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Joint despeckling and thermal noise compensation:
application to Sentinel-1 images of the Arctic

Inès Meraoumia, Debanshu Ratha, Emanuele Dalsasso, Johannes Lohse,
Florence Tupin, Andrea Marinoni, Loı̈c Denis

Abstract—Synthetic Aperture Radar (SAR) images offer cru-
cial information for studying and monitoring sea ice in the Arctic.
Sentinel-1 captures images of the area using an extremely wide
swath for reduced revisit time. The backscattered signal from
sea ice and open water is often very weak, making it difficult to
distinguish from the sensor thermal noise floor. Thermal noise
impacts the images by generating a bias and increasing the
fluctuations related to speckle phenomenon. Analyzing these im-
ages requires both correcting this bias and reducing fluctuations
without blurring out the image content. The acquisition of several
sub-swaths in a single pass using Terrain Observation with
Progressive Scans (TOPS) produces images that exhibit, after
compensation for antenna gains, a non-uniform thermal noise
floor and strong discontinuities between sub-swaths. Denoising
techniques must take these specificities into account to restore
the images.

This paper introduces a joint approach to remove the thermal
noise offset and suppress fluctuations due to speckle and thermal
noise. Compensating at once for all these effects largely reduces
artifacts at the boundary between sub-swaths. We demonstrate
using both numerical simulations and actual Sentinel-1 images
that debiased polarimetric reflectivities can be recovered and fluc-
tuations strongly reduced while preserving fine spatial structures.

Index Terms—SAR, Despeckling, Thermal noise, Sea Ice

I. INTRODUCTION

Thanks to its ability to see through clouds and operate re-
gardless of daylight conditions, SAR imaging plays a key role
in Earth observation. With its side-looking geometry, it can
cover swaths several hundred kilometers wide. The diversity
of available spatio-temporal system configurations [1] and the
various polarimetric and interferometric capabilities [2], [3]
open a very wide scope of applications: from the study of
forests, agriculture, cryosphere, and urban areas to oceans [4].
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Figure 1. A Sentinel-1 EW GRDM image with both open water (on the left)
and sea ice (on the right). Thermal noise dominates the water backscattering
in the HV cross-polarization channel, especially in the first sub-swath.

Studies report that the Arctic is warming up at a quadrupled
pace compared to the rest of the globe since 1979 [5]. The
study of sea ice concentration, its extent, ice type, the melting
of northern glaciers and the calving of the Greenland glacier
ice sheet are all of crucial interest for the study of climate
change but also for maritime navigation in the area. SAR
imaging is very well suited to monitor the Arctic region: longer
dark periods, frequent precipitation, and cloud cover highly
disadvantage the acquisition by optical sensors [6]–[8].

The Sentinel-1 constellation from the European Space
Agency (ESA) uses a special Extra Wide (EW) swath mode
to cover the Arctic area with a short revisit time. Each image
covers a 400 km wide swath made of five sub-swaths that
are swept sequentially in short bursts thanks to digital antenna
steering and the Terrain Observation with Progressive Scans
(TOPS) principle [9], [10]. Operational sea-ice classification
methods using dual-polarization Sentinel-1 EW data are still
relatively scarce [11]. Analyzing these data is indeed challeng-
ing for at least two reasons: (i) there is a high dependence
of Sentinel-1 C-band backscatter to the incidence angle [12],
which needs to be included by the sea ice classification
method [13], and (ii) the noise is very strong [11]. Beyond
the speckle phenomenon that corrupts all SAR images, the
proximity of sea ice backscattered signal to the thermal noise
floor of the sensor indeed strongly affects the data. Improving
the signal-to-noise ratio in these images requires the removal
of the bias due to the thermal noise floor and the suppression
of fluctuations originating both from the speckle phenomenon
and from thermal noise. The issue of correcting the bias and
reducing the fluctuations are often addressed separately in the
literature.

To compensate for the two-way antenna gain, measurements
collected in directions away from the main diffraction lobe of
the antenna are numerically amplified. This turns the constant
thermal noise floor into a spatial pattern that depends on
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Figure 2. Illustration of the effect of thermal noise on radar intensities: when thermal noise is negligible, the intensities fluctuate according to a gamma
distribution, the expectation matches the reflectivity σ0 and the variance is proportional to (σ0)2; when thermal noise is no longer negligible, a factor
(σ0 + σ0

th)/σ
0 appears, producing a bias (the thermal noise level σ0

th adds up to the scene reflectivity σ0) and amplifying the fluctuations (the variance is
multiplied by (σ0 + σ0

th)
2/(σ0)2, which is larger than one).

