ĥ−1
(
D,ET

L [
1
2 ]
) · h0(D,ClTL [

1
2 ]) · ĥ

−1(D,ClTL [
1
2 ]) · |NmDClTL [

1
2 ]|

h0(G,ClTL [
1
2 ])

.
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Invoking the first equality of Lemma 2.10 twice (once for H = G and once for H = D), the left-hand side
of (2.18) satisfies the equality∣∣ClTk [

1
2 ]
∣∣2∣∣ClTF [

1
2 ]
∣∣ =

h1(G,UT
L [ 12 ]) · h

1(G,PrTL[
1
2 ])

h0(G,ClTL [
1
2 ]) · h1(G,ET

L [
1
2 ])
·
h0(D,ClTL [

1
2 ]) · h

1(D,ET
L [

1
2 ])

h1(D,UT
L [ 12 ]) · h1(D,PrTL[

1
2 ])
·
∣∣ClTk [

1
2 ]
∣∣;

the right-hand side further expands, through the second equality established in Lemma 2.10, to

h1(G,UT
L [ 12 ]) · h

1(G,PrTL[
1
2 ])

h0(G,ClTL [
1
2 ]) · h1(G,ET

L [
1
2 ])
·
h0(D,ClTL [

1
2 ]) · h

1(D,ET
L [

1
2 ])

h1(D,UT
L [ 12 ]) · h1(D,PrTL[

1
2 ])
·
ĥ−1(D,ClTL [

1
2 ]) ·

∣∣NmDClTL [
1
2 ]
∣∣ · ĥ0(D,ET

L [
1
2 ])

ĥ0(D,UT
L [ 12 ]) · ĥ−1(D,PrTL[

1
2 ])

.

Upon reordering, the left-hand side in (2.18) is thus equal to∣∣ClTk [
1
2 ]
∣∣2∣∣ClTF [

1
2 ]
∣∣ =

ĥ0
(
D,ET

L [
1
2 ]
)
· h0(D,ClTL [

1
2 ])

h0(G,ClTL [
1
2 ])

·
h1(D,ET

L [
1
2 ])

h1(G,ET
L [

1
2 ])
·

h1(G,UT
L [ 12 ])

h1(D,UT
L [ 12 ]) · ĥ0(D,UT

L [ 12 ])
·

·
h1(G,PrTL[

1
2 ])

h1(D,PrTL[
1
2 ]) · ĥ−1(D,PrTL[

1
2 ])
· ĥ−1(D,ClTL [

1
2 ]) · |NmDClTL [

1
2 ]|.

The third factor of the right-hand side is equal to
∏

p∈Ts
dp, by Proposition 2.11. Furthermore, [CN20, Pro-

position 2.1] implies that the fourth factor is equal to 1 whereas the second equals ĥ−1(D,ET
L [

1
2 ])

−1: hence the
above equality simplifies to∣∣ClTk [

1
2 ]
∣∣2∣∣ClTF [

1
2 ]
∣∣ =

ĥ0
(
D,ET

L [
1
2 ]
)
· h0(D,ClTL [

1
2 ])

h0(G,ClTL [
1
2 ])

·
∏

p∈Ts
dp

ĥ−1(D,ET
L [

1
2 ])
· ĥ−1(D,ClTL [

1
2 ]) · |NmDClTL [

1
2 ]|

which is precisely (2.18). This concludes the proof of the theorem. □

Corollary 2.13. In the same setting as in Theorem 2.12,

|ClTL | · |ClTk |2

|ClTF | · |ClTK |2
=

∏
p∈Ts

dp ·
ĥ0(D,ET

L )

ĥ−1(D,ET
L )
· ĥ

−1(Σ, ET
L )

ĥ0(Σ, ET
L )

.

Proof. Observe that, for all i ∈ Z, there is an isomorphism

Ĥi(D,ET
L [

1
2 ])
∼= Ĥi(D,ET

L )/Ĥ
i(D,ET

L )
(2)

.

