Filamentation with nonlinear Bessel vortices - Université Jean-Monnet-Saint-Étienne
Article Dans Une Revue Optics Express Année : 2014

Filamentation with nonlinear Bessel vortices

Résumé

We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propa-gation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and non-linear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. OCIS codes: (190.7110) Ultrafast nonlinear optics; (190.5940) Self-action effects; (190.3270) Kerr effect.
Fichier principal
Vignette du fichier
oe-22-21-25410.pdf (1.76 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

ujm-01077393 , version 1 (24-10-2014)

Identifiants

Citer

V Jukna, C Milián, C Xie, Tatiana Itina, J Dudley, et al.. Filamentation with nonlinear Bessel vortices. Optics Express, 2014, 22 (21), pp.25410-25425. ⟨10.1364/OE.22.025410⟩. ⟨ujm-01077393⟩
385 Consultations
211 Téléchargements

Altmetric

Partager

More