the range and azimuth coordinates. Particularly noticeable is
the discontinuity between the first and second sub-swaths,
see Figure 1. The bias due to thermal noise impacts sigma
naught values most significantly over low backscatter zones
(e.g. leads/open water, young smooth ice) [14]. Removing this
bias requires an estimation of the thermal noise floor pattern,
also known as the Noise Equivalent Sigma Zero (NESZ).
For sea ice and oceanographic applications, the calibrated
noise vectors provided with the ground range detected (GRD)
product data by ESA have not been found fully satisfactory
and several approaches to improve this correction have been
developed. Several of these methods rely on detecting open
water areas where the thermal noise dominates and fitting a
parametric model of the NESZ map [15], [16]. Some works
also compensate for the fluctuations due to the thermal noise
by rescaling the image [17]–[19]. A limitation of the fitting
approaches is that the reflectivity of the radar scene degrades
the estimation, making the correction imperfect for areas
covered by sea ice. In our experiments, we found that the
method of Korosov et al. in [20], based on an improvement
of [16], led to good estimates of the NESZ map and focus
in this paper on combining this approach with despeckling
techniques.

To minimize the impact of fluctuations caused by both the
speckle phenomenon and the thermal noise in SAR images, the
use of despeckling techniques is necessary. Despeckling is a
long-standing topic in radar imaging and numerous approaches
have been proposed [21]–[24]. The state-of-the-art uses deep
neural networks. Due to the difficulty of obtaining ground
truth speckle-free SAR images, self-supervised learning has
appeared as a relevant paradigm for developing despeckling
algorithms [25], [26]. The key idea of self-supervised learning
is the splitting of noisy observations in two subsets related
to the same radar scene but where the speckle component is
statistically independent. It is then possible to train a neural
network by confronting predictions made using only informa-
tion from the first subset with the noisy observations in the
second subset. Data splitting can be performed by separating
pairs of images of the same area captured at different dates
[27], excluding a pixel from its spatial neighborhood [28], or
decomposing a single-look complex image into its real and

imaginary components [29].
Existing methods either tackle the problem of refining the

NESZ map to improve the debiasing step or consider only
the despeckling problem. We show in this paper that the
straightforward combination of these two operations in two
steps leads to difficulties: on the one hand, subtracting the
NESZ map changes the statistics of speckle so that existing
despeckling methods become inapplicable, on the other hand,
despeckling the image before removing the NESZ offset leads
to artifacts because discontinuities in the NESZ map are not
perfectly recovered by the despeckling algorithm.

Our contributions: we develop a method to remove both
the thermal noise bias and the fluctuations due to speckle and
thermal noise. Our method has the following features:

1) the despeckling step is aware of the NESZ map so that
it can prevent artifacts at discontinuities between sub-
swaths and account for the increased variance due to
thermal noise in areas of low reflectivity,

2) it processes jointly the two polarimetric channels to
exploit their redundancy and better restore fine details
and low-contrast structures,

3) we develop a self-supervised learning scheme that only
requires co-registered ground-detected images for training
and a single image at inference,

4) our method is derived from a generative model that
accounts for the physics of Sentinel-1 dual-polarization
imaging.

II. PROPOSED METHOD: LEARNING TO SUPPRESS SPECKLE
AND THERMAL NOISE CONTRIBUTIONS

A. Model of the thermal noise component in Sentinel-1 images

Thermal noise sets a limit on the sensitivity of a SAR
system: the in-phase and quadrature measurements are cor-
rupted by an additive white Gaussian noise, and radar echoes
with an amplitude much smaller than the noise floor are then
almost impossible to recover. Since the speckle phenomenon
can also be modeled as complex circular Gaussian fluctuations,
thermal noise appears, in synthesized SAR images, as a
background component with a low reflectivity σ0

th that adds
to the reflectivity σ0 of the SAR scene. Fluctuations of the
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Figure 3. A generative model statistically equivalent to the physics of Sentinel-1 dual-pol GRD imagery: the effects of speckle and thermal noise are modeled
through an equivalent covariance matrix Σtot.

intensity in the SAR images are then proportional to σ0 +σ0
th,

see Figure 2. While areas with strong reflectivities (where
σ0 ≫ σ0

th) are not significantly affected by thermal noise,
lower-reflectivity regions suffer from increased fluctuations
compared to the level of fluctuations that would occur due
to speckle alone. Furthermore, estimations of the reflectivity
are biased unless the thermal floor level is removed.

When acquiring SAR images over a large swath, it is
necessary to compensate for the non-uniform two-way antenna
gain over the swath. After this correction, the noise equivalent
sigma zero σ0

th is no longer constant. In images captured
using several sub-swaths (ScanSAR and TOPS techniques [9]),
values of σ0

th display strong discontinuities at the boundary
between two sub-swaths or between bursts (see Figure 1).
Removing the thermal noise bias σ0

th is necessary to remove
those discontinuities that are particularly visible in areas with
low reflectivity.