The corollary follows by combining Theorem 2.12 with [CN20, Lemma 2.9]. □

3. ℓ-class groups in fake Zp-extensions of dihedral type

Fix a number field F , we let p ≥ 3 be an odd prime and we let L∞/F be a Zp-extension, with layers
Ln such that [Ln : F ] = pn (so that L0 = F ). The goal of this section is to study the ℓ-adic behaviour
(for ℓ ̸= p) of T -class groups in fake Zp-extensions. We begin with the definition of this concept, taken from
[CN23, Definition 4.1]:

Definition 3.1. Suppose that there exists a subfield k ⊆ F such that, for every n ≥ 0, Ln/k is Galois, with
dihedral Galois group Gal(Ln/k) ∼= Dpn of order 2pn. Denote by Kn a subfield of index 2 in Ln/k, chosen so
that Kn ⊇ Kn−1 for all n ≥ 1, and put K∞ =

⋃
Kn. The extension K∞/k is said to be a fake Zp-extensions

of dihedral type, the extension L∞/k is the Galois closure of the fake Zp-extension and the field F is said to be
the normalizing quadratic extension of K∞/k.

Fix from now on a fake Zp-extension of dihedral type K∞/k, supposing that F/k is the normalizing quadratic
extension. Fix also a finite set of primes T of k and let ℓ be an odd prime different from p.
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Remark 3.2. The tower of extensions K∞ =
⋃

Kn/k bears strong similarities with a Zp-extension, with the
crucial difference that its layers are all non-Galois extensions. In particular, the usual approach of obtaining
useful information by analysing Galois actions (pioneered by Iwasawa in [Iwa73] for the p-adic behaviour, and
recently developed by Bandini–Longhi in [BL23] for the ℓ-adic counterpart, where ℓ ̸= p) breaks down completely
for the fake Zp-extension. In [CN23] we developed other techniques, based on the analysis of Tate cohomology
of normic systems, in order to address these questions in the non-Galois setting.

Following [BL23, § 4.2], we define the following sequence of natural numbers (for n ≥ 0):

fn(ℓ, p) = fn = order of ℓ in (Z/pn)×.

As remarked ibid ., setting a = vp(ℓ
f1 − 1), it is easy to check that these values satisfy

(3.1) fn = [Qℓ(µpn) : Qℓ] =


1 if n = 0

f1 if 1 ≤ n ≤ a

pn−af1 if n > a

where µpn denotes the group of pn-th roots of unity.
To define a second sequence of natural numbers that occur in the statement of Theorem 3.5 below we need

some preliminaries.

Notation 3.3. For any field • ∈ {k, F, Ln,Kn}n≥0 let AT
• be the ℓ-Sylow (ClT• )

(ℓ)
of the T -class group of •.

Denote by e[n], for n ≥ 0, the idempotents in the topological Zℓ-algebra Λ = Zℓ[[Gal(L∞/F )]] defined in [BL23,

Theorem 2.1]; letting X = lim←−AT
Ln

(where the transition morphisms are induced by the norm), write X[n] for
the projection X[n] = e[n]X. We set

tIw[n] =
vℓ(|X[n]|)

fn
(for n ≥ 0) and tfk[n] =


vℓ
(
|AT

Kn
/AT

Kn−1
|
)

fn
for n ≥ 1

tIw[0]
2 for n = 0.

Remark 3.4. Clearly, the above values satisfy fmtfk[m] ∈ Z for m ≥ 1 and f0t
fk
[0] ∈ Z[ 12 ].

Our main result is the following

Theorem 3.5. In the setting of Notation 3.3, for all n ≥ 0 the ℓ-adic valuation of the order |AT
Kn
| satisfies

vℓ
(
|AT

Kn
|
)
= ν +

n∑
m=0

fmtfk[m] = ν + tfk[0] + f1

( a∑
m=1

tfk[m] +

n∑
m=a+1

pm−atfk[m]

)
.

where a = vp(ℓ
f1 − 1) and where ν ∈ Z[ 12 ] is a constant independent of n.

