A Physical Approach for Stochastic Modeling of TERO-based TRNG - Université Jean-Monnet-Saint-Étienne Access content directly
Conference Papers Year : 2015

A Physical Approach for Stochastic Modeling of TERO-based TRNG

Abstract

Security in random number generation for cryptography is closely related to the entropy rate at the generator output. This rate has to be evaluated using an appropriate stochastic model. The stochastic model proposed in this paper is dedicated to the transition effect ring oscillator (TERO) based true random number generator (TRNG) proposed by Varchola and Drutarovsky in 2010. The advantage and originality of this model is that it is derived from a physical model based on a detailed study and on the precise electrical description of the noisy physical phenomena that contribute to the generation of random numbers. We compare the proposed electrical description with data generated in a 28 nm CMOS ASIC implementation. Our experimental results are in very good agreement with those obtained with both the physical model of TERO's noisy behavior and with the stochastic model of the TERO TRNG, which we also confirmed using the AIS 31 test suites.
Fichier principal
Vignette du fichier
2015_CHES_HADDAD_et_al.pdf (1.36 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ujm-01164105 , version 1 (16-06-2015)

Identifiers

  • HAL Id : ujm-01164105 , version 1

Cite

Patrick Haddad, Viktor Fischer, Florent Bernard, Jean Nicolai. A Physical Approach for Stochastic Modeling of TERO-based TRNG. Workshop on Cryptographic Hardware and Embedded Systems, CHES 2015, Sep 2015, st-malo, France. ⟨ujm-01164105⟩
201 View
483 Download

Share

Gmail Facebook X LinkedIn More