Figure 3 gives an approximate generative model for polari-
metric SAR imaging1 that includes the two main perturbation
components in SAR images: thermal noise and speckle. This
model will be used in the following to produce synthetically
degraded images for the first training step of our restoration
network. It also provides useful insight into the respective
impact of thermal noise and speckle. The left-hand side of the
figure illustrates the components of the polarimetric covariance
matrix that characterizes the scene Σ and the thermal noise
floor Σth. These two independent components add up to
form the total covariance matrix Σtot. In the case of dual-
pol imaging, matrices Σ, Σth, and Σtot are of size 2N × 2N
for N -pixels images. Since thermal noise on the HH and HV
measurements is independent, off-diagonal values of Σth are
null. While pure speckle follows a complex circular Gaussian

1since our method is illustrated on Sentinel-1 data, the simplified case of
dual-polarimetry is shown here, the extension of the model to full-polarimetry
is straightforward

distribution Nc(I) with a unitary covariance matrix I, single-
look complex polarimetric SAR images follow the distribution
Nc(Σtot). If Mtot is a matrix such that MtotM

∗
tot = Σtot, then

pure speckle η ∼ Nc(I) can be turned into complex ampli-
tudes z = Mtotη with z ∼ Nc(Σtot), i.e., the factorization
of matrix Σtot provides a generative model of complex-valued
polarimetric SAR amplitudes. In Figure 3 we illustrate the
Cholesky factorization2, defined at a given pixel n by:

Σtotn =

(
σ0

HHn
+ σ0

HHthn

√
σ0

HHn
σ0

HVn
ρne

jβn√
σ0

HHn
σ0

HVn
ρne

−jβn σ0
HVn

+ σ0
HVthn

)
= MtotnM

∗
totn , (1)

where ρn ∈ [0, 1[ and βn ∈ [−π, π[ are the polarimetric
coherence and polarimetric phase at pixel n, and with

Mtotn =

√σ0
HHn

+ σ0
HHthn

0
√
un exp(−jβn)

√
σ0

HVn
+ σ0

HVthn
− un


(2)

where

un =
σ0

HHn
σ0

HVn

σ0
HHn

+ σ0
HHthn

ρ2n . (3)

The full matrices Σtot and Mtot are block diagonal, with
blocks Σtotn and Mtotn : polarimetric channels are correlated
but pixels are spatially independent.

The expression of this factorization will be useful to sim-
ulate synthetic speckle in the following paragraphs, both as
a first step to perform the initial training of our deep neural
network (Section II-C) and to perform quantitative evaluation

2other factorizations are also possible such as Mtot = (Σtot)1/2; the
Cholesky factorization given in Eq. (2) can be easily checked by forming
the product MtotM

∗
tot.
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of different methods in a controlled setting with known ground
truth (Section III-A).

The right-hand-side of Figure 3 illustrates the steps that lead
to ground-detected images such as Sentinel-1 GRDM data.
Starting from the complex amplitudes of an ideal synthesized
SAR image, the SAR system response H (modeled as a linear
operator in the spatial domain) introduces spatial correlations
(due to possible zero-padding and spectral apodization during
the SAR synthesis), then a gain

√
a transforms amplitudes

into digital numbers, and the detection step suppresses the
phase information. Finally, a multilooking and resampling step
is performed in order to obtain approximately square pixels
and images with a smaller memory footprint (linear filtering
operation S). In equation, the generative model of Figure 3
writes:

d̃ = S|diag(
√
a)Hz|2 , (4)

where d̃ is a vector containing the GRD in medium reso-
lution (GRDM) intensities (i.e., the input data in our image
restoration problem), S is an operator that multilooks then
subsamples to transform single-look intensities into GRDM
images, the squared modulus is applied separately to each
complex value, and z is the vector formed by the concatenation
of the polarimetric complex amplitudes zn at each pixel of the
image. These polarimetric complex amplitudes zn are formed
by the pixel-wise operations

∀n ∈ J1, NK, zn = Mtotnηn , (5)

where the pixel number n appears as an index to indicate the
restriction to a single pixel location, and the matrix Mtotn is
formed by the matrix factorization

MtotnM
∗
totn = Σtotn = Σn +Σthn . (6)

At the spatial resolution and pixel spacing of GRDM
images, denoted with ·̃ on the variables, the bias due to the
thermal noise floor can be removed, leading to calibrated and
corrected data d̃c [20]:

d̃c = diag(1/ã)d̃− σ̃0
th , (7)

where the map of the inverse gain 1/ã is obtained by pixelwise
division and the gain ã and noise equivalent sigma zero σ̃0

th
at the GRDM resolution are obtained by application of the
resampling operator S: ã = Sa and σ̃0

th = Sσ0
th, and typically

made available by the space agencies in the metadata that
accompany the SAR images.