Proof. The second equality follows from the first via the relations in (3.1). Concerning the first equality, [BL23,
Theorem 4.6] shows3 that, for all n ≥ 0,

(3.2) vℓ
(
|AT

Ln
|
)
=

n∑
m=0

fmtIw[m].

The key ingredient is our Theorem 2.12: since for every prime p in Ts, the local degree p is a power of p, the
ℓ-adic valuation vℓ(dp) is trivial and Theorem 2.12 implies that for all n ≥ 0,

vℓ
(
|AT

Ln
|
)
= 2 · vℓ

(
|AT

Kn
|
)
+ vℓ

(
|AT

F |
)
− 2 · vℓ

(
|AT

k |
)
+ vℓ

(
ĥ0(Dn,O×

Ln
)
)
−vℓ

(
ĥ−1(Dn,O×

Ln
)
)

= 2vℓ
(
|AT

Kn
|)− 2ν

(3.3)

3 The main result in loc. cit. is proved for T = ∅ but, as observed in [BL23, §5], the proof relies on general algebraic properties

that extend straightforwardly to T -class groups for any finite T .
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where ν = vℓ(|AT
k |) − vℓ(|AT

F |)/2 is independent of n; and where the two terms ĥi(Dn,O×
Ln

) have trivial
ℓ-adic valuation since they are orders of cohomology groups of Dn and thus are only divisible by 2 and p.
Moreover, [BL23, Theorem 4.3] yields isomorphisms4 X[m+1]

∼= AT
Lm+1

/AT
Lm

for all m ≥ 0, and X[0]
∼= AT

F ;

hence, for all m ≥ 0,

tIw[m+1] =
vℓ
(
|X[m+1]|

)
fm+1

=
vℓ
(
|AT

Lm+1
|
)
− vℓ

(
|AT

Lm
|
)

fm+1

=
2vℓ

(
|AT

Km+1
|
)
− 2ν − 2vℓ

(
|AT

Km
|
)
+ 2ν

fm+1

=
2vℓ

(
|AT

Km+1
/AT

Km
|
)

fm+1

= 2tfk[m+1]

(3.4)

Combining (3.3) with (3.2) and (3.4) (and recalling that, by definition, tIw[0] = 2tfk[0]) one obtains that, for all n ≥ 0,

2vℓ
(
|AT

Kn
|
)
= vℓ

(
|AT

Ln
|
)
+ 2ν

= 2ν + tIw[0] +
∑
m≥0

fm+1t
Iw
[m+1]

= 2ν + 2tfk[0] +
∑
m≥0

2fm+1t
fk
[m+1].

Dividing both members of the above equalities by 2 finishes the proof of the theorem. □

Having established Theorem 3.5, that is the analogue of [BL23, Theorem 4.6] for the fake Zp-extension,
we can obtain the following corollary, that generalises [BL23, Theorem 4.8] (we only state it for T = ∅, for
simplicity):

Corollary 3.6. For every odd prime q, the sequence |ClKn

(q)| of the orders of the q-Sylow subgroups of ClKn

converges p-adically.

Proof. For q = p this follows from the main formula for the growth of p-Sylow subgroups established in [CN23,

Theorem 4.6]. When q ̸= p, we can apply Theorem 3.5 with ℓ = q (so ClKn

(q) = ALn
= A∅

Ln
) to find that for

all n ≥ a,

(3.5)
∣∣∣AKn+1

∣∣∣− ∣∣AKn

∣∣ = ∣∣AKn

∣∣(ℓf1pn+1−atfk[n+1] − 1
)
=

∣∣AKn

∣∣(ℓfn+1t
fk
[n+1] − 1

)
.

As observed in Remark (3.4), the term fn+1t
fk
[n+1] is an integer. Since ℓfn+1 ≡ 1 (mod pn+1) by definition, it

follows that the right-hand side of (3.5) tends to 0 p-adically: therefore, the sequence of |AKn
| is Cauchy and

its limit exists, establishing the corollary. □
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