The aim of the despeckling and thermal noise compensation
is to remove both the thermal bias and the fluctuations due
to thermal noise and speckle from the data d̃, i.e., to build
estimators of the expectation E[d̃c]. As shown below, this
expectation corresponds to the reflectivity of the scene, up
to the low-pass filtering effect of the SAR system. Combining
equations (7) and (4) gives:

E[d̃c] = diag(1/ã)E
[
S|diag(

√
a)Hz|2

]
− σ̃0

th (8)

Since calibration factors a vary slowly with the range and
azimuth location, S|diag(

√
a)Hz|2 ≈ diag(ã)S|Hz|2 and the

two terms diag(1/ã) and diag(ã) cancel out. The expectation

Figure 4. Impact of the thermal noise on the radar intensities: evolution of the
relative mean squared errors ϵ2 with the signal-to-noise ratio, as established
in equations (10) and (11).

E
[
|Hz|2

]
can be rewritten diag (HE [zz∗]H∗), where the

notation diag() refers to the extraction of the diagonal of a
square matrix in that context. The linear operator H operates
separately on each polarimetric channel. Moreover, complex
amplitudes in z are uncorrelated for any pair of distinct pixels.
At pixel n, the expectation is thus equal to

∑
k |Hnk|2·(σ0

HHk
+

σ0
HHthk

), i.e., the low-pass filtered reflectivity obtained by
accounting for the incoherent point spread function of the SAR
system. Provided that σ̃0

th matches the resampled and low-pass
filtered noise equivalent sigma zero values in the HH and HV
polarization channels (σ̃0

th = S|H|2σ0
th), we obtain:

E[d̃c] ≈ S|H|2σ0 , (9)

where the linear operator3 |H|2 can be interpreted, for a shift-
invariant SAR imaging system (e.g., operating in stripmap
mode), as a convolution by the squared modulus of the
complex-valued impulse response (a product of cardinal sines,
in the absence of spectral apodization). To conclude, our
objective is to recover the scene σ̃0, in ground range geometry,
from the ground detected data d̃ by removing thermal bias and
fluctuations due both to thermal noise and speckle. This scene
is a low-pass filtered and resampled version of the scene in
slant geometry σ0: σ̃0 = S|H|2σ0 with S|H|2 a linear operator
that applies the incoherent point spread function of the system,
low-pass filters and resamples.

The effect of thermal noise is mostly seen in areas with
low reflectivities, such as water and ice areas in Figure 1.
To quantify this effect, we can compare the quadratic errors
ϵ2HHn

= E[(σ̃0
HHn

− d̃HHn
/ãHHn)

2] and ϵ2HVn
= E[(σ̃0

HVn
−

d̃HVn
/ãHVn)

2] in the presence or in the absence of thermal
noise. The bias of d̃HHn

/ãHHn corresponds to σ̃0
HHth n

and the

variance to 1
L

(
σ̃0

HHn
+σ̃0

HHth n

)2
. By noting SNRHHn the signal-

to-noise ratio σ̃0
HHn

/σ̃0
HHth n

, we obtain:

ϵ2HHn
|σ̃0

HHth n
̸=0

ϵ2HHn
|σ̃0

HHth n
=0

=

(
σ̃0

HHth n

)2
+ 1

L

(
σ̃0

HHn
+ σ̃0

HHth n

)2
1
L

(
σ̃0

HHn

)2
=

L

SNR2
HHn

+

(
1 +

1

SNRHHn

)2

(10)

3the squared modulus is applied elementwise to matrix H, leading to
another matrix of same dimension
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Figure 5. Despeckling techniques generally assume a multiplicative speckle
model and must be applied before thermal noise bias removal (top). We
propose to remove this bias before the despeckling step, provided that
a specific despeckling technique be applied (bottom). This improves the
restoration because the thermal noise floor discontinuities are removed before
the despeckling step, preventing the apparition of artifacts.

and

ϵ2HVn
|σ̃0

HVth n
̸=0

ϵ2HVn
|σ̃0

HVth n
=0

=
L

SNR2
HVn

+

(
1 +

1

SNRHVn

)2

. (11)

These expressions, plotted in Figure 4, indicate that when the
number of looks L becomes large, the dominant impact of
thermal noise is the bias. For a fixed value of L, thermal
noise leads to an excess of error due to the combination of
bias and an increased variance. When SNR <

√
L − 1 the

bias is the most impacting factor, when SNR >
√
L − 1 the

variance increase dominates. To properly reduce the errors due
to thermal noise, it is, therefore, necessary to address both
issues, which motivates the design of a method that performs
jointly the despeckling and thermal noise compensation.

B. Proposed joint despeckling and thermal noise bias correc-
tion

The most straightforward way to reduce speckle and thermal
noise fluctuations and compensate as well for the bias due
to thermal noise is a sequential processing that reverts the
steps of the generative model depicted in Figure 3: after cali-
brating the image, first despeckling, leading to over-estimated
reflectivities, then subtracting the thermal noise floor σ0

th.
This strategy is illustrated in the top row of Figure 5 and
constitutes our baseline. The main weakness of this strategy is
that discontinuities of σ0

th are present in the image processed
by the despeckling algorithm. Imperfect restoration of these
edges leads to artifacts after the subtraction step (as shown
in Section III). A better approach would consist in removing
the thermal noise bias before performing the reduction of
fluctuations due to speckle and thermal noise. This, however,
changes dramatically the statistics of speckle in the areas with
low SNR: Figure 6 illustrates how the distribution of log-
intensities, modeled by Fisher-Tippett distribution (red dashed
curve) gets distorted once the thermal noise floor has been

Figure 6. After compensation of the shift due to the thermal noise floor,
corrected intensities follow a different statistical distribution. Here, the prob-
ability density function of the corrected intensities is represented, in log scale
(dB), for different SNR values (ratios of the reflectivity and the thermal noise
floor σ0

th). Compared to the Fisher-Tippett distribution followed in the absence
of thermal noise correction (red dashed curve, SNR → ∞), the shape of the
distribution is strongly modified by the correction, preventing from directly
applying despeckling methods to corrected images.

removed. Conventional despeckling techniques can no longer
be applied to these corrected images. Yet, training a dedicated
despeckling network is possible: this is the approach illustrated
at the bottom of Figure 5 that we propose in this paper.

C. Self-supervised training with image pairs: the SAR2SAR
framework

In section I, three self-supervised training strategies were
described: (i) the use of pairs of images of the same area,
captured at different times so that speckle realizations can be
considered independent [27]; (ii) the use of all neighboring
values except the central pixel, using a network with an
architecture leading to a receptive field with a blind spot [28];
(iii) the decomposition of single-look complex images into real
and imaginary components [29].

The approach (iii) obviously cannot be directly applied to
Sentinel-1 GRDM images since only intensities are available.
Following this approach would require going back to the
single-look complex images and repeating the pipeline that
produces medium-resolution ground-detected images, a pro-
cess that may be too heavy for operational use. Due to the
spatial averaging steps corresponding to the linear operators
H and S in the model (4), the approach (ii) would not
work: speckle is spatially correlated in Sentinel-1 GRDM
images, which breaks the independence assumption between
neighboring pixels at the core of the method. Only approach (i)
lends itself to the training of a network for Sentinel-1 GRDM
images.

Thanks to the revisit of the satellite, it is possible to
collect several images of the same area. If the temporal
separation between the images is sufficient, speckle almost
completely decorrelates and the images can be considered as
independent random draws. Yet, scene evolution over time
necessitates consideration of these changes before comparing
the despeckled estimate derived from the first image to the
second speckled image. In the case of single-polarization
images, the SAR2SAR method [27] proposes a strategy to
compensate for these changes and consider the content of the
second image unchanged, except for the speckle. We extend
this method to jointly process the polarimetric channels and
account for thermal noise.
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Leveraging temporal information to learn how to despeckle
is possible only provided that part of the spatial structures
in the images remain stable. This is the case of land areas
(topographic structures, patches of woods, fields, roads, human
constructions, and infrastructures are generally persistent) but
not true of sea ice and the ocean. We address this issue by
training our network on images of land and open water areas
and then transferring this knowledge to process sea ice images
at inference time.

Training procedure: Following the SAR2SAR method [27],
the network is trained in two phases, A and B. The aim of
phase A is to obtain a despeckling method that can be used
to compensate for changes between images used in phase B.
It uses images with synthetic speckle. Phase B then fine-tunes
the network on actual Sentinel-1 images in order to optimally
adapt to the spatial correlations of speckle and the content of
these images.

In our experiments, we produced speckle-free ground-truth
images by applying a multi-temporal polarimetric filtering
method, RABASAR [30], to a stack of 17 RADARSAT-2
images. We then used the 2 × 2 complex-valued covariance
matrix between the HH and HV channels and actual maps of
σ0

HHth
and σ0

HVth
from Sentinel-1 EW GRDM to simulate,

using the model described in Section II-A and Figure 3,
speckled data. To improve the robustness to various SNRs,
we used SNR values drawn uniformly in the range [ 1

10 , 10]
(i.e., the level of σ0

th was adjusted to cover cases of very low
reflectivities with respect to the thermal noise floor as well
as more favorable cases). For phase B, we selected images
from two land-water areas near the mouth of the river Ob in
Russia, in the late summer months of 2017 to 2019 (same
orbit number and pass direction). The images have been co-
registered and despeckled using the network of phase A in
order to compute the radiometric changes occurring between
pairs of overlapping images.

Network forward pass: We provide as an input to the
network, for each polarization channel, the calibrated images
before (diag(1/ã)d̃) and after (d̃c) thermal noise subtraction,
and the thermal noise map (σ̃0

th), all in log-scale. The network
outputs a two-channels image corresponding to estimates of
the reflectivities σ̃0

HH and σ̃0
HV of the scene, in log-scale. The

use of the log scale has two positive effects: it compresses the
high-dynamic range of SAR images and stabilizes the variance
of speckle.

By combining the corrected image, uncorrected image, and
thermal noise map in input, the network is aware of the
variance of fluctuations, and the bias term, and can readily
use the unbiased image to produce the output image. Since
we provide images in log-scale, the thermal noise component
can not be recovered by the network by a simple subtraction.
We prefer to also provide this information directly as an input.

We connect the input and the output through a U-Net
architecture [31] similar to the one used in SAR2SAR [27],
with a residual connection between the corrected input and the
output, i.e., the network actually only has to estimate the noise
that should be removed from the corrected image in order to
get the reflectivities σ̃0

HH and σ̃0
HV.

Loss function: The network is trained using pairs of speck-

led images captured at two different dates. In phase A, we
use two independent speckle draws to simulate those images.
In phase B, the two images correspond to actual Sentinel-
1 EW GRDM images and the second image is modified
to compensate for the changes that occurred with respect
to the first image: the differences log σ̃0

HH2 − log σ̃0
HH1 and

log σ̃0
HV2 − log σ̃0

HV1, estimated by the network trained in
phase A, are subtracted to the second image log d̃2, leading
to a change-compensated image d̃

⋆

2.
The same loss function is used for the two phases of the

training:

Lθ(d̃1, d̃2) = − log p
(
d̃
⋆

2

∣∣ fθ[diag(1/ã)d̃1, d̃c1 , σ̃
0
th

] )
,
(12)

where θ denotes the vector of parameters of the deep neural
network (i.e., the weights and bias coefficients for all layers)
and fθ[·] represents a forward pass through the network.
Minimizing the loss in (12) corresponds to finding the net-
work weights that lead to an output that maximizes the log-
likelihood with respect to the change-compensated second im-
age. The likelihood in (12) does not admit a simple expression
due to the combination of linear and non-linear operations in
the model of equation (4). We consider a simple separable
approximation to this likelihood by neglecting spatial and
cross-polarization channel correlations, and by approximating
the mixture of spatially-correlated intensities by a gamma
distribution [32]. This leads to the following expression:

− log p
(
d̃
∣∣ σ̃0 + σ̃0

th

)
≈
∑
n

Ln

[
log
(
σ0

HHn + σ0
HHthn

)
+

d̃HHn

σ0
HHn

+ σ0
HHthn

+log
(
σ0

HVn+σ0
HVthn

)
+

d̃HVn

σ0
HVn

+ σ0
HVthn

]
,

(13)

where Ln corresponds to the equivalent number of looks at
pixel n (Ln ≈ 15 in the first subswath, Ln ≈ 10 elsewhere),
and a constant irrelevant to the minimization problem has been
dropped. This approximation, essential to obtain a tractable
loss function to train the network, is sufficient to learn a
meaningful restoration network. As shown in [27], using a
crude approximation of the true likelihood (a Gaussian rather
than Fisher-Tippett distribution in the single-polarization and
single-look case considered in [27]) still allows to train the
network, at the price of a reduced statistical efficiency (i.e.,
sub-optimal use of the training data).

The details of the training parameters are given in Table I.

III. EXPERIMENTS

A. Quantitative evaluation using images with simulated
speckle and thermal noise

We first perform an evaluation of the proposed approach on
simulated Sentinel-1 EW GRDM data. The purpose of these
simulations is to conduct an evaluation with known ground
truth to better analyze the artifacts introduced by the different
methods and perform a quantitative comparison.

Computation of a ground-truth image: We used a C-band
fine quad-polarization image from the Radarsat-2 satellite,
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Table I
TRAINING HYPERPARAMETERS

Synthetic speckle Actual speckle
(phase A) (phase B)

# stacks 1 2
# images 17 20
avg images/stack 17 10
patch size 256× 256 256× 256
batch size 12 12
# patches 5304 11 640
# batches 442 570
# epochs 30 30

learning rate

{
10−3 10−3

10−4 after 10 epochs 10−4 after 10 epochs
10−5 after 20 epochs 10−5 after 20 epochs

Table II
QUANTITATIVE EVALUATION ON SYNTHETIC IMAGES CORRUPTED BY

SPECKLE AND THERMAL NOISE

The grey rectangles extend from the first to the third quartile of the PSNR
values (PSNR is computed for 20 noise realizations).
The median is represented by a vertical black line.

29.8 29.9 30 30.1

26 26.5 2725.5

which offers higher-resolution images with a lower thermal
noise level σ0

th than Sentinel-1. Speckle noise was suppressed
in two steps: first, by multi-looking to reduce the spatial
resolution to that of a Sentinel-1 EW GRDM image (leading to
images with an equivalent number of looks of about 30), and
second by applying a multi-channel despeckling filter (MuLoG
[33]), to remove the residual fluctuations. The reflectivities
σ0

HH and σ0
HV corresponding to the first two elements of the

diagonal of the full-polarimetric covariance matrices in the
resulting image form our ground truth.

Simulation of noisy images: We followed the generative
model described in Figure 3. The thermal noise floor σ0

th has
been set by extracting a patch of same size as the ground
truth image from an actual Sentinel-1 EW GRDM NESZ
map, at a region overlapping the first two sub-swaths (in
order to analyze the impact of this discontinuity). The average
SNR ⟨σ̃0

HH⟩/⟨σ̃0
HHth

⟩ has been set to 10, to fit typical values
observed in Sentinel-1 images. Uncorrelated speckle has been
synthesized, with an equivalent number of looks L = 15 and
L = 10 for the first and second sub-swath, respectively. Note
that, to simplify the simulation, we did not model the spatial
correlations of noise due to the linear operators H and S.
Therefore, we applied our networks directly after Phase A of
the training (i.e., training on images corrupted by synthetic
speckle). Twenty different noise realizations were produced
for the same ground truth image.

Quantitative analysis: Table II compares the Peak Signal to
Noise Ratio (PSNR) computed between estimated and ground
truth values of log σ̃0, in HH and HV polarizations, for 4
restoration strategies:

1) despeckling by application of MuLoG [33] with the
denoising algorithm BM3D [34], followed by the sub-
traction of the thermal noise floor σ0

th;
2) despeckling by application of SARBM3D [35], followed

by the subtraction of the thermal noise floor σ0
th;

3) despeckling by a baseline network described in [36],
trained to despeckle jointly the HH and HV channels
using a similar U-Net architecture, followed by the sub-
traction of the thermal noise floor σ0

th;
4) the proposed approach: subtraction of the thermal noise

floor σ0
th followed by our restoration network.

In Table II, we represent by a gray rectangle the half of
PSNR values included between the first and third quartiles.
The median value is indicated by a vertical bar. The proposed
method outperforms other methods in the HH channel and
performs comparably to MuLoG in the HV channel. Note that
the gap between the performance of standard methods (Mu-
LoG and SARBM3D) and self-supervised networks (baseline
and proposed) increases when processing real data due to the
speckle correlations which are not accounted for by standard
methods but are addressed by the fine-tuning step during phase
B of our training.

Figure 7 shows the images obtained by the different methods
on one of the noise realizations. Zooms in 3 areas are provided.
The dual-polarization information is represented in color using
the following convention: green and blue channels contain
log σ̃HH (the reflectivity of the HH polarization in log-scale),
and the red channel contains log σ̃HV (the reflectivity of the
HV polarization in log-scale). Each channel is normalized to
cover the range from the 5th to the 95th percentile. Close
inspection of the images, in particular in the 3 zoomed-in
areas, shows that fine details are better recovered with the
proposed approach.

B. Qualitative evaluation on an S1 EW GRDM image

We compare in Figure 8 the restoration of an actual
Sentinel-1 EW GRDM image. We show only the HV channel
which is the one with the worst signal-to-noise ratio. We
selected an area overlapping the first and second sub-swaths
to illustrate the impact of the discontinuity in the thermal
noise floor σ0

th (identified by a red vertical dashed line in
Figure 8(a)). After subtraction of the thermal noise offset,
this discontinuity is much less visible (what remains is the
difference in the variance of fluctuations in each sub-swath),
see Figure 8(b). Yet, all standard despeckling techniques
are applicable only to the original image Figure 8(a). The
results shown in Figure 8(c) to Figure 8(e) for MuLoG [33],
SARBM3D [35], and our deep neural network baseline [36]
all display artifacts at the boundary between sub-swaths, as
pointed out by the red arrows. In contrast, the result obtained
with the proposed method shown in Figure 8(f) does not suffer
from this problem.
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Figure 7. Evaluation of restoration methods on a simulation of Sentinel-1 EW GRDM data: (a) ground-truth image obtained from a Radarsat-2 image
(©Government of Canada); (b) simulated image using an actual Sentinel-1 thermal noise map σ0

th overlapping the first and second sub-swaths; (c-e) methods
that despeckle first, then subtract σ0

th; (f) proposed approach.

C. Impact of the thermal noise suppression and despeckling
on downstream applications: illustration on ice classification

There is a large number of downstream applications of
SAR remote sensing that can benefit from improved speckle
reduction in Sentinel-1 wide-swath imagery. As an example
case, we here choose operational sea ice monitoring, which is
essential to support maritime navigation in the polar regions
and to ensure the safety of Arctic offshore operations [37]. Sea
ice conditions are routinely mapped by national ice services
around the world and the resulting information is distributed in
the form of ice charts. While operational ice chart production
is at present still performed manually, multiple studies have
investigated the (semi-)automated separation of sea ice and
open water as well as the classification of different sea ice
types, using both deep-learning approaches and statistical
methods [38].

Here, we choose a pixel-wise classification algorithm intro-
duced by Lohse et al. [13], which is currently being tested
and evaluated in an operational setting at the Norwegian Ice
Service. The method uses the local incident angle together
with both HH and HV backscatter intensities of the Sentinel-
1 EW GRDM product. It accounts for the well-known effect

of class-dependent backscatter variation with the incidence
angle by assuming a linearly variable mean vector for each
individual class distribution. In this study, we use a version of
the classifier that was specifically trained for the area around
Belgica Bank in Western Fram Strait to support navigation
during a research cruise into that area in April and May 2022.
The algorithm distinguishes four ice classes (Open Water/New
Ice, Young Ice, Level Ice, Deformed Ice) which are relevant
for tactical navigation in areas of high sea ice concentration.
Details about the class definitions and training data selection
can be found in [39], [40].

For the demonstration of how the proposed speckle reduc-
tion affects the classification results, we selected four images
from two Sentinel-1 overpasses on May 2nd and May 3rd
2022. We separately applied seven different processing chains
for speckle reduction and thermal noise reduction: (i) no
speckle reduction, multi-looking with two different window
sizes (ii) 9 × 9 and (iii) 21 × 21, the three state-of-the-art
despeckling methods: (iv) Mulog with BM3D [33], (v) SAR-
BM3D [35], (vi) the dual-polarization deep neural network
[36], and finally (vii) the method proposed in this paper. We
classify the output image from each method and geocode the
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Figure 8. Application to an actual Sentinel-1 EW GRDM image (HV polarization channel) of an area in Northern Russia (©ESA): (a) original image; (b) after
correcting for the thermal noise bias; (c-e) restored image by despeckling image (a) and subtracting the thermal a posteriori; (f) proposed method: restoration
of image (b) with a network aware of the thermal noise map σ0

th. Artifacts pointed by red arrows are visible at the boundary between the sub-swaths indicated
by the vertical dashed line in (a) for methods (c-e) and are almost absent of the result (f).

Figure 9. False-color intensity image (left, RGB: HV, HH, HH) and
corresponding classification result (right) for the area of interest after applying
our proposed speckle reduction method.

results to a Polar Stereographic projection (epsg: 3996) with
40 m pixel spacing.

Figure 9 gives an overview of the area of interest, showing a
speckle-reduced false-color intensity image from one Sentinel-
1 overpass on the left and the corresponding classification
result on the right. Zoomed-in close-up comparisons of the
classification results obtained from the different speckle re-
duction methods are presented in Figure 10.

The qualitative comparison clearly shows that the baseline
methods as well as our new proposed approach outperform
the multi-looking approaches. The classification results appear
significantly smoother, while at the same time maintaining
small-scale structures such as narrow leads which are impor-
tant features for tactical navigation. Furthermore, Figure 10
shows that the classification results from the baseline methods
all suffer from artifacts at the sub-swath boundaries. These
artifacts are identified by red arrows in the figure. Note that
after the polar stereographic projection, the boundary between
sub-swaths is no longer vertical. Our proposed method is able
to remove these artifacts, leading to an overall smoother and
more consistent classification result where the inter-sub-swath
boundary is not visible, which is preferable for further use
in either tactical navigation or data assimilation in numerical
models for sea ice forecasts.

IV. CONCLUSION

The analysis of Sentinel-1 images of the Arctic is difficult
due to speckle fluctuations and because of the impact of
thermal noise, in particular in the cross-polarization channel.

Figure 10. Close-up comparison of ice type classification result after different
despeckling methods (same colorbar as in Figure 9. The results show that
our proposed method significantly reduces speckle effects in the classification
result while maintaining spatial details. Furthermore, swath boundary artifacts
pointed by the red arrows in the results from MuLoG, SARBM3D, and the
baseline deep neural network, are successfully suppressed.

Previous methods in the literature addressed only one of
these two aspects. Combining thermal noise correction and
despeckling can be challenging, though, especially at the
boundary between sub-swaths. We have developed a statistical
model describing the impact of both speckle and thermal noise
in polarimetric images. Using this model, we have shown that
standard despeckling techniques must be applied to images
contaminated by the thermal noise bias otherwise the noise
distribution strongly departs from Goodman’s speckle model.
Yet, correcting this bias a posteriori leads to artifacts in regions
where the thermal noise floor varies strongly, such as be-
tween sub-swaths of Sentinel-1 EW images. To prevent these
artifacts, it is necessary to process images corrected for the
thermal noise bias. A specific method must then be developed
to account for the modified statistics of the speckle and thermal
noise fluctuations. We proposed a self-supervised approach
based on a deep-neural network informed by the map of the
thermal noise floor. This strategy is shown to better restore
the images and reduce artifacts at the boundary between sub-
swaths. A better estimation of polarimetric reflectivities is
crucial in downstream applications such as ice classification.
We found a strong improvement with respect to multilooking
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and avoided the accumulation of classification errors at the
boundary between sub-swaths with our new approach.
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